CN107785254A - 一种旋涂法制备氧化铝‑氧化锆叠层电介质的方法 - Google Patents

一种旋涂法制备氧化铝‑氧化锆叠层电介质的方法 Download PDF

Info

Publication number
CN107785254A
CN107785254A CN201710897401.5A CN201710897401A CN107785254A CN 107785254 A CN107785254 A CN 107785254A CN 201710897401 A CN201710897401 A CN 201710897401A CN 107785254 A CN107785254 A CN 107785254A
Authority
CN
China
Prior art keywords
spin
zirconium
laminated dielectric
coating method
aluminium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710897401.5A
Other languages
English (en)
Inventor
彭俊彪
魏靖林
宁洪龙
姚日晖
蔡炜
朱镇南
陶瑞强
陈建秋
杨财桂
周艺聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201710897401.5A priority Critical patent/CN107785254A/zh
Publication of CN107785254A publication Critical patent/CN107785254A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02189Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明属于薄膜晶体管材料技术领域,公开了一种旋涂法制备氧化铝‑氧化锆叠层电介质的方法。所述方法为:将九水合硝酸铝和八水氧氯化锆分别溶于乙二醇甲醚中,得到铝和锆的前驱体溶液;然后将铝和锆的前驱体溶液先后旋涂于经预处理后的衬底上,然后在300~500℃下退火处理1~2h,得到氧化铝‑氧化锆叠层电介质。本发明相较于真空法,具有成本低、易操作的优点,可以通过在固定条件下改变溶液浓度的组合方式,实现旋涂法制备的金属氧化物叠层电介质中叠层数量和各组分含量的控制。

