CN104693797A - 一种功能化poss与聚吡咯复合吸波材料的制备方法 - Google Patents

一种功能化poss与聚吡咯复合吸波材料的制备方法 Download PDF

Info

Publication number
CN104693797A
CN104693797A CN201310643410.3A CN201310643410A CN104693797A CN 104693797 A CN104693797 A CN 104693797A CN 201310643410 A CN201310643410 A CN 201310643410A CN 104693797 A CN104693797 A CN 104693797A
Authority
CN
China
Prior art keywords
poss
cooh
polypyrrole
cage modle
oligomeric silsesquioxanes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310643410.3A
Other languages
English (en)
Other versions
CN104693797B (zh
Inventor
倪才华
荣耀
姚伯龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GUANGDONG SUQUN INDUSTRIAL Co.,Ltd.
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201310643410.3A priority Critical patent/CN104693797B/zh
Publication of CN104693797A publication Critical patent/CN104693797A/zh
Application granted granted Critical
Publication of CN104693797B publication Critical patent/CN104693797B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/549Silicon-containing compounds containing silicon in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Silicon Polymers (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明公开了一种羧基功能化的POSS与聚吡咯复合物的制备方法。用氨基笼型八聚倍半硅氧烷与顺丁烯二酸酐在N,N-二甲基甲酰胺(DMF)溶液中进行反应,得到羧基功能化笼型八聚倍半硅氧烷(POSS-COOH)。然后将此羧基功能化笼型八聚倍半硅氧烷(POSS-COOH)与吡咯在水溶液中反应,吡咯的聚合及其与POSS-COOH的复合同时进行,一步完成了复合物的制备。得到电化学性能好,高温下稳定性好的聚吡咯-笼型八聚倍半硅氧烷的复合物。研究发现产物具有良好的电化学活性、吸波性以及良好的高温稳定性。本发明工艺简单,原材料易得,成本低,易于推广应用。

