CN104715874B - 一种薄膜热敏电阻及其制备方法及其电阻值的调节方法 - Google Patents

一种薄膜热敏电阻及其制备方法及其电阻值的调节方法 Download PDF

Info

Publication number
CN104715874B
CN104715874B CN201510143366.9A CN201510143366A CN104715874B CN 104715874 B CN104715874 B CN 104715874B CN 201510143366 A CN201510143366 A CN 201510143366A CN 104715874 B CN104715874 B CN 104715874B
Authority
CN
China
Prior art keywords
transition metal
metal oxide
film
quaternarys
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510143366.9A
Other languages
English (en)
Other versions
CN104715874A (zh
Inventor
何林
杨雷
吴木营
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan University of Technology
Original Assignee
Dongguan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan University of Technology filed Critical Dongguan University of Technology
Priority to CN201510143366.9A priority Critical patent/CN104715874B/zh
Publication of CN104715874A publication Critical patent/CN104715874A/zh
Application granted granted Critical
Publication of CN104715874B publication Critical patent/CN104715874B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

本发明涉及薄膜热敏电阻技术领域,具体涉及一种薄膜热敏电阻及其制备方法及其电阻值的调节方法。一种薄膜热敏电阻,其特征在于:由下而上依次包括基板、底层Mn‑Co‑Ni‑Fe‑O四元过渡金属氧化物膜层、中间层Mn‑Co‑Ni‑Cu‑O四元过渡金属氧化物膜层、顶层Mn‑Co‑Ni‑O三元过渡金属氧化物膜层和电极;该负温度系数薄膜热敏电阻呈现Mn‑Co‑Ni‑O/Mn‑Co‑Ni‑Cu‑O/Mn‑Co‑Ni‑Fe‑O三层结构。本发明制备的薄膜热敏电阻的电阻值在0.5~3.1 MΩ左右可调,老化系数小于4.4%,从而使得该薄膜热敏电阻具有电阻值较低、老化系数低且使用寿命长的优点。