Description

一种旋涂法制备氧化铝-氧化锆叠层电介质的方法
技术领域
本发明属于薄膜晶体管材料技术领域,具体涉及一种旋涂法制备氧化铝-氧化锆叠层电介质的方法。
背景技术
现有的Al2O3-ZrO2(ZAO)叠层电介质主要通过真空法,尤其是原子层沉积工艺制备而成,该工艺可以通过控制沉积的速率来精确地控制薄膜的厚度。基于这个特点,可以预先设定叠层电介质的总厚度、两种组分在叠层电介质的含量(通过厚度的百分比控制,如总厚度为10nm,Al2O3的含量为10%,那么Al2O3的厚度设置为1nm,ZrO2的厚度设置为9nm)以及叠层的数量,根据沉积速率计算好Al2O3和ZrO2的厚度,在衬底上交替生长Al2O3和ZrO2薄膜即可。
但原子层沉积设备价格昂贵,且操作流程较为复杂。这些缺点主要由设备本身性质决定,因为原子层沉积设备需要抽真空、参数设置(其中包括腔室的气氛、温度和沉积速率等)等一系列准备工作。
发明内容
针对以上现有技术存在的缺点和不足之处,本发明的目的在于提供一种旋涂法制备氧化铝-氧化锆叠层电介质的方法。
本发明目的通过以下技术方案实现:
一种旋涂法制备氧化铝-氧化锆叠层电介质的方法,包括如下步骤:
(1)将九水合硝酸铝和八水氧氯化锆分别溶于乙二醇甲醚中,得到铝和锆的前驱体溶液;
(2)将铝和锆的前驱体溶液先后旋涂于经预处理后的衬底上,然后在300~500℃下退火处理1~2h,得到氧化铝-氧化锆(Al2O3-ZrO2(ZAO))叠层电介质。
进一步地,重复步骤(2)的旋涂及退火处理过程,得到多层结构的Al2O3-ZrO2叠层电介质。
优选地,步骤(1)中所述前驱体溶液中,硝酸铝或氯化锆的浓度为0.1~0.4mol/L。
优选地,步骤(2)中所述预处理是指依次经清洗、干燥和氧气氛围的等离子(plasma)表面亲水处理。通过等离子表面亲水处理,保证了溶液更均匀的铺展在衬底上,优选等离子表面亲水处理的时间为10min。
优选地,步骤(2)中所述退火处理的温度为400℃,时间为1h。在该温度下退火后,薄膜的厚度、密度相对稳定,不会发生太大的变动。
本发明的原理为:根据我们对旋涂法制备的金属氧化物薄膜的探究,在本发明的制备流程下,金属氧化物薄膜的厚度和密度相对稳定,不会因热台退火温度的波动而产生太大的波动,并且根据数理统计的t检验证实,在该条件下不同溶液旋涂所得薄膜厚度的比例与相对应的溶液浓度的比例相同(如0.2mol/L和0.3mol/L的溶液旋涂出的薄膜的厚度比为2:3)。这对于控制金属氧化物叠层中的各组分的含量是十分有利的。例如,0.6mol/L的硝酸铝和0.6mol/L的氯氧化锆溶液在衬底上各旋涂1次,可以得到总厚度约为75nm的叠层电介质(2层),若我们希望在总厚度不变的情况下增加层数,只需根据两种溶液的浓度之和(即0.6+0.6=1.2),和所希望的层数来设计溶液的选择。例如希望在厚度75nm不变的情况下将两层扩展到4层,那么只需要配置浓度为0.3mol/L的硝酸铝和氯氧化锆溶液在衬底上各旋涂2次即可。同样,若在层数不变的条件下改变个组分的含量,只需改变溶液浓度的搭配,如希望保持叠层数4不变,将氧化铝在叠层电介质中的含量提高到75%,那么只需要将0.3mol/L的硝酸铝溶液和0.1mol/L的氯氧化锆溶液搭配在衬底上各旋涂2次即可。
相对于现有技术,本发明具有如下优点及有益效果:
(1)相较于真空法,旋涂法制备金属氧化物叠层电介质的成本低、易操作(由设备本身性质决定);
(2)通过在固定条件下改变溶液浓度的组合方式,实现了旋涂法制备的金属氧化物叠层电介质中叠层数量和各组分含量的控制。
附图说明
图1为实施例1~3所得叠层电介质各层的厚度及总厚度(条形图下方的数字代表该薄膜所在的层数);
图2为实施例1~3所得叠层电介质各层的密度(条形图下方的数字代表该薄膜所在的层数)。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
(1)将衬底通过六步法清洗(依次经异丙醇、四氢呋喃、洗液、去离子水×2和异丙醇清洗),每次时间为10分钟。衬底清洗后在80℃的烘箱中烘干,然后用氧气氛围的plasma表面亲水处理10min,得到预处理后的衬底;
(2)将九水合硝酸铝和八水氧氯化锆分别溶于乙二醇甲醚中,分别得到硝酸铝浓度为0.1mol/L和氯化锆浓度为0.3mol/L的前驱体溶液;
(3)将铝和锆的前驱体溶液先后旋涂于经预处理后的衬底上,单次旋涂剂量40uL(保证覆盖衬底表面),旋涂时间为40s,匀胶机转速4000r/min,然后将旋涂得到的薄膜在400℃下退火处理1h,再次重复上述旋涂和退火处理过程两次,得到总共具有6层、Al2O3和ZrO2交替形成的氧化铝-氧化锆(Al2O3-ZrO2(ZAO))叠层电介质。
本实施例所得叠层电介质各层的厚度及总厚度见图1;各层的密度见图2。
实施例2
(1)将衬底通过六步法清洗(依次经异丙醇、四氢呋喃、洗液、去离子水×2和异丙醇清洗),每次时间为10分钟。衬底清洗后在80℃的烘箱中烘干,然后用氧气氛围的plasma表面亲水处理10min,得到预处理后的衬底;
(2)将九水合硝酸铝和八水氧氯化锆分别溶于乙二醇甲醚中,分别得到硝酸铝浓度为0.4mol/L和氯化锆浓度为0.2mol/L的前驱体溶液;
(3)将铝和锆的前驱体溶液先后旋涂于经预处理后的衬底上,单次旋涂剂量40uL(保证覆盖衬底表面),旋涂时间为40s,匀胶机转速4000r/min,然后将旋涂得到的薄膜在400℃下退火处理1h,再次重复上述旋涂和退火处理过程1次,得到总共具有4层、Al2O3和ZrO2交替形成的氧化铝-氧化锆(Al2O3-ZrO2(ZAO))叠层电介质。
本实施例所得叠层电介质各层的厚度及总厚度见图1;各层的密度见图2。
实施例3
(1)将衬底通过六步法清洗(依次经异丙醇、四氢呋喃、洗液、去离子水×2和异丙醇清洗),每次时间为10分钟。衬底清洗后在80℃的烘箱中烘干,然后用氧气氛围的plasma表面亲水处理10min,得到预处理后的衬底;
(2)将九水合硝酸铝和八水氧氯化锆分别溶于乙二醇甲醚中,分别得到硝酸铝浓度为0.3mol/L和氯化锆浓度为0.3mol/L的前驱体溶液;
(3)将铝和锆的前驱体溶液先后旋涂于经预处理后的衬底上,单次旋涂剂量40uL(保证覆盖衬底表面),旋涂时间为40s,匀胶机转速4000r/min,然后将旋涂得到的薄膜在400℃下退火处理1h,再次重复上述旋涂和退火处理过程1次,得到总共具有4层、Al2O3和ZrO2交替形成的氧化铝-氧化锆(Al2O3-ZrO2(ZAO))叠层电介质。
本实施例所得叠层电介质各层的厚度及总厚度见图1;各层的密度见图2。
由图1和图2的结果可以看出:相同浓度的同种物质的溶液在叠层电介质的不同层上的厚度和密度差异不大,因此通过在固定条件下改变溶液浓度的组合方式,实现旋涂法制备的金属氧化物叠层电介质中叠层数量和各组分含量的控制。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (6)

