CN104716218A - 太阳能电池与其形成方法及n型ZnS层的形成方法 - Google Patents

太阳能电池与其形成方法及n型ZnS层的形成方法 Download PDF

Info

Publication number
CN104716218A
CN104716218A CN201310745979.0A CN201310745979A CN104716218A CN 104716218 A CN104716218 A CN 104716218A CN 201310745979 A CN201310745979 A CN 201310745979A CN 104716218 A CN104716218 A CN 104716218A
Authority
CN
China
Prior art keywords
layer
substrate
shaped zns
solar cell
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310745979.0A
Other languages
English (en)
Other versions
CN104716218B (zh
Inventor
徐为哲
张仕政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of CN104716218A publication Critical patent/CN104716218A/zh
Application granted granted Critical
Publication of CN104716218B publication Critical patent/CN104716218B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • H01L21/02474Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02485Other chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02557Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供的太阳能电池,包括:基板;电极层,位于基板上;p型吸光层,位于电极层上;n型ZnS层,位于p型吸光层上;以及透明电极层,位于n型ZnS层上。将基板浸置于锌盐、螯合剂、以及硫代乙酰胺的酸性溶液中,可形成n型ZnS层于该基板上。

Description

太阳能电池与其形成方法及n型ZnS层的形成方法
技术领域
本发明是关于太阳能电池,更特别关于缓冲层的结构与形成方法。
背景技术
近年来全球工业蓬勃发展,虽然利用传统的能源供给方法成本较便宜,但却潜在着辐射及环境污染等问题。因此绿色替代能源成为各研究单位的研发重点,其中以太阳能电池最受瞩目。传统太阳电池主要以硅晶为主,但近年来各种薄膜太阳能电池蓬勃发展,但若考虑无毒、高效率以及高稳定度则以铜铟硒系列太阳能电池为首选。
铜铟镓硒CIGS是一种黄铜矿结构的化合物,其晶体结构为正方结构,因为拥有高光学吸收系数、吸光波段范围广、化学性质稳定性高、以及直接能隙的优点,因此相当适合作为太阳能电池的材料。一般CIGS电池,为基板上依次为电极层、CIGS层、CdS层、i-ZnO层、AZO层、以及视情况形成的指状电极。CdS层上的i-ZnO层可减缓缓冲层覆盖不完全的问题,并有效抑制电池的漏电流。此外,i-ZnO层可降低溅射AZO层时,离子轰击对CdS层的破坏。但i-ZnO层将吸收部分入射光,且i-ZnO层阻值大而不利电流搜集。此外,i-ZnO层还需多一道溅射工艺而增加工艺时间。