Description

一种薄膜热敏电阻及其制备方法及其电阻值的调节方法
技术领域
本发明涉及薄膜热敏电阻技术领域,具体涉及一种薄膜热敏电阻及其制备方法及其电阻值的调节方法。
背景技术
负温度系数(NTC)热敏电阻由于灵敏度高、可靠性高及价格低廉,而被广泛应用于家用电器、汽车以及工业生产设备的温度传感与控制等领域。由于电子元器件微型化的趋势也扩展到传感器领域,薄膜热敏电阻顺应这一趋势,在近10年得到巨大发展。相对与分立式热敏电阻,薄膜热敏电阻具有响应速度快、工作电压低、热处理温度低等突出优点。目前,薄膜热敏电阻的发展速度已远远超过了传统的分立式热敏电阻。
薄膜热敏电阻由于厚度限制(厚度在10nm~1000nm之间),且现有技术中的薄膜热敏电阻均为单层设计,导致其电阻值较大,从而限制了薄膜热敏电阻在微型器件以及集成器件领域的发展。目前对薄膜热敏电阻阻值的调节多采用设计特殊电极结构或进行激光调阻等方法以达到目标电阻值或降低电阻值。由于上述这些调阻方法都是从后续处理工艺出发来调节薄膜热敏电阻的阻值,并未解决由于热敏电阻材料本身带来的阻值高的问题,而且上述这些电阻调节方法会降低薄膜热敏电阻的灵敏度和老化性能等热敏电阻的基本性能参数。
现有技术中,国内外对薄膜热敏电阻的研究主要为Mn-Co-Ni-O三元薄膜热敏电阻和Mn-Co-Ni-Cu-O四元薄膜热敏电阻这两种单层薄膜热敏电阻。而且由于Mn-Co-Ni-O薄膜热敏电阻存在电阻值高的缺点,Mn-Co-Ni-Cu-O四元薄膜热敏电阻存在老化系数高的缺点,因此,限制了Mn-Co-Ni-O三元薄膜热敏电阻和Mn-Co-Ni-Cu-O四元薄膜热敏电阻这两种单层薄膜热敏电阻的发展。
另外,现有技术中的单层Mn-Co-Ni-Cu-O四元薄膜层容易疏松,导致该Mn-Co-Ni-Cu-O四元薄膜层与基板之间容易剥离的情况,从而缩短了薄膜电阻的使用寿命。
发明内容
本发明的目的之一在于针对现有技术的不足,提供一种电阻值较低、老化系数低且使用寿命长的薄膜热敏电阻。
本发明的目的之二在于针对现有技术的不足,提供一种电阻值较低、老化系数低且使用寿命长的薄膜热敏电阻的制备方法。
本发明的目的之三在于针对现有技术的不足,提供一种薄膜热敏电阻的电阻值的调节方法,该调节方法不会降低薄膜热敏电阻的灵敏度和老化性能等热敏电阻的基本性能参数。
为了实现上述目的之一,本发明采用如下技术方案:
提供一种薄膜热敏电阻,由下而上依次包括基板、底层Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层、中间层Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层、顶层Mn-Co-Ni-O三元过渡金属氧化物膜层和电极;
所述底层Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层、中间层Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层、顶层Mn-Co-Ni-O三元过渡金属氧化物膜层为三层结构。
为了实现上述目的之二,本发明采用如下技术方案:
提供一种薄膜热敏电阻的制备方法,它包括以下步骤:
步骤一,制备膜层溶胶:采用溶胶-凝胶法分别制备Mn-Co-Ni-O三元过渡金属氧化物膜层溶胶、Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层溶胶和Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层溶胶;
步骤二,制备膜层湿凝胶:将步骤一制得的Mn-Co-Ni-O三元过渡金属氧化物膜层溶胶、Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层溶胶和Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层溶胶分别放入恒温箱中,在一定温度下陈化一定时间后,分别得到Mn-Co-Ni-O三元过渡金属氧化物膜层湿凝胶、Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层湿凝胶和Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层湿凝胶;
步骤三,制备底层:在基板上利用Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层湿凝胶进行甩膜制备Mn-Co-Ni-Fe-O底层;
步骤四,制备中间层:在Mn-Co-Ni-Fe-O底层上利用Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层湿凝胶进行甩膜制备Mn-Co-Ni-Cu-O中间层;
步骤五,制备顶层:在Mn-Co-Ni-Cu-O中间层上利用Mn-Co-Ni-O三元过渡金属氧化物膜层湿凝胶进行甩膜制备Mn-Co-Ni-O顶层,得到三层结构薄膜;
步骤六,热处理:对步骤五得到的三层结构薄膜进行热处理,热处理温度为400℃~800℃;
步骤七,制备电极:在步骤六中热处理后的三层结构薄膜的Mn-Co-Ni-O顶层上,采用磁控溅射法制备电极,得到薄膜热敏电阻。
上述技术方案中,所述步骤一制备膜层溶胶中,采用溶胶-凝胶法制备Mn-Co-Ni-O三元过渡金属氧化物膜层溶胶,具体步骤为:
(1)将水和无水乙酸以体积比1:1~2:1放入容器中混合均匀作为溶剂,然后水浴加热所述溶剂并将温度控制在75℃~85℃;
(2)将乙酸锰、乙酸镍和乙酸钴在磁力搅拌的情况下缓慢加入到所述溶剂中,以形成Mn-Co-Ni-O三元过渡金属氧化物膜层前驱液;其中,乙酸锰、乙酸镍和乙酸钴中,锰、镍和钴的摩尔比为35~37:15~17: 6~10;磁力搅拌的速度为500r/min~1000r/min;其中,所形成的Mn-Co-Ni-O三元过渡金属氧化物膜层前驱液的浓度为0.1mol/L~0.5mol/L;
(3)往所述Mn-Co-Ni-O三元过渡金属氧化物膜层前驱液中加入乙酰丙酮,然后在75℃~85℃下继续以500r/min~1000r/min的速度磁力搅拌45小时~50小时后,得到Mn-Co-Ni-O三元过渡金属氧化物膜层溶胶;其中,所述乙酰丙酮的体积占所述Mn-Co-Ni-O三元过渡金属氧化物膜层前驱液的体积的1/30~2/30。
上述技术方案中,所述步骤一制备膜层溶胶中,采用溶胶-凝胶法制备Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层溶胶,具体步骤为:
(1)将水和无水乙酸以体积比1:1~2:2放入容器中混合均匀作为溶剂,然后水浴加热所述溶剂并将温度控制在75℃~85℃;
(2)将乙酸锰、乙酸镍、乙酸钴和乙酸铜在磁力搅拌的情况下缓慢加入到所述溶剂中,以形成Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层前驱液;其中,乙酸锰、乙酸镍、乙酸钴和乙酸铜中,锰、镍、钴和铜的摩尔比为30~31:15~17: 6~10:1~6;磁力搅拌的速度为500r/min~1000r/min;其中,所形成的Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层前驱液的浓度为0.1mol/L~0.5mol/L;
(3)往所述Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层前驱液中加入乙酰丙酮,然后在75℃~85℃下继续以500r/min~1000r/min的速度磁力搅拌45小时~50小时后,得到Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层溶胶;其中,所述乙酰丙酮的体积占所述Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层前驱液的体积的1/30~2/30。
上述技术方案中,所述步骤一制备膜层溶胶中,采用溶胶-凝胶法制备Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层溶胶,具体步骤为:
(1)将水和无水乙酸以体积比1:1~2:2放入容器中混合均匀作为溶剂,然后水浴加热所述溶剂并将温度控制在75℃~85℃;
(2)将乙酸锰、乙酸镍、乙酸钴和乙酸铁在磁力搅拌的情况下缓慢加入到所述溶剂中,以形成Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层前驱液;其中,乙酸锰、乙酸镍、乙酸钴和乙酸铁中,锰、镍、钴和铁的摩尔比为30~31:15~17: 6~10:1~6;磁力搅拌的速度为500r/min~1000r/min;其中,所形成的Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层前驱液的浓度为0.1mol/L~0.5mol/L;
(3)往所述Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层前驱液中加入乙酰丙酮,然后在75℃~85℃下继续以500r/min~1000r/min的速度磁力搅拌45小时~50小时后,得到Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层溶胶;其中,所述乙酰丙酮的体积占所述Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层前驱液的体积的1/30~2/30。
上述技术方案中,所述步骤二制备膜层湿凝胶中,陈化温度为55℃~65℃,陈化时间为70小时~75小时。
上述技术方案中,所述步骤三制备底层中,底层的甩膜步骤均为:使用匀胶机进行甩膜,并先以180r/min~220r/min的速度进行初甩4秒~8秒,然后以3500r/min~4500r/min的速度进行匀胶15秒~25秒,然后在180℃~300℃下进行预热处理150秒~200秒;重复上述甩膜步骤6次~8次;
所述步骤四制备中间层中,中间层甩膜步骤为:使用匀胶机进行甩膜,并先以180r/min~220r/min的速度进行初甩4秒~8秒,然后以3500r/min~4500r/min的速度进行匀胶15秒~25秒,然后在180℃~300℃下进行预热处理150秒~200秒;重复上述甩膜步骤10次~16次;