Description

一种功能化POSS与聚吡咯复合吸波材料的制备方法
技术领域
本发明涉及一种羧基功能基的笼型齐聚倍半硅氧烷(POSS-COOH)与聚吡咯复合物吸波材料的制备成方法,属于新型功能材料领域。 
背景技术
有机-无机在许多方面被认为是最有应用前景的材料,它结合了无机材料和有机材料的优点,即有机材料的利于合成,高弹性,质量轻、耐腐蚀等;无机材料的抗氧化、强度大、热性能好等。过去的十几年中,笼型齐聚倍半硅氧烷(POSS)作为一个新兴的无机材料越来越受到人们的重视。 
聚吡咯(PPY)是近年来人们研究较多的导电高分子。聚吡咯结构为杂环共轭高分子,常为黑色固体。与聚苯胺相似,聚吡咯常用电化学或化学氧化剂进行聚合,聚合物为粉末状或者薄膜状。化学聚合常常用过硫酸铵或三氯化铁作为其氧化剂,而电化学方法即为阳极氧化吡咯至聚吡咯。聚吡咯在空气中稳定,在酸性溶液或多种有机电解液中都能聚合,成品不溶不熔,导电率和力学强度等诸多性质和溶剂,pH值、温度等聚合条件密切相关。聚吡咯掺杂后呈现棕色,常用化学方法进行掺杂。氧化还原掺杂和质子酸掺杂是人们常用的两种方法,掺杂后由于引入了反离子,导电能力有所提升。聚吡咯与聚苯胺类似,除了导电材料外,也被用作特种电极、光电显示材料等方面。 
聚吡咯作为吸波材料使用时,需要与涂层材料均匀融合,涂层材料通常为高聚物。本发明通过笼型八聚(γ-氨丙基)倍半硅氧烷(POSS-NH2)与顺丁烯二酸酐反应,生成羧基功能基的笼型齐聚倍半硅氧烷(POSS-COOH),然后再与聚吡咯复合掺杂,使复合聚吡咯电化学活性增强,从而增加吸波性。与以往的有机酸掺杂相比,含POSS结构掺杂复合物的耐热性能显著提高,功能性POSS-COOH结构中的有机链段可以使得掺杂剂与被掺杂物不发生相分离,使得掺杂均匀效果好,经过掺杂后,复合物产生明显的电磁波吸收性能。 
发明内容
本发明提供了一种具有电化学活性及高温稳定性的笼型八聚倍半硅氧烷与聚吡咯复合材料(POPSS-PPY)的合成方法,首先合成含有羧基功能基的笼型齐聚倍半硅氧烷(POSS-COOH),然后将其与吡咯在水溶液中,在三氯化铁的存在下进行聚合与复合,由于笼型八聚(γ-氨丙基)倍半硅氧烷以及复合后聚吡咯的结构特点,使得复合后的聚吡咯具有良好的电化学活性及高温下的热稳定性,作为吸波材料的使用,具有质量轻、与涂层相容性好、耐高温等优点。 
本发明的优点: 
(1)本发明使用的羧基功能基的笼型齐聚倍半硅氧烷(POSS-COOH)兼有无机-有机物的特点,即有机材料具有质量轻、与高聚物的相容性好、耐酸碱腐蚀的特点;POSS的笼型结构由-Si-O-Si-键组成,形成一个立方体形状,具有无机材料特点,具有抗氧化、强度高、热性能好等优点。 
(2)吡咯的聚合与羧基功能化的笼型齐聚倍半硅氧烷(POSS-COOH)的复合同时进行、一步完成。反应条件较为温和、方法简单、产率较高、速度快。具有成本低的优点。 
(3)由羧基功能化的笼型齐聚倍半硅氧烷(POSS-COOH)与聚吡咯复合所得材料与高聚物涂层相容性好,复合物粉体在环氧树脂或丙烯酸涂料中分散均匀,电化学活性、吸波性、耐高温性能优异。 
附图说明
图1羧基功能化的笼型齐聚倍半硅氧烷与聚吡咯复合物的红外光谱图。(a)POSS-NH2,(b),(c),(d)分别为吡咯与POSS-COOH的重量比为1:3.3,1:2,和1:1的样品。 
图2羧基功能化的笼型齐聚倍半硅氧烷与聚毗咯复合物的扫描电镜照片。(a)本征态聚吡咯;(b),(c),(d)分别为吡咯与POSS-COOH的重量比为1:3.3,1:2,和1:1的样品。 
图3羧基功能化的笼型齐聚倍半硅氧烷与聚吡咯复合物的循环伏安曲线。(a),(b),(c)分别为吡咯与POSS-COOH的重量比为1:3.3,1:2,和1:1的样品。 
图4羧基功能化的笼型齐聚倍半硅氧烷与聚吡咯复合物的热失重曲线。(a)本征态聚吡咯;(b),(c),(d)分别为吡咯与POSS-COOH的重量比为1:3.3,1:2,和1:1的样品。 
图5羧基功能化的笼型齐聚倍半硅氧烷与聚吡咯复合物的吸波性。 
具体实施方式
实施例1 
取γ-氨丙基三乙氧基硅烷331.5ml,去离子水135ml,乙腈15ml,丙醇60ml,四乙基氢氧化铵7.5ml加入1000三口烧瓶中在机械搅拌下,50℃的恒温条件反应24h。反应结束后,加入约650毫升四氢呋哺,置于低温下沉淀,过滤得白色产物,然后在40℃真空干燥箱中抽真空干燥后得到伯氨基笼型八聚倍半硅氧烷(POSS-NH2
实施例2 
将上述产物伯氨基笼型八聚倍半硅氧烷置于N,N-二甲基甲酰胺(DMF)中搅拌溶解,加入顺丁烯二酸酐,其中POSS-NH2在与顺丁烯二酸酐的摩尔比1:1~1:8。在60℃下机械搅拌反应8h后,减压蒸馏除去溶剂DMF,最后得到产物POSS-COOH。 
实施例3 
取0.690g吡咯溶于8毫升去离子水,磁力搅拌待其完全溶解,将2.27克羧基功能化的笼型齐聚倍半硅氧烷水溶液(20%)加入到吡咯溶液中磁力搅拌,称取三氯化铁2.70g溶于10毫升水水配制而成的三氯化铁水溶液。将三氯化铁水溶液按照2秒1滴的速度加入体系中,4℃冰浴反应8h。反应结束后水洗过滤,直到滤液无色,干燥得棕绿色粉末状产物。 
实施例4 
改变吡咯与羧基功能化的笼型齐聚倍半硅氧烷的比例,采取二者重量比分别为1:3.3,1:2,和1:1.5进行聚合反应与复合,其他条件与方法与实施例3相同。 
实施例5 
图3为各组聚合物的循环伏安曲线,电极是由聚合物∶石墨∶聚四氟乙烯水溶液按照10∶85∶5的质量比混合碾磨,均匀涂在泡沫镍条上1cm高,用7mPa的压力压实而制成,用三电极法测定其循环伏安曲线,电解液为1mol/L的稀硫酸水溶液。a,b,c分别为合成环境pH=4.5,3.5,2.5的倍半硅氧烷-聚吡咯复合物。从图中看到,a曲线只有一个还原峰,不能做到氧化-还原可逆循环,所以其电化学活性较差,这是由于在高pH值下,质子酸掺杂的质子供给困难,聚吡咯没有得到良好的掺杂,其特性类似于本征态聚吡咯;b曲线虽然出现了氧化还原峰,但峰高和峰形较差,不明显,而且氧化还原峰的位置不对称,表明虽然相对于复合物a,复合物b的掺杂有一定效果,但复合物的电化学活性仍然较差。c曲线在-0.2v和-0.15v左右出现了明显的氧化还原峰,且曲线c的双峰对称性较好,表明复合物c有良好的电化学活性。 
曲线中电流响应随着扫描速率增大而增大,而且在高扫描速率下,氧化还原峰并没有失真,仍然保持了较好的对称性,表明该复合物电化学稳定性好,同聚苯胺类似,POSS的笼型结构引入后使得聚吡咯的溶胀压缩等受到限制,分解减少,表现出好的稳定性。 
实施例6 
聚吡咯-倍半硅氧烷复合物的热失重曲线的测定:取复合物10mg左右的复合物做热重曲线,比较他们的热稳定性。图4为本征态聚吡咯及掺杂后的聚吡咯的氮气氛围下热重分析图,聚吡咯的热稳定性对实际应用有着很重要的影响,图中a为本征态聚吡咯,b、c、d为三种 pH值(4.5、3.5、2.5)环境下合成的倍半硅氧烷-聚吡咯复合物,其中100℃到250℃的失重为掺杂剂POSS笼状结构外的基团分解造成,250℃到700℃的失重主要是由于聚吡咯分子链开始降解。从图中可以看出,随着反应环境pH值的降低,聚合物在300℃前的稳定性逐渐提高,与POSS掺入量的逐渐增加相符合,同时在700度时,物质残留量也逐渐变大,也与POSS掺入量增多相一致,由此可见,掺杂剂倍半硅氧烷的掺入使得聚吡咯热性能提高。 
实施例7 
聚吡咯-倍半硅氧烷复合物导电性的测定:取适量按照实例2做好的复合物置于内径为1cm的PP塑料管内,压实,两头接万用表测定其电阻,根据ρ=Rs/l测定其电阻率,进而换算成电导率S。可以看到:复合后的聚吡咯比本征态的聚吡咯导电性大大增强。在pH=2.5的条件下电导率为0.85(S/cm)。 