综上所述,目前需要新的CIGS电池结构以省略现有i-ZnO层。
发明内容
本发明一实施例提供的太阳能电池,包括:基板;电极层,位于基板上;p型吸光层,位于电极层上;n型ZnS层,位于p型吸光层上;以及透明电极层,位于n型ZnS层上。
本发明一实施例提供的n型ZnS层的形成方法,包括:将基板浸置于锌盐、螯合剂、以及硫代乙酰胺的酸性溶液中,以形成n型ZnS层于该基板上。
本发明一实施例提供的太阳能电池的形成方法,包括:提供基板;形成电极层于基板上;形成p型吸光层于电极层上;形成n型ZnS层于p型吸光层上,包括:将基板浸置于锌盐、螯合剂、以及硫代乙酰胺的酸性溶液中;以及形成透明电极层于n型ZnS层上。
附图说明
图1为本发明一实施例中,太阳能电池的示意图。
图2为本发明一实施例中,太阳能电池的示意图。
图3为本发明一实施例中,太阳能电池的示意图。
【符号说明】
20  基板;
21  电极层;
23  p型吸光层;
24、24’  n型ZnS层;
25  CdS层;
28  透明电极层;
29  指状电极。
具体实施方式
图1为本发明一实施例中,太阳能电池20的示意图。首先提供基板20如塑料、不绣钢、玻璃、石英、或其他常见基板材质。接着形成电极层21于基板20上,形成方法可为溅射、物理气相沉积、或喷涂法等。在本发明一实施例中,电极层21可为钼、铜、银、金、铂、其他金属、或上述的合金。接着形成p型吸光层23于电极层21上。在本发明一实施例中,p型吸光层23可为铜铟镓硒(CIGS)、铜铟镓硒硫(CIGSS)、铜镓硒(CGS)、铜镓硒硫(CGSS)、或铜铟硒(CIS)。P型吸光层23的形成方法可则可通过蒸镀法、溅射法、电镀法、纳米粒子涂布等方法制作而成,请参考Solarenergy,77(2004)page749-756与Thin solid films,480-481(2005)page99-109。
接着形成n型ZnS层24于p型吸光层23上,以形成p-n结。在本发明一实施例中,n型ZnS层24的形成方法为湿式化学浴沉积(CBD)。举例来说,将基板20浸置于锌盐、螯合剂、以及硫代乙酰胺的酸性溶液中,即可形成n型ZnS层24于基板20上。在本发明一实施例中,锌盐可为醋酸锌、硫酸锌、氯化锌或硝酸锌等,且酸性溶液中的锌盐浓度介于0.001M至1M之间。若锌盐浓度过低,则可能锌量不足则导致薄膜生长速度过慢甚至无法成膜而影响元件性质。若锌盐浓度过高,则可能导致镀膜速度过快而厚度控制不易,薄膜厚度过厚导致串联电阻大幅上升而损伤元件效率。在本发明一实施例中,螯合剂可为酒石酸、琥珀酸、柠檬酸钠或上述的组合,且酸性溶液中的螯合剂浓度介于0.001M至1M之间。若螯合剂浓度过低,则使均质成核反应速度过快,大量纳米粒子将产生于溶液中而沉降附着于吸光层上,此薄膜结构松散因此将大幅降低薄膜的质量。若螯合剂浓度过高,则锌离子都被螯合剂所钳合,将使薄膜生长速度大幅下降。在本发明一实施例中,酸性溶液中的硫代乙酰胺的浓度介于0.001M至1M之间。若硫代乙酰胺浓度过低,则可能影响溶液酸碱值,若酸碱值偏高,则溶液中氢氧根离子提高,可能导致硫化锌薄膜中带有氢氧化合物而影响薄膜的透光性。若硫代乙酰胺浓度过高,则因反应速度过快,因此薄膜结构松散而大幅降低薄膜的品质。上述酸性溶液的pH值介于pH1.5至pH5之间。若酸性溶液的pH值过高,虽然可增加镀膜速度,但薄膜内含大量氢氧化物,氢氧化物除了将使薄膜的能隙降低外,也导致短波长光的光穿透度下降。若酸性溶液的pH值过低,除了可能损伤吸光层表面外,也可能因反应快速而导致大量均质成核产生而影响镀膜质量。上述镀膜工艺的反应温度约介于50℃~100℃之间,且镀膜温度也对薄膜的性质有显著影响。过高的镀膜温度将使反应剧烈发生而偏向均质成核反应,将直接影响镀膜的覆盖率。过低的反应温度则大幅抑制镀膜速度。在本发明一实施例中,将基板20浸置于上述溶液前,先形成电极层21与p型吸光层23于基板20上,即可形成n型ZnS层24于p型吸光层23上。上述n型ZnS层24的厚度介于5nm至100nm之间。在另一实施例中,上述n型ZnS层24的厚度介于10nm至40nm之间。若n型ZnS层24的厚度过薄,则会因覆盖率不完全而导致不好的pn结,对电池的效率有极大的影响。若n型ZnS层24的厚度过厚,薄膜可能发生龟裂而导致漏电流,除此之外过厚的膜厚也将大幅提高串联电阻而导致电池效率下降。