所述步骤五制备顶层中,顶层的甩膜步骤均为:使用匀胶机进行甩膜,并先以180r/min~220r/min的速度进行初甩4秒~8秒,然后以3500r/min~4500r/min的速度进行匀胶15秒~25秒,然后在180℃~300℃下进行预热处理150秒~200秒;重复上述甩膜步骤4次~8次。
上述技术方案中,所述步骤六热处理中,所述热处理的曲线为:从室温升温至400℃~800℃,升温速率为2℃/min ~4℃/min,然后在400℃~800℃下保温50min~70min,然后自然冷却至室温。
上述技术方案中,所述步骤三制备底层中,所述基板为Pt/TiO2/Ti/SiO2/Si基板、Si基板、Al2O3基板、玻璃基板或石英基板中的任意一种。
为了实现上述目的之三,本发明采用如下技术方案:
提供一种薄膜热敏电阻的电阻值的调节方法,该调节方法为上述所述的一种薄膜热敏电阻的制备方法所制备的薄膜热敏电阻的电阻值的调节方法,具体为:制备Mn-Co-Ni-Fe-O底层、Mn-Co-Ni-Cu-O中间层和Mn-Co-Ni-O顶层的过程中,通过改变Mn-Co-Ni-Fe-O底层和/或Mn-Co-Ni-Cu-O中间层和/或Mn-Co-Ni-O顶层的甩膜次数,以得到不同厚度的Mn-Co-Ni-Fe-O底层和/或Mn-Co-Ni-Cu-O中间层和/或Mn-Co-Ni-O顶层,从而能够调节薄膜热敏电阻的电阻值。
本发明与现有技术相比较,有益效果在于:
(1)本发明提供的一种薄膜热敏电阻,相对于现有技术中的单层薄膜热敏电阻,由于设计为三层薄膜的结构,且底层Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层、中间层Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层、顶层Mn-Co-Ni-O三元过渡金属氧化物膜层为三层结构,其电阻值在0.5~3.1 MΩ左右,老化系数小于4.4%,从而使得该薄膜热敏电阻具有电阻值较低且老化系数低的优点;其中,以Mn-Co-Ni-O三元过渡金属氧化物膜层作为顶层,能够防止中间层Mn-Co-Ni-Cu-O中的铜离子和底层Mn-Co-Ni-Fe-O中的铁离子容易被氧化的情况,从而提高该负温度系数薄膜热敏电阻的老化性能;采用Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层作为底层,由于Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层微结构致密,能够避免该底层Mn-Co-Ni-Fe-O与基板之间容易剥离,因此,能够延长该薄膜热敏电阻的使用寿命;由于底层Mn-Co-Ni-Fe-O和中间层Mn-Co-Ni-Cu-O分别存在变价离子铁离子和铜离子,因此,均相对于顶层Mn-Co-Ni-O的电阻值小,因此,采用Mn-Co-Ni-Cu-O膜层为中间层,且采用Mn-Co-Ni-Fe-O为底层,能够减小整个薄膜热敏电阻的电阻值。
(2)发明提供的一种薄膜热敏电阻的制备方法,具有方法简单的特点,且所制备的薄膜热敏电阻由于设计为三层薄膜的结构,其电阻值在0.5~3.1MΩ左右,老化系数小于4.4%,从而使得该薄膜热敏电阻具有电阻值较低且老化系数低的优点。
(3)本发明提供的一种薄膜热敏电阻的电阻值的调节方法,由于通过改变Mn-Co-Ni-Fe-O底层和/或Mn-Co-Ni-Cu-O中间层和/或Mn-Co-Ni-O顶层的甩膜次数,以得到不同厚度的Mn-Co-Ni-Fe-O底层和/或Mn-Co-Ni-Cu-O中间层和/或Mn-Co-Ni-O顶层,从而调节薄膜热敏电阻的电阻值,因此,该调节方法不会降低薄膜热敏电阻的灵敏度和老化性能等热敏电阻的基本性能参数。
附图说明
图1是本发明的一种薄膜热敏电阻的结构示意图。
在图1中包括有:
1——基板、
2——底层Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层、
3——中间层Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层、
4——顶层Mn-Co-Ni-O三元过渡金属氧化物膜层、
5——电极。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例和附图,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1。
见图1。一种薄膜热敏电阻,由下而上依次包括基板1、底层Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层2、中间层Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层3、顶层Mn-Co-Ni-O三元过渡金属氧化物膜层4和电极5。本实施例中,基板为Pt/TiO2/Ti/SiO2/Si基板。
其中,底层Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层、中间层Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层、顶层Mn-Co-Ni-O三元过渡金属氧化物膜层为三层结构,从而使得该薄膜热敏电阻具有电阻值较低且老化系数低的优点。
实施例2。
见图1。一种薄膜热敏电阻,由下而上依次包括基板1、底层Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层2、中间层Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层3、顶层Mn-Co-Ni-O三元过渡金属氧化物膜层4和电极5。本实施例中,基板为Si基板。
其中,底层Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层、中间层Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层、顶层Mn-Co-Ni-O三元过渡金属氧化物膜层为三层结构,从而使得该薄膜热敏电阻具有电阻值较低且老化系数低的优点。
实施例3。
见图1。一种薄膜热敏电阻,由下而上依次包括基板1、底层Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层2、中间层Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层3、顶层Mn-Co-Ni-O三元过渡金属氧化物膜层4和电极5。本实施例中,基板为Al2O3基板。
其中,底层Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层、中间层Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层、顶层Mn-Co-Ni-O三元过渡金属氧化物膜层为三层结构,从而使得该薄膜热敏电阻具有电阻值较低且老化系数低的优点。
实施例4。
见图1。一种薄膜热敏电阻,由下而上依次包括基板1、底层Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层2、中间层Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层3、顶层Mn-Co-Ni-O三元过渡金属氧化物膜层4和电极5。本实施例中,基板为玻璃基板。
其中,底层Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层、中间层Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层、顶层Mn-Co-Ni-O三元过渡金属氧化物膜层为三层结构,从而使得该薄膜热敏电阻具有电阻值较低且老化系数低的优点。
实施例5。
见图1。一种薄膜热敏电阻,由下而上依次包括基板1、底层Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层2、中间层Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层3、顶层Mn-Co-Ni-O三元过渡金属氧化物膜层4和电极5。本实施例中,基板为石英基板。
其中,底层Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层、中间层Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层、顶层Mn-Co-Ni-O三元过渡金属氧化物膜层为三层结构,从而使得该薄膜热敏电阻具有电阻值较低且老化系数低的优点。
实施例6。
实施例1的一种薄膜热敏电阻的制备方法,它包括以下步骤:
步骤一,制备膜层溶胶:采用溶胶-凝胶法分别制备Mn-Co-Ni-O三元过渡金属氧化物膜层溶胶、Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层溶胶和Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层溶胶;
其中,步骤一制备膜层溶胶中,采用溶胶-凝胶法制备Mn-Co-Ni-O三元过渡金属氧化物膜层溶胶,具体步骤为:
(1)将水和无水乙酸以体积比1:1放入容器中混合均匀作为溶剂,然后水浴加热溶剂并将温度控制在80℃;
(2)将乙酸锰、乙酸镍和乙酸钴在磁力搅拌的情况下缓慢加入到溶剂中,以形成Mn-Co-Ni-O三元过渡金属氧化物膜层前驱液;其中,乙酸锰、乙酸镍和乙酸钴中,锰、镍和钴的摩尔比为37: 17: 6;磁力搅拌的速度为800r/min;其中,所形成的Mn-Co-Ni-O三元过渡金属氧化物膜层前驱液的浓度为0.2mol/L;
(3)往Mn-Co-Ni-O三元过渡金属氧化物膜层前驱液中加入乙酰丙酮,然后在80℃下继续以800r/min的速度磁力搅拌48小时后,得到Mn-Co-Ni-O三元过渡金属氧化物膜层溶胶;其中,乙酰丙酮的体积占Mn-Co-Ni-O三元过渡金属氧化物膜层前驱液的体积的1/30。
其中,步骤一制备膜层溶胶中,采用溶胶-凝胶法制备Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层溶胶,具体步骤为:
(1)将水和无水乙酸以体积比1:1放入容器中混合均匀作为溶剂,然后水浴加热溶剂并将温度控制在80℃;
(2)将乙酸锰、乙酸镍、乙酸钴和乙酸铜在磁力搅拌的情况下缓慢加入到所述溶剂中,以形成Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层前驱液;其中,乙酸锰、乙酸镍、乙酸钴和乙酸铜中,锰、镍、钴和铜的摩尔比为31:17: 6:6;磁力搅拌的速度为800r/min;其中,所形成的Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层前驱液的浓度为0.2mol/L;
(3)往所述Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层前驱液中加入乙酰丙酮,然后在80℃下继续以800r/min的速度磁力搅拌48小时后,得到Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层溶胶;其中,所述乙酰丙酮的体积占所述Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层前驱液的体积的1/30。
其中,步骤一制备膜层溶胶中,采用溶胶-凝胶法制备Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层溶胶,具体步骤为:
(1)将水和无水乙酸以体积比1:1放入容器中混合均匀作为溶剂,然后水浴加热溶剂并将温度控制在80℃;
(2)将乙酸锰、乙酸镍、乙酸钴和乙酸铁在磁力搅拌的情况下缓慢加入到所述溶剂中,以形成Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层前驱液;其中,乙酸锰、乙酸镍、乙酸钴和乙酸铁中,锰、镍、钴和铁的摩尔比为31:17: 6:6;磁力搅拌的速度为800r/min;其中,所形成的Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层前驱液的浓度为0.2mol/L;
(3)往所述Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层前驱液中加入乙酰丙酮,然后在80℃下继续以800r/min的速度磁力搅拌48小时后,得到Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层溶胶;其中,所述乙酰丙酮的体积占所述Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层前驱液的体积的1/30。
步骤二,制备膜层湿凝胶:将步骤一制得的Mn-Co-Ni-O三元过渡金属氧化物膜层溶胶、Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层溶胶和Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层溶胶分别放入恒温箱中,在60℃下陈化72小时后,分别得到Mn-Co-Ni-O三元过渡金属氧化物膜层湿凝胶、Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层湿凝胶和Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层溶胶湿凝胶;
步骤三,制备底层:在Pt/TiO2/Ti/SiO2/Si基板上利用Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层湿凝胶进行甩膜制备Mn-Co-Ni-Fe-O底层;
其中,Mn-Co-Ni-Fe-O底层的甩膜步骤均为:使用匀胶机进行甩膜,并先以200r/min的速度进行初甩6秒,然后以4000r/min的速度进行匀胶20秒,然后在250℃下进行预热处理180秒;重复上述甩膜步骤6次。
步骤四,制备中间层:在Mn-Co-Ni-Fe-O底层上利用Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层湿凝胶进行甩膜制备Mn-Co-Ni-Cu-O中间层;
其中,Mn-Co-Ni-Cu-O中间层甩膜步骤为:使用匀胶机进行甩膜,并先以200r/min的速度进行初甩6秒,然后以4000r/min的速度进行匀胶20秒,然后在250℃下进行预热处理180秒;重复上述甩膜步骤10次。
步骤五,制备顶层:在Mn-Co-Ni-Cu-O中间层上利用Mn-Co-Ni-O三元过渡金属氧化物膜层湿凝胶进行甩膜制备Mn-Co-Ni-O顶层,得到三层结构薄膜;
其中,Mn-Co-Ni-O顶层的甩膜步骤均为:使用匀胶机进行甩膜,并先以200r/min的速度进行初甩6秒,然后以4000r/min的速度进行匀胶20秒,然后在250℃下进行预热处理180秒;重复上述甩膜步骤4次。
步骤六,热处理:对步骤五得到的三层结构薄膜进行热处理,热处理温度为550℃;其中,热处理的曲线为:从室温升温至550℃,升温速率为3℃/min,然后在550℃下保温60min,然后自然冷却至室温。
步骤七,制备电极:在步骤六中热处理后的三层结构薄膜的Mn-Co-Ni-O顶层上,采用磁控溅射法制备电极,得到薄膜热敏电阻。
实施例7。
实施例2的一种薄膜热敏电阻的制备方法,它包括以下步骤:
步骤一,制备膜层溶胶:采用溶胶-凝胶法分别制备Mn-Co-Ni-O三元过渡金属氧化物膜层溶胶、Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层溶胶和Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层溶胶;
其中,步骤一制备膜层溶胶中,采用溶胶-凝胶法制备Mn-Co-Ni-O三元过渡金属氧化物膜层溶胶,具体步骤为:
(1)将水和无水乙酸以体积比2:1放入容器中混合均匀作为溶剂,然后水浴加热溶剂并将温度控制在75℃;
(2)将乙酸锰、乙酸镍和乙酸钴在磁力搅拌的情况下缓慢加入到溶剂中,以形成Mn-Co-Ni-O三元过渡金属氧化物膜层前驱液;其中,乙酸锰、乙酸镍和乙酸钴中,锰、镍和钴的摩尔比为35: 15: 8;磁力搅拌的速度为1000r/min;其中,所形成的Mn-Co-Ni-O三元过渡金属氧化物膜层前驱液的浓度为0.5mol/L;
(3)往Mn-Co-Ni-O三元过渡金属氧化物膜层前驱液中加入乙酰丙酮,然后在75℃下继续以1000r/min的速度磁力搅拌45小时后,得到Mn-Co-Ni-O三元过渡金属氧化物膜层溶胶;其中,乙酰丙酮的体积占Mn-Co-Ni-O三元过渡金属氧化物膜层前驱液的体积的2/30。
其中,步骤一制备膜层溶胶中,采用溶胶-凝胶法制备Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层溶胶,具体步骤为:
(1)将水和无水乙酸以体积比2:1放入容器中混合均匀作为溶剂,然后水浴加热溶剂并将温度控制在75℃;
(2)将乙酸锰、乙酸镍、乙酸钴和乙酸铜在磁力搅拌的情况下缓慢加入到所述溶剂中,以形成Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层前驱液;其中,乙酸锰、乙酸镍、乙酸钴和乙酸铜中,锰、镍、钴和铜的摩尔比为30:15: 10:1;磁力搅拌的速度为1000r/min;其中,所形成的Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层前驱液的浓度为0.5mol/L;
(3)往所述Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层前驱液中加入乙酰丙酮,然后在75℃下继续以1000r/min的速度磁力搅拌45小时后,得到Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层溶胶;其中,所述乙酰丙酮的体积占所述Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层前驱液的体积的2/30。
其中,步骤一制备膜层溶胶中,采用溶胶-凝胶法制备Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层溶胶,具体步骤为:
(1)将水和无水乙酸以体积比2:1放入容器中混合均匀作为溶剂,然后水浴加热溶剂并将温度控制在75℃;
(2)将乙酸锰、乙酸镍、乙酸钴和乙酸铁在磁力搅拌的情况下缓慢加入到所述溶剂中,以形成Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层前驱液;其中,乙酸锰、乙酸镍、乙酸钴和乙酸铁中,锰、镍、钴和铁的摩尔比为30:15: 10:1;磁力搅拌的速度为1000r/min;其中,所形成的Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层前驱液的浓度为0.5mol/L;
(3)往所述Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层前驱液中加入乙酰丙酮,然后在75℃下继续以1000r/min的速度磁力搅拌45小时后,得到Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层溶胶;其中,所述乙酰丙酮的体积占所述Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层前驱液的体积的2/30。
步骤二,制备膜层湿凝胶:将步骤一制得的Mn-Co-Ni-O三元过渡金属氧化物膜层溶胶、Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层溶胶和Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层溶胶分别放入恒温箱中,在55℃下陈化75小时后,分别得到Mn-Co-Ni-O三元过渡金属氧化物膜层湿凝胶、Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层湿凝胶和Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层湿凝胶;
步骤三,制备底层:在Si基板上利用Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层湿凝胶进行甩膜制备Mn-Co-Ni-Fe-O底层;