Claims (6)

1.一种含有羧基功能基的笼型齐聚倍半硅氧烷(POSS-COOH)与聚吡咯的复合物,其特征是以聚吡咯为主体,羧基化笼型齐聚倍半硅氧烷(POSS-COOH)与此在冰浴环境下反应后形成的杂化高聚物。 
2.权利要求1所述羧基功能基的笼型齐聚倍半硅氧烷(POSS-COOH)的制备方法:其特征是将氨基笼型八聚倍半硅氧烷(POSS-NH2)在N,N-二甲基甲酰胺(DMF)中搅拌溶解,加入顺丁烯二酸酐,其中POSS-NH2在与顺丁烯二酸酐的摩尔比1:1~1:8。在60℃下机械搅拌反应8h后,减压蒸馏除去溶剂DMF,最后得到产物POSS-COOH。 
3.权利要求1所述含有羧基功能基的笼型齐聚倍半硅氧烷(POSS-COOH)与聚吡咯的复合物的制备方法,其特征是取0.690g吡咯溶于8毫升去离子水,磁力搅拌待其完全溶解,将2.27克羧基功能化的笼型齐聚倍半硅氧烷水溶液(20%)加入到吡咯溶液中磁力搅拌,称取三氯化铁2.70g溶于10毫升水水配制而成的三氯化铁水溶液。将三氯化铁水溶液按照2秒1滴的速度加入体系中,4℃冰浴反应8h。反应结束后水洗过滤,直到滤液无色,干燥得棕绿色粉末状产物。 
4.权利要求1所述的复合物的配方:吡咯与POSS-COOH重量比范围为1:3.3~1:1.5。吡咯与三氯化铁的重量比为1:4。 
5.权利要求3所述的复合反应在4℃冰水浴反应8h。 
6.权利要求1所述羧基功能基的笼型齐聚倍半硅氧烷(POSS-COOH)与聚吡咯的复合物作为吸波材料的应用,其特征是最大吸收发生在10.54GHz处,吸收值为-10.32dB,有效吸收带宽为9.35~11.20GHz。相比于未掺杂的本征态聚吡咯,吸收效果大大增强。 
CN201310643410.3A 2013-12-04 2013-12-04 一种功能化poss与聚吡咯复合吸波材料的制备方法 Active CN104693797B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310643410.3A CN104693797B (zh) 2013-12-04 2013-12-04 一种功能化poss与聚吡咯复合吸波材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310643410.3A CN104693797B (zh) 2013-12-04 2013-12-04 一种功能化poss与聚吡咯复合吸波材料的制备方法