接着形成CdS层25于n型ZnS层24上。在本发明一实施例中,CdS层25的形成方法可参考Solar energy,77(2004)page749-756,使用的化学药品为硫酸镉、硫脲以及氨水,操作温度约为50℃~75℃之间。在本发明一实施例中,CdS层25的厚度介于5nm至100nm之间。若CdS层25的厚度过薄,则会因覆盖率不好而导致漏电流产生,对电池效率有负面影响。若n型CdS层25的厚度过厚,除了使穿透光量下降外,也将因串联电阻大幅提高而导致电池效率下降。
接着形成透明电极层28于CdS层25上。在本发明一实施例中,透明电极层28可为铝锌氧化物(AZO)、铟锡氧化物(ITO)、锡锑氧化物(ATO)、或其他透明导电材料。透明电极层28的形成方法可为溅射法、蒸镀法、原子层沉积法、热裂解法、纳米粒子涂布法及其他相关薄膜涂布工艺。
在本发明一实施例中,可视情况形成指状电极29于透明电极层28上。指状电极29的材质可为镍铝合金,其形成方法可为溅射、光刻、刻蚀、及/或其他合适工艺。在本发明一实施例中,当透明电极层28的表面积较小时,可省略指状电极29。
在本发明另一实施例中,可在上述酸性溶液中沉积n型ZnS层24的步骤之前或之后,在碱性溶液中沉积另一n型ZnS层24’,如图2及图3所示。n型ZnS层24’可夹设于基板20与n型ZnS层24之间,或位于n型ZnS层24上,视工艺顺序。举例来说,将基板20浸置于锌盐、硫脲、及氨水的碱性溶液中,即可形成n型ZnS层24’。在本发明一实施例中,锌盐可为醋酸锌、硫酸锌、氯化锌或硝酸锌等,且碱性溶液中的锌盐浓度介于0.001M至1M之间。则可能锌量不足则导致薄膜生长速度过慢甚至无法成膜而影响元件性质。若锌盐浓度过高,则可能导致镀膜速度过快而厚度控制不易,薄膜厚度过厚导致串联电阻大幅上升而损伤元件效率。在本发明一实施例中,碱性溶液中的硫脲浓度介于0.005M至2M之间。若硫脲浓度过低,则可能造成镀膜反应速度过慢,此外也可能因为硫源不足而使薄膜内的化学组成以氢氧化物居多。若硫脲浓度过高,将导致大量均质成核产生,均质成核可能造成光线散射而降低进入吸光层的光量,除此之外,均质成核所构成的镀膜其结构通常松散,因而影响元件的质量。在本发明一实施例中,碱性溶液中的氨水浓度介于0.5M至5M之间。若氨水浓度过低,则使均质成核反应速度过快,大量纳米粒子将产生于溶液中而沉降,此薄膜结构松散因此将大幅降低薄膜的质量。上述碱性溶液的pH值介于pH9至pH12.5之间。若碱性溶液的pH值过高,则可能导致薄膜组成中以氢氧化物为主,该氢氧化物除了较不稳定外,其能隙也较低,因此使进入吸光层的光量减少而降低电池的短路电流,除此之外过低的能隙也将导致与上下两层的界面有能隙不匹配的问题,而使电池效率下降。若碱性溶液的pH值过低,则可能因薄膜组成中的硫含量过高,而导致该层薄膜与其接触的上下两层的界面有能隙不匹配的问题,而使电池效率下降。在本发明一实施例中,上述镀膜工艺的反应温度约介于50℃~100℃之间。上述碱性溶液沉积的n型ZnS层24’的厚度可介于5nm至100nm之间。在另一实施例中,上述n型ZnS层24’的厚度介于10nm至40nm之间。若n型ZnS层24’的厚度过薄,则会因覆盖率不好而导致漏电流产生,对电池效率有负面影响。若n型ZnS层24’的厚度过厚,除了使穿透光量下降外,