其中,Mn-Co-Ni-Fe-O底层的甩膜步骤均为:使用匀胶机进行甩膜,并先以180r/min的速度进行初甩8秒,然后以3500r/min的速度进行匀胶25秒,然后在180℃下进行预热处理200秒;重复上述甩膜步骤8次。
步骤四,制备中间层:在Mn-Co-Ni-Fe-O底层上利用Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层湿凝胶进行甩膜制备Mn-Co-Ni-Cu-O中间层;
其中,Mn-Co-Ni-Cu-O中间层甩膜步骤为:使用匀胶机进行甩膜,并先以180r/min的速度进行初甩8秒,然后以3500r/min的速度进行匀胶25秒,然后在180℃下进行预热处理200秒;重复上述甩膜步骤13次。
步骤五,制备顶层:在Mn-Co-Ni-Cu-O中间层上利用Mn-Co-Ni-O三元过渡金属氧化物膜层湿凝胶进行甩膜制备Mn-Co-Ni-O顶层,得到三层结构薄膜;
其中,Mn-Co-Ni-O顶层的甩膜步骤均为:使用匀胶机进行甩膜,并先以180r/min的速度进行初甩8秒,然后以3500r/min的速度进行匀胶25秒,然后在180℃下进行预热处理200秒;重复上述甩膜步骤8次。
步骤六,热处理:对步骤五得到的三层结构薄膜进行热处理,热处理温度为800℃;其中,热处理的曲线为:从室温升温至800℃,升温速率为4℃/min,然后在800℃下保温50min,然后自然冷却至室温。
步骤七,制备电极:在步骤六中热处理后的三层结构薄膜的Mn-Co-Ni-O顶层上,采用磁控溅射法制备电极,得到薄膜热敏电阻。
实施例8。
实施例3的一种薄膜热敏电阻的制备方法,它包括以下步骤:
步骤一,制备膜层溶胶:采用溶胶-凝胶法分别制备Mn-Co-Ni-O三元过渡金属氧化物膜层溶胶、Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层溶胶和Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层溶胶;
其中,步骤一制备膜层溶胶中,采用溶胶-凝胶法制备Mn-Co-Ni-O三元过渡金属氧化物膜层溶胶,具体步骤为:
(1)将水和无水乙酸以体积比1.5:1放入容器中混合均匀作为溶剂,然后水浴加热溶剂并将温度控制在85℃;
(2)将乙酸锰、乙酸镍和乙酸钴在磁力搅拌的情况下缓慢加入到溶剂中,以形成Mn-Co-Ni-O三元过渡金属氧化物膜层前驱液;其中,乙酸锰、乙酸镍和乙酸钴中,锰、镍和钴的摩尔比为36: 16: 10;磁力搅拌的速度为600r/min;其中,所形成的Mn-Co-Ni-O三元过渡金属氧化物膜层前驱液的浓度为0.1mol/L;
(3)往Mn-Co-Ni-O三元过渡金属氧化物膜层前驱液中加入乙酰丙酮,然后在85℃下继续以600r/min的速度磁力搅拌50小时后,得到Mn-Co-Ni-O三元过渡金属氧化物膜层溶胶;其中,乙酰丙酮的体积占Mn-Co-Ni-O三元过渡金属氧化物膜层前驱液的体积的1.5/30。
其中,步骤一制备膜层溶胶中,采用溶胶-凝胶法制备Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层溶胶,具体步骤为:
(1)将水和无水乙酸以体积比1.5:1放入容器中混合均匀作为溶剂,然后水浴加热溶剂并将温度控制在85℃;
(2)将乙酸锰、乙酸镍、乙酸钴和乙酸铜在磁力搅拌的情况下缓慢加入到所述溶剂中,以形成Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层前驱液;其中,乙酸锰、乙酸镍、乙酸钴和乙酸铜中,锰、镍、钴和铜的摩尔比为31:16: 8:4;磁力搅拌的速度为600r/min;其中,所形成的Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层前驱液的浓度为0.1mol/L;
(3)往所述Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层前驱液中加入乙酰丙酮,然后在85℃下继续以600r/min的速度磁力搅拌50小时后,得到Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层溶胶;其中,所述乙酰丙酮的体积占所述Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层前驱液的体积的1.5/30。
其中,步骤一制备膜层溶胶中,采用溶胶-凝胶法制备Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层溶胶,具体步骤为:
(1)将水和无水乙酸以体积比1.5:1放入容器中混合均匀作为溶剂,然后水浴加热溶剂并将温度控制在85℃;
(2)将乙酸锰、乙酸镍、乙酸钴和乙酸铁在磁力搅拌的情况下缓慢加入到所述溶剂中,以形成Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层前驱液;其中,乙酸锰、乙酸镍、乙酸钴和乙酸铁中,锰、镍、钴和铁的摩尔比为31:16: 8:4;磁力搅拌的速度为600r/min;其中,所形成的Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层前驱液的浓度为0.1mol/L;
(3)往所述Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层前驱液中加入乙酰丙酮,然后在85℃下继续以600r/min的速度磁力搅拌50小时后,得到Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层溶胶;其中,所述乙酰丙酮的体积占所述Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层前驱液的体积的1.5/30。
步骤二,制备膜层湿凝胶:将步骤一制得的Mn-Co-Ni-O三元过渡金属氧化物膜层溶胶、Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层溶胶和Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层溶胶分别放入恒温箱中,在65℃下陈化70小时后,分别得到Mn-Co-Ni-O三元过渡金属氧化物膜层湿凝胶、Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层湿凝胶和Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层湿凝胶;
步骤三,制备底层:在Al2O3基板上利用Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层湿凝胶进行甩膜制备Mn-Co-Ni-Fe-O底层;
其中,Mn-Co-Ni-Fe-O底层的甩膜步骤均为:使用匀胶机进行甩膜,并先以220r/min的速度进行初甩4秒,然后以4500r/min的速度进行匀胶15秒,然后在300℃下进行预热处理150秒;重复上述甩膜步骤7次。
步骤四,制备中间层:在Mn-Co-Ni-Fe-O底层上利用Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层湿凝胶进行甩膜制备Mn-Co-Ni-Cu-O中间层;
其中,Mn-Co-Ni-Cu-O中间层甩膜步骤为:使用匀胶机进行甩膜,并先以220r/min的速度进行初甩4秒,然后以4500r/min的速度进行匀胶15秒,然后在300℃下进行预热处理150秒;重复上述甩膜步骤16次。
步骤五,制备顶层:在Mn-Co-Ni-Cu-O中间层上利用Mn-Co-Ni-O三元过渡金属氧化物膜层湿凝胶进行甩膜制备Mn-Co-Ni-O顶层,得到三层结构薄膜;
其中,Mn-Co-Ni-O顶层的甩膜步骤均为:使用匀胶机进行甩膜,并先以220r/min的速度进行初甩4秒,然后以4500r/min的速度进行匀胶15秒,然后在300℃下进行预热处理150秒;重复上述甩膜步骤6次。
步骤六,热处理:对步骤五得到的三层结构薄膜进行热处理,热处理温度为400℃;其中,热处理的曲线为:从室温升温至400℃,升温速率为2℃/min,然后在400℃下保温70min,然后自然冷却至室温。
步骤七,制备电极:在步骤六中热处理后的三层结构薄膜的Mn-Co-Ni-O顶层上,采用磁控溅射法制备电极,得到薄膜热敏电阻。
实施例9。
实施例4的一种薄膜热敏电阻的制备方法,它包括以下步骤:
步骤一,制备膜层溶胶:采用溶胶-凝胶法分别制备Mn-Co-Ni-O三元过渡金属氧化物膜层溶胶、Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层溶胶和Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层溶胶;
其中,步骤一制备膜层溶胶中,采用溶胶-凝胶法制备Mn-Co-Ni-O三元过渡金属氧化物膜层溶胶,具体步骤为:
(1)将水和无水乙酸以体积比1.3:1放入容器中混合均匀作为溶剂,然后水浴加热溶剂并将温度控制在82℃;
(2)将乙酸锰、乙酸镍和乙酸钴在磁力搅拌的情况下缓慢加入到溶剂中,以形成Mn-Co-Ni-O三元过渡金属氧化物膜层前驱液;其中,乙酸锰、乙酸镍和乙酸钴中,锰、镍和钴的摩尔比为37: 15: 9;磁力搅拌的速度为500r/min;其中,所形成的Mn-Co-Ni-O三元过渡金属氧化物膜层前驱液的浓度为0.3mol/L;
(3)往Mn-Co-Ni-O三元过渡金属氧化物膜层前驱液中加入乙酰丙酮,然后在82℃下继续以500r/min的速度磁力搅拌46小时后,得到Mn-Co-Ni-O三元过渡金属氧化物膜层溶胶;其中,乙酰丙酮的体积占Mn-Co-Ni-O三元过渡金属氧化物膜层前驱液的体积的1.2/30。
其中,步骤一制备膜层溶胶中,采用溶胶-凝胶法制备Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层溶胶,具体步骤为:
(1)将水和无水乙酸以体积比1.3:1放入容器中混合均匀作为溶剂,然后水浴加热溶剂并将温度控制在82℃;