Publications (2)

Publication Number Publication Date
CN104693797A true CN104693797A (zh) 2015-06-10
CN104693797B CN104693797B (zh) 2018-01-12

Family

ID=53341366

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310643410.3A Active CN104693797B (zh) 2013-12-04 2013-12-04 一种功能化poss与聚吡咯复合吸波材料的制备方法

Country Status (1)

Country Link
CN (1) CN104693797B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106478953A (zh) * 2016-09-26 2017-03-08 华南理工大学 一种金属杂化poss络合物及其制备方法和应用
CN107868249A (zh) * 2017-11-30 2018-04-03 陕西科技大学 基于取代反应合成的羧基功能化笼型倍半硅氧烷及其方法
CN108219456A (zh) * 2017-12-30 2018-06-29 董晓 一种耐温高强型树脂基吸波材料的制备方法
CN109943052A (zh) * 2019-03-26 2019-06-28 北京濮源新材料技术研究院(普通合伙) Poss改性的热稳定阻燃聚碳酸酯及其制备方法
CN112143341A (zh) * 2020-10-14 2020-12-29 湖南科技大学 一种二次掺杂poss改性聚苯胺防腐涂层的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1986605A (zh) * 2006-11-30 2007-06-27 南京大学 笼型八聚苯胺甲基倍半硅氧烷的制备方法
EP2280320A2 (en) * 2009-07-29 2011-02-02 Xerox Corporation Polyhedral silsesquioxane modified polyimide containing intermediate transfer members
EP2280319A2 (en) * 2009-07-29 2011-02-02 Xerox Corporation Polyaniline silanol containing intermediate transfer members
CN101993535A (zh) * 2009-08-21 2011-03-30 东丽纤维研究所(中国)有限公司 聚酰胺/低聚倍半硅氧烷纳米杂化材料及其制备方法
CN102010594A (zh) * 2010-10-26 2011-04-13 东华大学 一种导电聚合物/倍半硅氧烷复合电极材料的制备方法
CN103013091A (zh) * 2012-12-21 2013-04-03 厦门大学 一种poss基封端具有金属离子敏感性的双亲纳米胶束及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1986605A (zh) * 2006-11-30 2007-06-27 南京大学 笼型八聚苯胺甲基倍半硅氧烷的制备方法
EP2280320A2 (en) * 2009-07-29 2011-02-02 Xerox Corporation Polyhedral silsesquioxane modified polyimide containing intermediate transfer members
EP2280319A2 (en) * 2009-07-29 2011-02-02 Xerox Corporation Polyaniline silanol containing intermediate transfer members
CN101993535A (zh) * 2009-08-21 2011-03-30 东丽纤维研究所(中国)有限公司 聚酰胺/低聚倍半硅氧烷纳米杂化材料及其制备方法
CN102010594A (zh) * 2010-10-26 2011-04-13 东华大学 一种导电聚合物/倍半硅氧烷复合电极材料的制备方法
CN103013091A (zh) * 2012-12-21 2013-04-03 厦门大学 一种poss基封端具有金属离子敏感性的双亲纳米胶束及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
YINGZHI LI: "Enhanced electrochemical performance of polyaniline/sulfonated polyhedral oligosilsesquioxane nanocomposites with porous and ordered hierarchical nanostructure", 《JOURNAL OF MATERIALS CHEMISTRY》 *
熊国宣 等: "导电高分子吸波材料的研究进展", 《化工新型材料》 *
荣耀 等: "笼型八聚倍半硅氧烷与聚苯胺复合物的合成与表征", 《应用化工》 *
高敬伟 等: "十二烷基苯磺酸钠掺杂的聚吡咯吸波性能研究", 《材料导报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106478953A (zh) * 2016-09-26 2017-03-08 华南理工大学 一种金属杂化poss络合物及其制备方法和应用
CN107868249A (zh) * 2017-11-30 2018-04-03 陕西科技大学 基于取代反应合成的羧基功能化笼型倍半硅氧烷及其方法
CN108219456A (zh) * 2017-12-30 2018-06-29 董晓 一种耐温高强型树脂基吸波材料的制备方法
CN109943052A (zh) * 2019-03-26 2019-06-28 北京濮源新材料技术研究院(普通合伙) Poss改性的热稳定阻燃聚碳酸酯及其制备方法
CN112143341A (zh) * 2020-10-14 2020-12-29 湖南科技大学 一种二次掺杂poss改性聚苯胺防腐涂层的制备方法
CN112143341B (zh) * 2020-10-14 2022-04-01 湖南科技大学 一种二次掺杂poss改性聚苯胺防腐涂层的制备方法