也将因串联电阻大幅提高而导致电池效率下降。值得注意的是,若是以酸性溶液形成n型ZnS层24,并以碱性溶液形成n型ZnS层24’,则可省略图1中的CdS层25。换句话说,透明电极层28可直接形成于双层结构中的n型ZnS层24或n型ZnS层24’上,如图2和图3所示。
为了让本发明的上述和其他目的、特征、和优点能更明显易懂,下文特举数实施例配合所附的附图,作详细说明如下:
实施例
比较例1
使用厚度为100μm的不锈钢板作为基板,并以溅射法形成厚度约为1000nm的铬杂质阻挡层于其上,接着以溅射法制作厚度约为1000nm的钼电极层于铬层上,之后再以纳米粒子涂布法涂布金属前驱物于钼电极上,最后施以硒化工艺制备厚度约为2500nm的CIGS吸光层。
接着形成厚度约为50nm的CdS层于CIGS吸光层上,其做法为配制0.0015M的硫酸镉、0.0075M的硫脲、及1.5M的氨水的溶液,并将温度控制于65℃,且基板浸置于溶液中的镀膜时间控制约为12分钟。接着使用溅射法形成约50nm厚的i-ZnO层于CdS层上,接着以溅射法形成厚度约为350nm的AZO层于i-ZnO层上,最后形成Ni/A1指状电极于AZO层上,即完成太阳能电池。上述太阳能电池中,CdS层与i-ZnO层的双层结构在300nm至1100nm之间的透光率约为76.6%,而上述太阳能电池的效能如表1所示。
实施例1
使用厚度为100μm的不锈钢板作为基板,并以溅射法形成厚度约为1000nm的铬杂质阻挡层于其上,接着以溅射法制作厚度约为1000nm的钼电极层于铬层上,之后再以纳米粒子涂布法涂布金属前驱物于钼电极上,最后施以硒化工艺制备厚度约为2500nm的CIGS吸光层。
接着将硫酸锌、酒石酸、及硫代乙酰胺溶于500mL的去离子水中,形成pH值约为2.5的酸性溶液。此酸性溶液中,硫酸锌的浓度为0.005M,酒石酸的浓度为0.03M,而硫代乙酰胺的浓度为0.01M,并将溶液温度控制约为75℃~85℃。随后将涂有CIGS吸光层的基板浸入上述酸性溶液中10分钟后,即形成厚度约为35nm的n型ZnS层。
接着形成厚度约为35nm的CdS层于n型ZnS层上,其做法为配制0.0015M的硫酸镉、0.0075M的硫脲、及1.5M的氨水的溶液,并将温度控制于65℃,且基板浸置于溶液中的镀膜时间控制约为10分钟。接着使用溅射法形成厚度约为350nm的AZO层于CdS层上,最后形成Ni/A1指状电极于AZO层上,即完成太阳能电池。上述太阳能电池中,n型ZnS层与CdS层的双层结构的透光率在300nm至1100nm之间的透光率约为80.6%。上述太阳能电池的效能如表1所示。
实施例2
使用厚度为100μm的不锈钢板作为基板,并以溅射法形成厚度约为1000nm的铬杂质阻挡层于其上,接着以溅射法制作厚度约为1000nm的钼电极层于铬层上,之后再以纳米粒子涂布法涂布金属前驱物于钼电极上,最后施以硒化工艺制备厚度约为2500nm的CIGS吸光层。
接着将硫酸锌、酒石酸、及硫代乙酰胺溶于500mL的去离子水中,形成pH值约为2.5的酸性溶液。此酸性溶液中,硫酸锌的浓度为0.005M,酒石酸的浓度为0.03M,而硫代乙酰胺的浓度为0.01M,并将溶液温度控制约为75℃~85℃。随后将涂有CIGS吸光层的基板浸入上述酸性溶液中7分钟后,即形成厚度约为20nm的n型ZnS层。
接着形成厚度约为15nm的CdS层于n型ZnS层上,其做法为配制0.0015M的硫酸镉、0.0075M的硫脲、及1.5M的氨水的溶液,并将温度控制于65℃,且基板浸置于溶液中的镀膜时间控制约为5分钟。接着使用溅射法形成厚度约为350nm的AZO层于CdS层上,最后形成Ni/A1指状电极于AZO层上,即完成太阳能电池。上述太阳能电池中,n型ZnS层与CdS层的双层结构的透光率在300nm至1100nm之间的透光率约为84.2%。上述太阳能电池的效能如表1所示。