(2)将乙酸锰、乙酸镍、乙酸钴和乙酸铜在磁力搅拌的情况下缓慢加入到所述溶剂中,以形成Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层前驱液;其中,乙酸锰、乙酸镍、乙酸钴和乙酸铜中,锰、镍、钴和铜的摩尔比为30:16: 7:2;磁力搅拌的速度为500r/min;其中,所形成的Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层前驱液的浓度为0.3mol/L;
(3)往所述Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层前驱液中加入乙酰丙酮,然后在82℃下继续以500r/min的速度磁力搅拌46小时后,得到Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层溶胶;其中,所述乙酰丙酮的体积占所述Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层前驱液的体积的1.2/30。
其中,步骤一制备膜层溶胶中,采用溶胶-凝胶法制备Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层溶胶,具体步骤为:
(1)将水和无水乙酸以体积比1.3:1放入容器中混合均匀作为溶剂,然后水浴加热溶剂并将温度控制在82℃;
(2)将乙酸锰、乙酸镍、乙酸钴和乙酸铁在磁力搅拌的情况下缓慢加入到所述溶剂中,以形成Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层前驱液;其中,乙酸锰、乙酸镍、乙酸钴和乙酸铁中,锰、镍、钴和铁的摩尔比为30:16: 7:2;磁力搅拌的速度为500r/min;其中,所形成的Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层前驱液的浓度为0.3mol/L;
(3)往所述Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层前驱液中加入乙酰丙酮,然后在82℃下继续以500r/min的速度磁力搅拌46小时后,得到Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层溶胶;其中,所述乙酰丙酮的体积占所述Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层前驱液的体积的1.2/30。
步骤二,制备膜层湿凝胶:将步骤一制得的Mn-Co-Ni-O三元过渡金属氧化物膜层溶胶、Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层溶胶和Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层溶胶分别放入恒温箱中,在58℃下陈化73小时后,分别得到Mn-Co-Ni-O三元过渡金属氧化物膜层湿凝胶、Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层湿凝胶和Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层湿凝胶;
步骤三,制备底层:在玻璃基板上利用Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层湿凝胶进行甩膜制备Mn-Co-Ni-Fe-O底层;
其中,Mn-Co-Ni-Fe-O底层的甩膜步骤均为:使用匀胶机进行甩膜,并先以190r/min的速度进行初甩5秒,然后以4300r/min的速度进行匀胶17秒,然后在280℃下进行预热处理160秒;重复上述甩膜步骤8次。
步骤四,制备中间层:在Mn-Co-Ni-Fe-O底层上利用Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层湿凝胶进行甩膜制备Mn-Co-Ni-Cu-O中间层;
其中,Mn-Co-Ni-Cu-O中间层甩膜步骤为:使用匀胶机进行甩膜,并先以190r/min的速度进行初甩5秒,然后以4300r/min的速度进行匀胶17秒,然后在280℃下进行预热处理160秒;重复上述甩膜步骤16次。
步骤五,制备顶层:在Mn-Co-Ni-Cu-O中间层上利用Mn-Co-Ni-O三元过渡金属氧化物膜层湿凝胶进行甩膜制备Mn-Co-Ni-O顶层,得到三层结构薄膜;
其中,Mn-Co-Ni-O顶层的甩膜步骤均为:使用匀胶机进行甩膜,并先以190r/min的速度进行初甩5秒,然后以4300r/min的速度进行匀胶17秒,然后在280℃下进行预热处理160秒;重复上述甩膜步骤8次。
步骤六,热处理:对步骤五得到的三层结构薄膜进行热处理,热处理温度为600℃;其中,热处理的曲线为:从室温升温至600℃,升温速率为3℃/min,然后在600℃下保温55min,然后自然冷却至室温。
步骤七,制备电极:在步骤六中热处理后的三层结构薄膜的Mn-Co-Ni-O顶层上,采用磁控溅射法制备电极,得到薄膜热敏电阻。
实施例10。
实施例6至实施例9的一种薄膜热敏电阻的制备方法所制备的薄膜热敏电阻的电阻值的调节方法,具体为:制备Mn-Co-Ni-Fe-O底层、Mn-Co-Ni-Cu-O中间层和Mn-Co-Ni-O顶层的过程中,通过改变Mn-Co-Ni-Fe-O底层和/或Mn-Co-Ni-Cu-O中间层和/或Mn-Co-Ni-O顶层的甩膜次数,以得到不同厚度的Mn-Co-Ni-Fe-O底层和/或Mn-Co-Ni-Cu-O中间层和/或Mn-Co-Ni-O顶层,从而能够实现调节薄膜热敏电阻的电阻值。
实验1,实施例2的Mn-Co-Ni-Fe-O底层的甩膜次数为6次,Mn-Co-Ni-Cu-O中间层的甩膜次数为10次,Mn-Co-Ni-O顶层的甩膜次数均为4次。将实施例2制备的薄膜热敏电阻(各50个样品)分别置于25 ± 0.1℃和50 ± 0.1℃的恒温箱中,然后分别在恒温箱中测量其电阻值,即R25和R50,并计算B25/50值。然后将上述样品分别置于150 ± 0.1℃的恒温箱350小时后,再测量R25′,并计算老化系数(R25′- R25)/ R25。其结果见表1。
表1
参数
结果(50个样品平均) 3.1±0.01 4078±0.4 3.8±0.05
其中,本发明提及的B值是指:热敏指数或热敏常熟,工业上用来标定热敏电阻的灵敏度。定义为两个温度下零功率电阻值的自然对数之差与这两个温度倒数之差的比值:B=[ln(RT1/RT2)]/(1/T1-1/T2)。其中,T1和T2是指第一温度和第二温度。在本发明中第一温度T1为25 ± 0.1℃,第二温度T2为50 ± 0.1℃。
实验2,按照实施例2的一种薄膜热敏电阻的制备方法,将Mn-Co-Ni-Fe-O底层和Mn-Co-Ni-O顶层的甩膜次数均变为8次,Mn-Co-Ni-Cu-O中间层的甩膜次数为10次不变,其余制备方法的步骤和参数也不变,以制备薄膜热敏电阻。将实验2制得的薄膜热敏电阻(各50个样品)分别置于25 ± 0.1℃和50 ± 0.1℃的恒温箱中,然后分别在恒温箱中测量其电阻值,即R25和R50,并计算B25/50值。然后将上述样品分别置于150 ± 0.1℃的恒温箱350小时后,再测量R25′,并计算老化系数(R25′- R25)/ R25。其结果见表2。
表2
参数
结果(50个样品平均) 2.4±0.01 4110±0.4 2.7±0.06
实验3,按照实施例2的一种薄膜热敏电阻的制备方法,将Mn-Co-Ni-Cu-O中间层的甩膜次数变为16次,Mn-Co-Ni-Fe-O底层的甩膜次数为6次不变,Mn-Co-Ni-O顶层的甩膜次数为4次不变,其余制备方法的步骤和参数也不变,以制备薄膜热敏电阻。将实验3制得的薄膜热敏电阻(各50个样品)分别置于25 ± 0.1℃和50 ± 0.1℃的恒温箱中,然后分别在恒温箱中测量其电阻值,即R25和R50,并计算B25/50值。然后将上述样品分别置于150 ± 0.1℃的恒温箱350小时后,再测量R25′,并计算老化系数(R25′- R25)/ R25。其结果见表3。
表3
参数
结果(50个样品平均) 1.0±0.01 3998±0.7 4.1±0.06
实验4,按照实施例2的一种薄膜热敏电阻的制备方法,将Mn-Co-Ni-O顶层的甩膜次数均变为6次,Mn-Co-Ni-Cu-O中间层的甩膜次数变为16次,Mn-Co-Ni-Fe-O底层的甩膜次数为6次不变,其余制备方法的步骤和参数也不变,以制备薄膜热敏电阻。将实验4制得的薄膜热敏电阻(各50个样品)分别置于25 ± 0.1℃和50 ± 0.1℃的恒温箱中,然后分别在恒温箱中测量其电阻值,即R25和R50,并计算B25/50值。然后将上述样品分别置于150 ± 0.1℃的恒温箱350小时后,再测量R25′,并计算老化系数(R25′- R25)/ R25。其结果见表4。
表4
参数
结果(50个样品平均) 1.1±0.01 4011±0.5 3.4±0.05
实验5,按照实施例2的一种薄膜热敏电阻的制备方法,将Mn-Co-Ni-O顶层的甩膜次数均变为4次,Mn-Co-Ni-Cu-O中间层的甩膜次数变为16次,Mn-Co-Ni-Fe-O底层的甩膜次数为8次不变,其余制备方法的步骤和参数也不变,以制备薄膜热敏电阻。将实验5制得的薄膜热敏电阻(各50个样品)分别置于25 ± 0.1℃和50 ± 0.1℃的恒温箱中,然后分别在恒温箱中测量其电阻值,即R25和R50,并计算B25/50值。然后将上述样品分别置于150 ± 0.1℃的恒温箱350小时后,再测量R25′,并计算老化系数(R25′- R25)/ R25。其结果见表5。
表5
参数
结果(50个样品平均) 0.5±0.01 4011±0.5 4.4±0.05
由实验1至实验5的实验结果可知,通过改变通过改变Mn-Co-Ni-Fe-O底层和/或Mn-Co-Ni-Cu-O中间层和/或Mn-Co-Ni-O顶层的甩膜次数,从而能够调节所制备的薄膜热敏电阻的电阻值。
另外,实验1至实验4所制备的薄膜热敏电阻的恒温电阻值在0.5±0.01 MΩ~3.1±0.01 MΩ,B值在4000K左右,老化系数均小于4.4%,而且,电阻值分散性小于±1%,B值的一致性优于±1%。因此,说明了通过本发明提供的一种薄膜热敏电阻的制备方法制得的薄膜热敏电阻具有电阻值低,且老化系数小的优点。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