1.一种旋涂法制备氧化铝-氧化锆叠层电介质的方法,其特征在于包括如下步骤:
(1)将九水合硝酸铝和八水氧氯化锆分别溶于乙二醇甲醚中,得到铝和锆的前驱体溶液;
(2)将铝和锆的前驱体溶液先后旋涂于经预处理后的衬底上,然后在300~500℃下退火处理1~2h,得到氧化铝-氧化锆叠层电介质。
2.根据权利要求1所述的一种旋涂法制备氧化铝-氧化锆叠层电介质的方法,其特征在于:重复步骤(2)的旋涂及退火处理过程,得到多层结构的Al2O3-ZrO2叠层电介质。
3.根据权利要求1所述的一种旋涂法制备氧化铝-氧化锆叠层电介质的方法,其特征在于:步骤(1)中所述前驱体溶液中,硝酸铝或氯化锆的浓度为0.1~0.4mol/L。
4.根据权利要求1所述的一种旋涂法制备氧化铝-氧化锆叠层电介质的方法,其特征在于:步骤(2)中所述预处理是指依次经清洗、干燥和氧气氛围的等离子表面亲水处理。
5.根据权利要求4所述的一种旋涂法制备氧化铝-氧化锆叠层电介质的方法,其特征在于:所述等离子表面亲水处理的时间为10min。
6.根据权利要求1所述的一种旋涂法制备氧化铝-氧化锆叠层电介质的方法,其特征在于:步骤(2)中所述退火处理的温度为400℃,时间为1h。
CN201710897401.5A 2017-09-28 2017-09-28 一种旋涂法制备氧化铝‑氧化锆叠层电介质的方法 Pending CN107785254A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710897401.5A CN107785254A (zh) 2017-09-28 2017-09-28 一种旋涂法制备氧化铝‑氧化锆叠层电介质的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710897401.5A CN107785254A (zh) 2017-09-28 2017-09-28 一种旋涂法制备氧化铝‑氧化锆叠层电介质的方法

Publications (1)

Publication Number Publication Date
CN107785254A true CN107785254A (zh) 2018-03-09

Family

ID=61434308

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710897401.5A Pending CN107785254A (zh) 2017-09-28 2017-09-28 一种旋涂法制备氧化铝‑氧化锆叠层电介质的方法

Country Status (1)

Country Link
CN (1) CN107785254A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109461812A (zh) * 2018-09-27 2019-03-12 西交利物浦大学 基于铝氧化物的rram及其制备方法
CN110047942A (zh) * 2019-04-09 2019-07-23 东华大学 一种水溶液复合氧化物薄膜晶体管及其制备和应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101587763A (zh) * 2009-06-26 2009-11-25 西北有色金属研究院 一种高温超导涂层导体缓冲层的制备方法
CN102173801A (zh) * 2011-01-20 2011-09-07 北京工业大学 一种Ta掺杂的CeO2过渡层薄膜及其制备方法
CN102491748A (zh) * 2011-11-28 2012-06-13 西北有色金属研究院 一种萤石型涂层导体缓冲层及其制备方法
CN102610725A (zh) * 2012-03-29 2012-07-25 华北电力大学 一种半导体量子点发光二极管及其制备方法
CN102795891A (zh) * 2012-08-23 2012-11-28 同济大学 一种以MgO为缓冲层的钛酸锶钡薄膜的制备方法
CN103508406A (zh) * 2012-06-29 2014-01-15 无锡华润上华半导体有限公司 Azo薄膜、制备方法以及包括其的mems器件
CN104715874A (zh) * 2015-03-30 2015-06-17 东莞理工学院 一种薄膜热敏电阻及其制备方法及其电阻值的调节方法
CN104891821A (zh) * 2015-05-04 2015-09-09 桂林电子科技大学 应用不同浓度的前驱液制备多层BiFeO3薄膜的方法
CN105161415A (zh) * 2015-08-31 2015-12-16 上海集成电路研发中心有限公司 高介电常数薄膜-氧化铝叠层结构绝缘薄膜及其制备方法
CN106409668A (zh) * 2016-09-14 2017-02-15 齐鲁工业大学 一种氧化铝介电薄膜的低温溶液制备方法
CN106431397A (zh) * 2016-09-14 2017-02-22 齐鲁工业大学 一种高介电氧化锆薄膜的低温溶液制备方法
CN106653858A (zh) * 2016-09-14 2017-05-10 齐鲁工业大学 一种低温制备高迁移率铟锆氧薄膜晶体管的溶液方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101587763A (zh) * 2009-06-26 2009-11-25 西北有色金属研究院 一种高温超导涂层导体缓冲层的制备方法
CN102173801A (zh) * 2011-01-20 2011-09-07 北京工业大学 一种Ta掺杂的CeO2过渡层薄膜及其制备方法
CN102491748A (zh) * 2011-11-28 2012-06-13 西北有色金属研究院 一种萤石型涂层导体缓冲层及其制备方法
CN102610725A (zh) * 2012-03-29 2012-07-25 华北电力大学 一种半导体量子点发光二极管及其制备方法
CN103508406A (zh) * 2012-06-29 2014-01-15 无锡华润上华半导体有限公司 Azo薄膜、制备方法以及包括其的mems器件
CN102795891A (zh) * 2012-08-23 2012-11-28 同济大学 一种以MgO为缓冲层的钛酸锶钡薄膜的制备方法
CN104715874A (zh) * 2015-03-30 2015-06-17 东莞理工学院 一种薄膜热敏电阻及其制备方法及其电阻值的调节方法
CN104891821A (zh) * 2015-05-04 2015-09-09 桂林电子科技大学 应用不同浓度的前驱液制备多层BiFeO3薄膜的方法
CN105161415A (zh) * 2015-08-31 2015-12-16 上海集成电路研发中心有限公司 高介电常数薄膜-氧化铝叠层结构绝缘薄膜及其制备方法
CN106409668A (zh) * 2016-09-14 2017-02-15 齐鲁工业大学 一种氧化铝介电薄膜的低温溶液制备方法
CN106431397A (zh) * 2016-09-14 2017-02-22 齐鲁工业大学 一种高介电氧化锆薄膜的低温溶液制备方法
CN106653858A (zh) * 2016-09-14 2017-05-10 齐鲁工业大学 一种低温制备高迁移率铟锆氧薄膜晶体管的溶液方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI XIFENG等: "Low-Temperature Solution-Processed Zirconium Oxide Gate Insulators for Thin-Film Transistors", 《IEEE TRANSACTIONS ON ELECTRON DEVICES》 *
YUNLONG XU等: "efect modification in ZnInSnO transistor with solution-processed Al2O3 dielectric by annealing", 《MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING》 *
文尚胜等: "《有机光电子技术》", 31 August 2013, 华南理工大学出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109461812A (zh) * 2018-09-27 2019-03-12 西交利物浦大学 基于铝氧化物的rram及其制备方法
CN109461812B (zh) * 2018-09-27 2022-07-29 西交利物浦大学 基于铝氧化物的rram及其制备方法
CN110047942A (zh) * 2019-04-09 2019-07-23 东华大学 一种水溶液复合氧化物薄膜晶体管及其制备和应用

Similar Documents

Publication Publication Date Title
RU2236068C1 (ru) Электрод-электролитная пара на основе двуокиси циркония (варианты), способ ее изготовления (варианты) и органогель
CA2745575C (en) Method for deposition of ceramic films
JP4644830B2 (ja) 誘電体絶縁薄膜の製造方法
CN107785254A (zh) 一种旋涂法制备氧化铝‑氧化锆叠层电介质的方法
CN102652112B (zh) 稀土类超导膜形成用溶液及其制造方法
CN106086981B (zh) 一种改善Ti-Al系合金抗氧化性能的表面多孔阳极氧化层的制备方法
Esposito Densification of Ce0. 9Gd0. 1O1. 95 barrier layer by in-situ solid state reaction
Choi et al. Low temperature preparation and characterization of solid oxide fuel cells on FeCr-based alloy support by aerosol deposition
US10707496B2 (en) Method for depositing layer of ceramic material onto a metallic support for solid oxide fuel cells
CN104528887B (zh) 用于污水深度处理的Ti/SnO2‑Sb薄膜电极的制备方法
CN102534586A (zh) 钛合金表面稀土改性还原氧化石墨烯薄膜的制备方法
Chen et al. Emergence of rapid oxygen surface exchange kinetics during in situ crystallization of mixed conducting thin film oxides
Shin et al. A highly activated and integrated nanoscale interlayer of cathodes in low-temperature solid oxide fuel cells via precursor-solution electrospray method
CN104176944A (zh) 一种玻璃基底上ots自组装薄膜的改性方法
CN105489668B (zh) 一种太阳能电池及其氢化非晶硅i膜层表面处理方法
CN109750492A (zh) 一种碳布表面均匀生长碳纳米管前期的表面处理方法
Queraltó et al. Ultrafast crystallization of Ce0. 9Zr0. 1O2–y epitaxial films on flexible technical substrates by pulsed laser irradiation of chemical solution derived precursor layers
EP2009722A1 (en) Ion conductive material, conductive film for fuel cell, film electrode bonded body and fuel cell
CN104465799B (zh) 一种晶体硅太阳能电池及其制备方法
Yang et al. Influence of dip-coating temperature upon film thickness in chemical solution deposition
CN105296967B (zh) 一种烧绿石型Gd2Ti2O7缓冲层薄膜的制备方法
JP2010192458A (ja) 固体酸化物形燃料電池用電極層
Espitia-Cabrera et al. Nanostructure characterization in single and multi layer yttria stabilized zirconia films using XPS, SEM, EDS and AFM
CN105603495A (zh) 一种钛基合金抗高温氧化涂层的制备工艺
CN104928660A (zh) 超导涂层用YxCe1-xO2/La2Zr2O7复合过渡层薄膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180309

RJ01 Rejection of invention patent application after publication