表1
VOC(V) JSC(mA/cm2) FF(%) 转换率(%) Rsh(Ω) Rs(Ω)
比较例1 0.567 18.35 70.75 7.36 1774 7.6
实施例1 0.566 19.08 68.44 7.40 2302 8.3
实施例2 0.568 19.92 70.15 7.95 2247 7.9
由表1可知,实施例1的太阳能电池的光电转换率和比较例1相近,主要原因为其开路电压相近,虽然比较例1的填充因子(Fill factor)优于实施例1与2,但实施例1的短路电流高于比较例,因此两者的光电转换效率相近,而导致实施例1的填充因子较低的原因,推论应为硫化锌的电阻率高于硫化镉所致,此现象可于实施例2中证明。实施例2的开路电压和比较例l相近,但通过减薄n型ZnS层与CdS层的厚度,可增加进入吸光层的入光量,因此实施例2的短路电流明显高于比较例1的短路电流。实施例2和实施例1比较,则可发现减薄n型ZnS层与CdS层的厚度可减少串联电阻,进而提升电池的填充因子,因此实施例2的电池效率优于比较例1的太阳能电池转换率。
实施例3
使用厚度为100μm的不锈钢板作为基板,并以溅射法形成厚度约为1000nm的铬杂质阻挡层于其上,接着以溅射法制作厚度约为1000nm的钼电极层于铬层上,之后再以纳米粒子涂布法涂布金属前驱物于钼电极上,最后施以硒化工艺制备厚度约为2500nm的CIGS层。
接着将硫酸锌、酒石酸、及硫代乙酰胺溶于500mL的去离子水中,形成pH值约为2.5的酸性溶液。此酸性溶液中,硫酸锌的浓度为0.005M,酒石酸的浓度为0.03M,而硫代乙酰胺的浓度为0.01M,并将溶液温度控制约为75℃~85℃。随后将涂有CIGS层的基板浸入上述酸性溶液中10分钟后,即形成厚度约为35nm的n型ZnS层。
接着形成厚度约为20nm的另一n型ZnS层于n型ZnS层上,其做法为混合硫酸锌、硫脲、及氨水,形成pH值约为12的碱性溶液。此碱性溶液中,硫酸锌的浓度为0.01M、硫脲的浓度为0.08M,且氨水的浓度为2.5M,并将温度控制于80℃,镀膜时间控制约为20分钟。接着使用溅射法形成厚度约为350nm的AZO层于n型ZnS层上,最后形成Ni/A1指状电极于AZO层上,即完成太阳能电池,表2为该电池的电性表现。
实施例4
使用厚度为100μm的不锈钢板作为基板,并以溅射法形成厚度约为1000nm的铬杂质阻挡层于其上,接着以溅射法制作厚度约为1000nm的钼电极层于铬层上,之后再以纳米粒子涂布法涂布金属前驱物于钼电极上,最后施以硒化工艺制备厚度约为2500nm的CIGS层。
接着形成厚度约为20nm的n型ZnS层于CIGS层上,其做法为混合硫酸锌、硫脲、及氨水,形成pH值约为12的碱性溶液。此碱性溶液中,硫酸锌的浓度为0.01M、硫脲的浓度为0.08M,且氨水的浓度为2.5M,并将温度控制于80℃,镀膜时间控制约为20分钟。
接着将硫酸锌、酒石酸、及硫代乙酰胺溶于500mL的去离子水中,形成pH值约为2.5的酸性溶液。此酸性溶液中,硫酸锌的浓度为0.005M,酒石酸的浓度为0.03M,而硫代乙酰胺的浓度为0.01M,并将溶液温度控制约为75℃~85℃。随后将形成有n型ZnS层于其上的基板浸入上述酸性溶液中10分钟后,即形成厚度约为35nm的另一n型ZnS层。接着使用溅射法形成厚度约为350nm的AZO层于另一n型ZnS层上,最后形成Ni/A1指状电极于AZO层上,即完成太阳能电池,表2为该电池的电性表现。
表2
VOC(V) JSC(mA/cm2) FF(%) 转换率(%) Rsh(Ω) Rs(Ω)
实施例3 0.560 25.65 51.25 7.36 187 8.2
实施例4 0.538 28.54 49.93 7.66 408 14.1