1.一种薄膜热敏电阻,其特征在于:由下而上依次包括基板、底层Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层、中间层Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层、顶层Mn-Co-Ni-O三元过渡金属氧化物膜层和电极;
所述底层Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层、中间层Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层、顶层Mn-Co-Ni-O三元过渡金属氧化物膜层为三层结构。
2.一种制备权利要求1的薄膜热敏电阻的方法,其特征在于:它包括以下步骤:
步骤一,制备膜层溶胶:采用溶胶-凝胶法分别制备Mn-Co-Ni-O三元过渡金属氧化物膜层溶胶、Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层溶胶和Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层溶胶;
步骤二,制备膜层湿凝胶:将步骤一制得的Mn-Co-Ni-O三元过渡金属氧化物膜层溶胶、Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层溶胶和Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层溶胶分别放入恒温箱中,在一定温度下陈化一定时间后,分别得到Mn-Co-Ni-O三元过渡金属氧化物膜层湿凝胶、Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层湿凝胶和Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层湿凝胶;
步骤三,制备底层:在基板上利用Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层湿凝胶进行甩膜制备Mn-Co-Ni-Fe-O底层;
步骤四,制备中间层:在Mn-Co-Ni-Fe-O底层上利用Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层湿凝胶进行甩膜制备Mn-Co-Ni-Cu-O中间层;
步骤五,制备顶层:在Mn-Co-Ni-Cu-O中间层上利用Mn-Co-Ni-O三元过渡金属氧化物膜层湿凝胶进行甩膜制备Mn-Co-Ni-O顶层,得到三层结构薄膜;
步骤六,热处理:对步骤五得到的三层结构薄膜进行热处理,热处理温度为400℃~800℃;
步骤七,制备电极:在步骤六中热处理后的三层结构薄膜的Mn-Co-Ni-O顶层上,采用磁控溅射法制备电极,得到薄膜热敏电阻。
3.根据权利要求2所述的一种薄膜热敏电阻的制备方法,其特征在于:所述步骤一制备膜层溶胶中,采用溶胶-凝胶法制备Mn-Co-Ni-O三元过渡金属氧化物膜层溶胶,具体步骤为:
(1)将水和无水乙酸以体积比1:1~2:1放入容器中混合均匀作为溶剂,然后水浴加热所述溶剂并将温度控制在75℃~85℃;
(2)将乙酸锰、乙酸镍和乙酸钴在磁力搅拌的情况下缓慢加入到所述溶剂中,以形成Mn-Co-Ni-O三元过渡金属氧化物膜层前驱液;其中,乙酸锰、乙酸镍和乙酸钴中,锰、镍和钴的摩尔比为35~37:15~17: 6~10;磁力搅拌的速度为500r/min~1000r/min;其中,所形成的Mn-Co-Ni-O三元过渡金属氧化物膜层前驱液的浓度为0.1mol/L~0.5mol/L;
(3)往所述Mn-Co-Ni-O三元过渡金属氧化物膜层前驱液中加入乙酰丙酮,然后在75℃~85℃下继续以500r/min~1000r/min的速度磁力搅拌45小时~50小时后,得到Mn-Co-Ni-O三元过渡金属氧化物膜层溶胶;其中,所述乙酰丙酮的体积占所述Mn-Co-Ni-O三元过渡金属氧化物膜层前驱液的体积的1/30~2/30。
4.根据权利要求2所述的一种薄膜热敏电阻的制备方法,其特征在于:所述步骤一制备膜层溶胶中,采用溶胶-凝胶法制备Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层溶胶,具体步骤为:
(1)将水和无水乙酸以体积比1:1~2:2放入容器中混合均匀作为溶剂,然后水浴加热所述溶剂并将温度控制在75℃~85℃;
(2)将乙酸锰、乙酸镍、乙酸钴和乙酸铜在磁力搅拌的情况下缓慢加入到所述溶剂中,以形成Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层前驱液;其中,乙酸锰、乙酸镍、乙酸钴和乙酸铜中,锰、镍、钴和铜的摩尔比为30~31:15~17: 6~10:1~6;磁力搅拌的速度为500r/min~1000r/min;其中,所形成的Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层前驱液的浓度为0.1mol/L~0.5mol/L;
(3)往所述Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层前驱液中加入乙酰丙酮,然后在75℃~85℃下继续以500r/min~1000r/min的速度磁力搅拌45小时~50小时后,得到Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层溶胶;其中,所述乙酰丙酮的体积占所述Mn-Co-Ni-Cu-O四元过渡金属氧化物膜层前驱液的体积的1/30~2/30。
5.根据权利要求2所述的一种薄膜热敏电阻的制备方法,其特征在于:所述步骤一制备膜层溶胶中,采用溶胶-凝胶法制备Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层溶胶,具体步骤为:
(1)将水和无水乙酸以体积比1:1~2:2放入容器中混合均匀作为溶剂,然后水浴加热所述溶剂并将温度控制在75℃~85℃;
(2)将乙酸锰、乙酸镍、乙酸钴和乙酸铁在磁力搅拌的情况下缓慢加入到所述溶剂中,以形成Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层前驱液;其中,乙酸锰、乙酸镍、乙酸钴和乙酸铁中,锰、镍、钴和铁的摩尔比为30~31:15~17: 6~10:1~6;磁力搅拌的速度为500r/min~1000r/min;其中,所形成的Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层前驱液的浓度为0.1mol/L~0.5mol/L;
(3)往所述Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层前驱液中加入乙酰丙酮,然后在75℃~85℃下继续以500r/min~1000r/min的速度磁力搅拌45小时~50小时后,得到Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层溶胶;其中,所述乙酰丙酮的体积占所述Mn-Co-Ni-Fe-O四元过渡金属氧化物膜层前驱液的体积的1/30~2/30。
6.根据权利要求2所述的一种薄膜热敏电阻的制备方法,其特征在于:所述步骤二制备膜层湿凝胶中,陈化温度为55℃~65℃,陈化时间为70小时~75小时。
7.根据权利要求2所述的一种薄膜热敏电阻的制备方法,其特征在于:所述步骤三制备底层中,底层的甩膜步骤均为:使用匀胶机进行甩膜,并先以180r/min~220r/min的速度进行初甩4秒~8秒,然后以3500r/min~4500r/min的速度进行匀胶15秒~25秒,然后在180℃~300℃下进行预热处理150秒~200秒;重复上述甩膜步骤6次~8次;
所述步骤四制备中间层中,中间层甩膜步骤为:使用匀胶机进行甩膜,并先以180r/min~220r/min的速度进行初甩4秒~8秒,然后以3500r/min~4500r/min的速度进行匀胶15秒~25秒,然后在180℃~300℃下进行预热处理150秒~200秒;重复上述甩膜步骤10次~16次;
所述步骤五制备顶层中,顶层的甩膜步骤均为:使用匀胶机进行甩膜,并先以180r/min~220r/min的速度进行初甩4秒~8秒,然后以3500r/min~4500r/min的速度进行匀胶15秒~25秒,然后在180℃~300℃下进行预热处理150秒~200秒;重复上述甩膜步骤4次~8次。
8.根据权利要求2所述的一种薄膜热敏电阻的制备方法,其特征在于:所述步骤六热处理中,所述热处理的曲线为:从室温升温至400℃~800℃,升温速率为2℃/min ~4℃/min,然后在400℃~800℃下保温50min~70min,然后自然冷却至室温。
9.根据权利要求2所述的一种薄膜热敏电阻的制备方法,其特征在于:所述步骤三制备底层中,所述基板为Pt/TiO2/Ti/SiO2/Si基板、Si基板、Al2O3基板、玻璃基板或石英基板中的任意一种。
10.一种薄膜热敏电阻的电阻值的调节方法,该薄膜热敏电阻根据权利要求2至9任意一项所述的薄膜热敏电阻的制备方法所制备,其特征在于:制备Mn-Co-Ni-Fe-O底层、Mn-Co-Ni-Cu-O中间层和Mn-Co-Ni-O顶层的过程中,通过改变Mn-Co-Ni-Fe-O底层和/或Mn-Co-Ni-Cu-O中间层和/或Mn-Co-Ni-O顶层的甩膜次数,以得到不同厚度的Mn-Co-Ni-Fe-O底层和/或Mn-Co-Ni-Cu-O中间层和/或Mn-Co-Ni-O顶层,从而能够调节薄膜热敏电阻的电阻值。
CN201510143366.9A 2015-03-30 2015-03-30 一种薄膜热敏电阻及其制备方法及其电阻值的调节方法 Active CN104715874B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510143366.9A CN104715874B (zh) 2015-03-30 2015-03-30 一种薄膜热敏电阻及其制备方法及其电阻值的调节方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510143366.9A CN104715874B (zh) 2015-03-30 2015-03-30 一种薄膜热敏电阻及其制备方法及其电阻值的调节方法

Publications (2)

Publication Number Publication Date
CN104715874A CN104715874A (zh) 2015-06-17
CN104715874B true CN104715874B (zh) 2017-06-23

Family

ID=53415118

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510143366.9A Active CN104715874B (zh) 2015-03-30 2015-03-30 一种薄膜热敏电阻及其制备方法及其电阻值的调节方法

Country Status (1)

Country Link
CN (1) CN104715874B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107117991A (zh) * 2017-05-11 2017-09-01 句容市博远电子有限公司 一种薄膜ntc热敏电阻的制备方法
CN107785254A (zh) * 2017-09-28 2018-03-09 华南理工大学 一种旋涂法制备氧化铝‑氧化锆叠层电介质的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1409329A (zh) * 2001-09-28 2003-04-09 石塚电子株式会社 薄膜热敏电阻及其阻值调节方法
CN101399103A (zh) * 2007-09-28 2009-04-01 上海顺安通讯防护器材有限公司 一种多层高分子正温度系数热敏电阻器
CN201853558U (zh) * 2010-11-04 2011-06-01 南京先正电子有限公司 片式负温度系数热敏电阻
CN102775139A (zh) * 2012-08-20 2012-11-14 肇庆爱晟电子科技有限公司 Ntc热敏半导体陶瓷体材料的制作方法
CN103098149A (zh) * 2010-09-14 2013-05-08 株式会社村田制作所 半导体陶瓷元件及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1409329A (zh) * 2001-09-28 2003-04-09 石塚电子株式会社 薄膜热敏电阻及其阻值调节方法
CN101399103A (zh) * 2007-09-28 2009-04-01 上海顺安通讯防护器材有限公司 一种多层高分子正温度系数热敏电阻器
CN103098149A (zh) * 2010-09-14 2013-05-08 株式会社村田制作所 半导体陶瓷元件及其制造方法
CN201853558U (zh) * 2010-11-04 2011-06-01 南京先正电子有限公司 片式负温度系数热敏电阻
CN102775139A (zh) * 2012-08-20 2012-11-14 肇庆爱晟电子科技有限公司 Ntc热敏半导体陶瓷体材料的制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Improvement of structural and electrical properties of Mn-based thin film thermistors by a bilayer structure";L. He等;《Materials Letters》;20140801;第128卷;第144-147页 *

Also Published As

Publication number Publication date
CN104715874A (zh) 2015-06-17

Similar Documents

Publication Publication Date Title
CN104700970B (zh) 一种负温度系数薄膜热敏电阻及其制备方法及其电阻值的调节方法
CN104715874B (zh) 一种薄膜热敏电阻及其制备方法及其电阻值的调节方法
Cho et al. Thermochromic characteristics of WO3-doped vanadium dioxide thin films prepared by sol–gel method
CN105967656B (zh) 一种基于氧化镍的新型ntc热敏电阻材料
CN105967655B (zh) 一种锂铁掺杂氧化镍负温度系数热敏电阻材料
CN102270531A (zh) 叠层片式负温度系数热敏电阻的制备方法
CN103833416B (zh) 一种镍酸镧导电薄膜的化学溶液沉积制备方法
Ghosh et al. Preparation and characterization of binary V 2 O 5-Bi 2 O 3 glasses
CN102179967B (zh) 一种镧锶锰氧-钛酸锶铅复合薄膜及其制备方法
CN113698205B (zh) 一种基于稀土镍基氧化物的复合型热敏电阻材料及其制备方法和应用
CN108929111A (zh) 一种超高放电储能密度的介质薄膜及其制备方法
CN103011804A (zh) 正温度系数热敏电阻材料及热敏电阻
CN104987059A (zh) 一种基于氧化铜的新型ntc热敏电阻材料
Wang et al. Dielectric property and energy-storage performance of (100)-preferred (1-x) PbTiO3-xBi (Mg0. 5Ti0. 5) O3 relaxor ferroelectric thin films
JP2016510302A (ja) サーミスタ材料及びそれを調製する方法
CN103540903B (zh) 一种低温高电阻温度系数无热滞薄膜材料及其制备方法
CN112466665B (zh) 一种柔性固态电介质薄膜电容器及其制备方法
CN104008877A (zh) 一种Sn掺杂CrO2薄膜及其制备方法
CN104891821A (zh) 应用不同浓度的前驱液制备多层BiFeO3薄膜的方法
CN104003724A (zh) 一种取向热敏薄膜电阻的制备方法
CN109734423B (zh) 一种负温度系数的热敏材料及其制备方法
Le et al. Electrical properties and stability of low temperature annealed (Zn, Cu) co-doped (Ni, Mn) 3O4 spinel thin films
CN102592983A (zh) Mn-Co-Ni-O热敏薄膜的湿法刻蚀方法
CN108863350A (zh) 一种钛酸铋基钙钛矿相热敏陶瓷复合材料及其制备方法和用途
CN107117991A (zh) 一种薄膜ntc热敏电阻的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20150617

Assignee: Guangzhou Lantao Trading Co.,Ltd.

Assignor: DONGGUAN University OF TECHNOLOGY

Contract record no.: X2023990000094

Denomination of invention: A thin film thermistor, its preparation method and its resistance value adjustment method

Granted publication date: 20170623

License type: Common License

Record date: 20230112

EE01 Entry into force of recordation of patent licensing contract