Also Published As

Publication number Publication date
CN104693797B (zh) 2018-01-12

Similar Documents

Publication Publication Date Title
CN107342437B (zh) 一种掺有改性纳米填料的固态聚合物电解质及其制备方法
CN106517136B (zh) 一种铁/氮共掺杂有序介孔碳材料的制备方法
CN104693797A (zh) 一种功能化poss与聚吡咯复合吸波材料的制备方法
CN102206342B (zh) 导电聚合物及其合成方法、表面覆盖有所述导电聚合物的电活性电极
Tan et al. Formation of dual-responsive polystyrene/polyaniline microspheres with sea urchin-like and core-shell morphologies
CN103971941B (zh) 应用于超级电容器的石墨烯/聚苯胺/氧化锡复合材料及其制备方法
CN104672445A (zh) 一种多壁碳纳米管/聚苯胺纳米复合材料制备方法
CN106750282A (zh) 水溶性的银纳米线/聚苯胺杂化材料及其制备方法
CN102532894B (zh) 一种氧化石墨/聚吡咯复合材料的制备方法
CN104403275A (zh) 一种改性石墨烯/热固性树脂复合材料及其制备方法
CN104934236A (zh) 一种电活性分子接枝石墨烯掺杂导电聚合物电极材料的制备方法
CN106893084B (zh) 一种分散剂作模板原位聚合制备导电聚合物的方法
CN106876154A (zh) 聚苯胺—磺化石墨烯复合电极材料的制备方法
CN108122690A (zh) 一种硫氮共掺碳纳米球电极材料的制备方法
CN103435850A (zh) 一种海鞘纳米纤维素导电纸的制备方法
CN105552326B (zh) 一种具有高电导率的正极材料包覆方法
CN103819896A (zh) 一种笼型八聚(γ-氨丙基)倍半硅氧烷与聚苯胺复合物的合成方法
CN102532539A (zh) 一种一维导电聚吡咯/凹凸棒纳米复合材料的制备方法
CN105602201A (zh) 一种高强度导电高分子纳米复合材料的制备方法
CN103965569A (zh) 纳米改性复合导电塑料的制备方法
CN108470629B (zh) 一种镍离子掺杂聚噻吩/石墨烯复合电极材料及其制备方法
CN104672447B (zh) 一种高比电容聚吡咯的制备方法
CN109776830A (zh) 一种聚氨酯/羧甲基壳聚糖/聚苯胺导电膜的制备方法
CN105331054A (zh) 一种复合导电薄膜
CN101168596A (zh) 一种高产率合成纳米聚苯胺的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20170616

Address after: 100086 Beijing city Haidian District North Sanhuan Road 43, Tsing Wun contemporary building 12A11

Applicant after: BEIJING ZHITAO SCIENCE & TECHNOLOGY CO., LTD.

Address before: School of chemical engineering Jiangnan University No. 1800 214122 Jiangsu city of Wuxi Province Li Lake Avenue

Applicant before: Jiangnan University

CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Xu Yuling

Inventor before: Ni Caihua

Inventor before: Rong Yao

Inventor before: Yao Bolong

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20171219

Address after: 523208 Guangdong province Dongguan wangniudunzhen five Yong Cun Jinlian Technology Park A Building 1 floor

Applicant after: Dongguan Tianxiang new Mstar Technology Ltd

Address before: 100086 Beijing city Haidian District North Sanhuan Road 43, Tsing Wun contemporary building 12A11

Applicant before: BEIJING ZHITAO SCIENCE & TECHNOLOGY CO., LTD.

GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201010

Address after: No.22, group 2, ximihe village, Fengxi Town, Zhuxi County, Shiyan City, Hubei Province

Patentee after: Tian Fujin

Address before: 523208 Guangdong province Dongguan wangniudunzhen five Yong Cun Jinlian Technology Park A Building 1 floor

Patentee before: Dongguan Tianxiang new Mstar Technology Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201113

Address after: 523000 Guangdong city of Dongguan province Zhenjiang Qishi village Jin Lei Industrial Park building A

Patentee after: GUANGDONG SUQUN INDUSTRIAL Co.,Ltd.

Address before: No.22, group 2, ximihe village, Fengxi Town, Zhuxi County, Shiyan City, Hubei Province

Patentee before: Tian Fujin