Claims (19)

1.一种太阳能电池,其特征在于,包括:
一基板;
一电极层,位于该基板上;
一p型吸光层,位于该电极层上;
一n型ZnS层,位于该p型吸光层上;以及
一透明电极层,位于该n型ZnS层上。
2.根据权利要求1所述的太阳能电池,其特征在于,还包括:
一指状电极,位于该透明电极层上。
3.根据权利要求1所述的太阳能电池,其中该电极层包括钼、铜、银、金、或铂。
4.根据权利要求1所述的太阳能电池,其中该p型吸光层包括铜铟镓硒、铜铟镓硒硫、铜镓硒、铜镓硒硫、或铜铟硒。
5.根据权利要求1所述的太阳能电池,其中该透明电极层包括铝锌氧化物、钢锡氧化物、或锡锑氧化物。
6.根据权利要求1所述的太阳能电池,其中该n型ZnS层的厚度介于5nm至100nm之间。
7.根据权利要求1所述的太阳能电池,其特征在于,还包括一CdS层位于该n型ZnS层与该透明电极层之间。
8.根据权利要求7所述的太阳能电池,其中该CdS层的厚度介于5nm至100nm之间。
9.根据权利要求1所述的太阳能电池,其中该n型ZnS层是双层结构,其中一层的形成方法是将该基板浸置于锌盐、螯合剂、以及硫代乙酰胺的酸性溶液中,且另一层的形成方法是将该基板浸置于锌盐、硫脲、以及氨水的碱性溶液中。
10.一种n型ZnS层的形成方法,其特征在于,包括:
将一基板浸置于锌盐、螯合剂、以及硫代乙酰胺的酸性溶液中,以形成一n型ZnS层于该基板上。
11.根据权利要求10所述的n型ZnS层的形成方法,其中该锌盐包括硫酸锌、醋酸锌、氯化锌、或硝酸锌,且该酸性溶液中的锌盐浓度介于0.001M至1M之间。
12.根据权利要求10所述的n型ZnS层的形成方法,其中该螯合剂包括酒石酸、琥珀酸、或上述的组合,且该酸性溶液中的螯合剂浓度介于0.001M至1M之间。
13.根据权利要求10所述的n型ZnS层的形成方法,其中该酸性溶液中的硫代乙酰胺浓度介于0.001M至1M之间。
14.根据权利要求10所述的n型ZnS层的形成方法,其中该n型ZnS层的厚度介于5nm至100nm之间。
15.根据权利要求10所述的n型ZnS层的形成方法,其特征在于,还包括在形成该n型ZnS层于该基板上之前或之后,将该基板浸置于锌盐、硫脲、以及氨水的碱性溶液中,以形成另一n型ZnS层于该基板上。
16.一种太阳能电池的形成方法,其特征在于,包括:
提供一基板;
形成一电极层于该基板上;
形成一p型吸光层于该电极层上;
形成一n型ZnS层于该p型吸光层上,包括:
将该基板浸置于锌盐、螯合剂、以及硫代乙酰胺的酸性溶液中;以及
形成一透明电极层于该n型ZnS层上。
17.根据权利要求16所述的太阳能电池的形成方法,其特征在于,还包括形成一指状电极于该透明电极层上。
18.根据权利要求16所述的太阳能电池的形成方法,其特征在于,还包括形成一CdS层于该n型ZnS层与该透明电极层之间。
19.根据权利要求16所述的太阳能电池的形成方法,其特征在于,还包括在形成该n型ZnS层于该p型吸光层上的步骤之前或之后,将该基板浸置于锌盐、硫脲、以及氨水的碱性溶液中,以形成另一n型ZnS层于该基板上。
CN201310745979.0A 2013-12-12 2013-12-26 太阳能电池与其形成方法及n型ZnS层的形成方法 Active CN104716218B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW102145804 2013-12-12
TW102145804A TWI496304B (zh) 2013-12-12 2013-12-12 太陽能電池與其形成方法及n型ZnS層的形成方法

Publications (2)

Publication Number Publication Date
CN104716218A true CN104716218A (zh) 2015-06-17
CN104716218B CN104716218B (zh) 2017-05-10

Family

ID=53369539

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310745979.0A Active CN104716218B (zh) 2013-12-12 2013-12-26 太阳能电池与其形成方法及n型ZnS层的形成方法

Country Status (3)

Country Link
US (2) US20150171255A1 (zh)
CN (1) CN104716218B (zh)
TW (1) TWI496304B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109449218A (zh) * 2017-09-01 2019-03-08 财团法人工业技术研究院 太阳能电池及其制造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3042068B1 (fr) * 2015-10-02 2018-06-15 Electricite De France Procede de depot d'une couche tampon sur un film semi-conducteur par photocatalyse

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4611091A (en) * 1984-12-06 1986-09-09 Atlantic Richfield Company CuInSe2 thin film solar cell with thin CdS and transparent window layer
CN1367536A (zh) * 2002-03-08 2002-09-04 清华大学 一种铜铟镓硒薄膜太阳能电池及其制备方法
CN1465740A (zh) * 2002-06-14 2004-01-07 上海化工研究院 真空镀膜硫化锌的制备方法
CN101127372A (zh) * 2007-09-17 2008-02-20 四川大学 一种AlSb太阳电池结构
CN103255396A (zh) * 2012-02-17 2013-08-21 任丘市永基光电太阳能有限公司 柔性cigs薄膜太阳电池中无镉缓冲层的制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4226897A (en) * 1977-12-05 1980-10-07 Plasma Physics Corporation Method of forming semiconducting materials and barriers
JP2001085076A (ja) * 1999-09-10 2001-03-30 Fuji Photo Film Co Ltd 光電変換素子および光電池
US7537778B2 (en) * 2002-09-26 2009-05-26 W. Neudorff Gmbh Kg Pesticidal compositions and methods
US7977139B2 (en) * 2007-03-28 2011-07-12 Showa Shell Sekiyu K.K. Method for manufacturing CIS based thin film solar cell device
WO2011028269A1 (en) * 2009-09-04 2011-03-10 Heliovolt Corporation Cadmium-free thin film for use in solar cells
DE102010006499A1 (de) * 2010-01-28 2011-08-18 Würth Solar GmbH & Co. KG, 74523 Badabscheidungslösung zur nasschemischen Abscheidung einer Metallsulfidschicht und zugehörige Herstellungsverfahren
TWI458116B (zh) * 2010-08-09 2014-10-21 Tsmc Solar Ltd 沉積銅銦鎵硒(cigs)吸收層之裝置及其方法
TWI531078B (zh) * 2010-12-29 2016-04-21 友達光電股份有限公司 太陽電池的製造方法
US20140000673A1 (en) * 2012-06-29 2014-01-02 General Electric Company Photovoltaic device and method of making

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4611091A (en) * 1984-12-06 1986-09-09 Atlantic Richfield Company CuInSe2 thin film solar cell with thin CdS and transparent window layer
CN1367536A (zh) * 2002-03-08 2002-09-04 清华大学 一种铜铟镓硒薄膜太阳能电池及其制备方法
CN1465740A (zh) * 2002-06-14 2004-01-07 上海化工研究院 真空镀膜硫化锌的制备方法
CN101127372A (zh) * 2007-09-17 2008-02-20 四川大学 一种AlSb太阳电池结构
CN103255396A (zh) * 2012-02-17 2013-08-21 任丘市永基光电太阳能有限公司 柔性cigs薄膜太阳电池中无镉缓冲层的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109449218A (zh) * 2017-09-01 2019-03-08 财团法人工业技术研究院 太阳能电池及其制造方法

Also Published As

Publication number Publication date
CN104716218B (zh) 2017-05-10
US20150171255A1 (en) 2015-06-18
TWI496304B (zh) 2015-08-11
US20170104125A1 (en) 2017-04-13
TW201523906A (zh) 2015-06-16

Similar Documents

Publication Publication Date Title
CN101764169B (zh) 太阳能电池元件及其制作方法
KR100999810B1 (ko) 태양전지 및 이의 제조방법
US9941424B2 (en) Solar cell
KR20130052478A (ko) 태양전지 및 이의 제조방법
KR101371859B1 (ko) 태양전지 및 이의 제조방법
CN103474488A (zh) 一种薄膜太阳能电池及其制备方法
CN101980366B (zh) 一种柔性薄膜太阳能电池缓冲层及其制备方法
CN104716218B (zh) 太阳能电池与其形成方法及n型ZnS层的形成方法
CN105374886A (zh) 钝化方法
CN109449218A (zh) 太阳能电池及其制造方法
KR101081300B1 (ko) 태양전지 및 이의 제조방법
CN106571404A (zh) 太阳能电池结构与其形成方法
CN103339741A (zh) 太阳能电池设备及其制造方法
US10115849B2 (en) Solar cell and method of fabricating the same
CN109004045A (zh) 一种碲化镉太阳能电池及其制备方法
US20170104111A1 (en) Solar cell structure and method for manufacturing the same
CN102067278A (zh) 没有金属二硫化物阻挡材料的高效率光伏电池和制造方法
US20150101530A1 (en) Method of recycling solution, solar cell including buffer layer formed by the method, and deposition apparatus
TW201427054A (zh) 光電變換元件及其製造方法、光電變換元件的緩衝層的製造方法與太陽電池
CN101820027A (zh) 多段式硫化镉薄膜沉积方法
KR101180998B1 (ko) 태양전지 및 이의 제조방법
CN204516782U (zh) 一种czts薄膜电池
CN103597606A (zh) 太阳能电池及其制造方法
US20150200326A1 (en) Method and apparatus for increasing efficiency of thin film photovoltaic cell
EP2804220A2 (en) Method of manufacturing thin film solar cell, device for manufacturing thin film solar cell, and thin film solar cell including buffer layer manufactured by the method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant