CN104681610B - Nldmos器件 - Google Patents

Nldmos器件 Download PDF

Info

Publication number
CN104681610B
CN104681610B CN201310652810.0A CN201310652810A CN104681610B CN 104681610 B CN104681610 B CN 104681610B CN 201310652810 A CN201310652810 A CN 201310652810A CN 104681610 B CN104681610 B CN 104681610B
Authority
CN
China
Prior art keywords
deep trap
region
type
injection
injection region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310652810.0A
Other languages
English (en)
Other versions
CN104681610A (zh
Inventor
钱文生
刘冬华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Original Assignee
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huahong Grace Semiconductor Manufacturing Corp filed Critical Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority to CN201310652810.0A priority Critical patent/CN104681610B/zh
Publication of CN104681610A publication Critical patent/CN104681610A/zh
Application granted granted Critical
Publication of CN104681610B publication Critical patent/CN104681610B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1041Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了一种NLDMOS器件,组成漂移区的N型深阱由分段注入区加扩散实现,使掺杂浓度较低且能实现浓度调节的深阱非注入区设置在器件的源漏之间的局部场氧化层的靠近源区侧底部,能降低源漏之间的局部场氧化层的靠近源区侧的鸟嘴边界的电场强度并能使器件的击穿电压达到700V以上。在深阱非注入区的底部设置有一个比深阱非注入区的掺杂浓度高的第三N型注入区,能使得P阱、N型深阱和P型硅衬底之间形成的寄生PNP三极管的基区宽度更宽,能提高该寄生PNP三极管的C‑E穿通电压,能提高器件的源区所能承受的电压水平并能使源端电压抬高到40V以上,使得器件能应用于源端电压为40V以上、漏端电压为700V以上的场合。

Description

NLDMOS器件
技术领域
本发明涉及一种半导体集成电路器件,特别是涉及一种N型横向双扩散金属氧化物半导体场效应管(NLDMOS)器件。
背景技术
随着节能减排深入人心,智能电网项目的开展,功率半导体集成电路(PowerIntegrated Circuit,PIC)特别是超高压功率半导体在用电和配电领域的市场前景将非常广阔,如LED市电照明、高效马达驱动、配电网的改造、电能的AC/DC转换等。在所有的功率半导体器件中,LDMOS(Lateral Double Diffused MOSFET,横向双扩散金属氧化物半导体场效应管)高压器件具有工作电压高,工艺相对简单,开关频率高,且LDMOS器件的漏极、源极和栅极都位于其表面,易于同低压CMOS(Complementary Metal Oxide Semiconductor,互补型金属氧化物半导体)及BJT(Bipolar Junction Transistor,双极晶体管)等电路在工艺上兼容等特点,特别是对于AC/DC,DC/DC转换等电路,可以进行器件集成,而受到广泛关注,在高压集成电路和功率集成电路中被作为高压功率器件是特别适合的。从1979年J.A.Appels提出著名的RESURF(Reduce Surface Field,降低表面电场技术)原理以来,LDMOS器件得到了迅速的发展。
如图1所示,是现有NLDMOS器件剖面示意图;它是一种Double RESURF LDMOS器件,以700伏特NLDMOS为例,现有NLDMOS器件包括:
P型硅衬底101;形成于P型硅衬底101上的N型深阱(DNW)包括源端深阱注入区102a、漏端深阱注入区102b和深阱非注入区102c,所述源端深阱注入区102a和所述漏端深阱注入区102b的N型杂质都由相同的离子注入形成,所述深阱非注入区102c位于所述源端深阱注入区102a和所述漏端深阱注入区102b之间,所述深阱非注入区102c的N型杂质由所述源端深阱注入区102a和所述漏端深阱注入区102b的N型杂质横向扩散形成。P阱103,形成于所述源端深阱注入区102a中;源区108a,由形成于所述P阱103中的N+区组成;P阱引出区109,由形成于所述P阱103中的P+区组成;漏区108b,由形成于所述漏端深阱注入区102b中的N+区组成。
在所述漏区108b和所述P阱103之间的所述硅衬底101表面形成有局部场氧化 层(LOCOS)104,所述局部场氧化层104的第一侧延伸到所述深阱非注入区102c上。
栅极结构,包括依次形成于所述硅衬底101表面的栅介质层如栅氧化层105和多晶硅栅106,所述栅极结构覆盖部分所述P阱103并延伸到所述深阱非注入区102c以及所述局部场氧化层104上方,被所述栅极结构所述覆盖的所述P阱103的表面用于形成沟道;由位于所述漏区108b和所述P阱103之间的所述N型深阱组成漂移区。延伸到所述局部场氧化层104上方的多晶硅栅106用做场板,能够调节下面的电场。
在所述漏端深阱注入区102b中形成有第一P型埋层(PTOP)110a,所述第一P型埋层110a和所述局部场氧化层104的底部相隔一段距离;在所述源端深阱注入区102a中形成有第二P型埋层110b,所述第二P型埋层110b的深度和所述第一P型埋层110a的深度相同;所述第一P型埋层110a和所述第二P型埋层110b用于对所述漂移区进行纵向耗尽、降低所述漂移区的表面电场强度。
在所述局部场氧化层104的靠近漏端一侧的上方形成有多晶硅场板107。层间膜111形成在所述硅衬底101表面。所述源区108a和所述P阱引出区109的顶部分别形成有穿过所述层间膜111的金属接触孔112并通过该金属接触孔112连接源极金属层113a。所述漏区108b和所述多晶硅场板107的顶部形成有金属接触孔112并通过该金属接触孔112连接漏极金属层113b。所述多晶硅栅106的顶部形成有金属接触孔112并通过该金属接触孔112连接栅极金属层113c。
在现有技术中,所述局部场氧化层104在靠近所述源区108a一侧即第一侧的鸟嘴边界的电场比较集中,容易发生击穿,导致器件失效。且该处是所述局部场氧化层104与栅氧化层105的边界,电场较强,在源端加入电压时,会导致器件的热载流子效应加大(Hotcarrier Effect,HCE),不利于器件的可靠性。降低该处的电场,一方面可以提高器件的击穿电压,同时另一方面也提高了器件的可靠性。在如图1所示的现有NLDMOS器件中,为了改善鸟嘴边界的电场,采取的方法是降低此处的N型掺杂浓度。其工艺实现方法是N型深阱在器件中的注入区分为两段,一段是漏端和漂移区端即所述漏端深阱注入区102b,一段是源端即源端深阱注入区102a。两段N型深阱的掺杂通过热扩散实现连接,即深阱非注入区102c的掺杂由所述源端深阱注入区102a和所述漏端深阱注入区102b的N型杂质横向扩散形成,这样能使深阱非注入区102c的掺杂浓度降低,从而降低所述局部场氧化层104的第一侧的鸟嘴边界的电场强度,所述深阱非注入区102c的掺杂浓度越小、所述局部场氧化层104的第一侧的电 场强度越小,所以能够通过控制所述深阱非注入区102c的掺杂浓度得到所需要的隔离型700伏特NLDMOS器件的击穿电压。
隔离型器件可以实现比较特殊的应用。一种比较普遍的应用是源端电压的抬高到40伏特。但上述隔离型700伏特NLDMOS器件在这种应用中,源端电压最高值不能超过40伏特,从而使的现有器件无法应用于源端电压为40伏特以上的场合。其原因是所述P阱103、所述N型深阱的所述源端深阱注入区102a和所述深阱非注入区102c、以及所述P阱硅衬底会形成寄生PNP三极管,由于所述深阱非注入区102c的掺杂浓度较低,这样寄生PNP三极管的基区宽度基本上是由所述P阱103和所述深阱非注入区102c之间的所述源端深阱注入区102a的横向宽度决定,该宽度较小,所以寄生PNP三极管的集电极和发射极(C-E)的穿通电压较低,在源端电压为40伏特以上,该寄生PNP三极管会发生C-E穿通。
发明内容
本发明所要解决的技术问题是提供一种NLDMOS器件,能使源端电压抬高到40V以上、并能使器件的击穿电压达到700V以上,使得器件能够应用于源端电压为40V以上、漏端电压为700V以上的场合。
为解决上述技术问题,本发明提供的NLDMOS器件包括:
形成于P型硅衬底上的N型深阱,所述N型深阱包括源端深阱注入区、漏端深阱注入区和深阱非注入区,所述源端深阱注入区和所述漏端深阱注入区的N型杂质都由相同的离子注入形成,所述深阱非注入区位于所述源端深阱注入区和所述漏端深阱注入区之间,所述深阱非注入区的N型杂质由所述源端深阱注入区和所述漏端深阱注入区的N型杂质横向扩散形成;所述深阱非注入区的掺杂浓度小于所述源端深阱注入区或所述漏端深阱注入区的掺杂浓度,所述源端深阱注入区和所述漏端深阱注入区之间的间距越大、所述深阱非注入区的掺杂浓度越小。
P阱,形成于所述源端深阱注入区中。
源区,由形成于所述P阱中的N+区组成。
P阱引出区,由形成于所述P阱中的P+区组成。
漏区,由形成于所述漏端深阱注入区中的N+区组成。
在所述漏区和所述P阱之间的所述硅衬底表面形成有局部场氧化层,所述局部场氧化层的第一侧延伸到所述深阱非注入区上,所述深阱非注入区的掺杂浓度越小、所 述局部场氧化层的第一侧的电场强度越小、NLDMOS器件的击穿电压越高;所述漏区和所述局部场氧化层的第二侧自对准。
栅极结构,包括依次形成于所述硅衬底表面的栅介质层和多晶硅栅,所述栅极结构覆盖部分所述P阱并延伸到所述深阱非注入区以及所述局部场氧化层上方,被所述栅极结构所述覆盖的所述P阱的表面用于形成沟道;由位于所述漏区和所述P阱之间的所述N型深阱组成漂移区。
在所述漏端深阱注入区中形成有第一P型埋层,所述第一P型埋层和所述局部场氧化层的底部相隔一段距离;在所述源端深阱注入区中形成有第二P型埋层,所述第二P型埋层的深度和所述第一P型埋层的深度相同;所述第一P型埋层和所述第二P型埋层用于对所述漂移区进行纵向耗尽、降低所述漂移区的表面电场强度。
第三N型注入区形成于所述深阱非注入区中并位于所述深阱非注入区中的底部区域,所述第三N型注入区的顶部和所述深阱非注入区的顶部相隔一段距离,所述P阱、所述N型深阱和所述P型硅衬底形成寄生PNP三极管,所述第三N型注入区的掺杂浓度大于所述深阱非注入区的掺杂浓度,所述第三N型注入区的掺杂浓度越高、所述寄生PNP三极管的集电极和发射极的穿通电压越高。
进一步的改进是,所述NLDMOS器件的击穿电压为700V以上。
进一步的改进是,所述寄生PNP三极管的集电极和发射极的穿通电压为40V以上。
进一步的改进是,所述第三N型注入区为一N型阱区。
本发明具有如下有益效果:
1、本发明通过将N型深阱进行分段式注入,使掺杂浓度较低且能实现浓度调节的深阱非注入区设置在器件的源漏之间的局部场氧化层的靠近源区侧的区域底部,从而能降低源漏之间的局部场氧化层的靠近源区侧的鸟嘴边界的电场强度,从而能使器件的击穿电压达到700V以上。
2、本发明通过在深阱非注入区的底部设置一个比深阱非注入区的掺杂浓度高的第三N型注入区,能够使得P阱、N型深阱和P型硅衬底之间形成的寄生PNP三极管的基区宽度更宽,从而能够提高该寄生PNP三极管的C-E穿通电压,从而能提高器件的源区所能承受的电压水平并能使源端电压抬高到40V以上,使得器件能够应用于源端电压为40V以上、漏端电压为700V以上的场合。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明:
图1是现有NLDMOS器件剖面示意图;
图2是本发明实施例LDMOS器件剖面示意图;
图3是图2中的寄生PNP示意图。
具体实施方式
如图2所示,是本发明实施例LDMOS器件剖面示意图;本发明实施例NLDMOS器件包括:
形成于P型硅衬底1上的N型深阱,所述N型深阱包括源端深阱注入区2a、漏端深阱注入区2b和深阱非注入区2c,所述源端深阱注入区2a和所述漏端深阱注入区2b的N型杂质都由相同的离子注入形成,所述深阱非注入区2c位于所述源端深阱注入区2a和所述漏端深阱注入区2b之间,所述深阱非注入区2c的N型杂质由所述源端深阱注入区2a和所述漏端深阱注入区2b的N型杂质横向扩散形成;所述深阱非注入区2c的掺杂浓度小于所述源端深阱注入区2a或所述漏端深阱注入区2b的掺杂浓度,所述源端深阱注入区2a和所述漏端深阱注入区2b之间的间距越大、所述深阱非注入区2c的掺杂浓度越小。
P阱3,形成于所述源端深阱注入区2a中。
源区8a,由形成于所述P阱3中的N+区组成。
P阱引出区9,由形成于所述P阱3中的P+区组成。
漏区8b,由形成于所述漏端深阱注入区2b中的N+区组成。
在所述漏区8b和所述P阱3之间的所述硅衬底1表面形成有局部场氧化层4,所述局部场氧化层4的第一侧延伸到所述深阱非注入区2c上,所述深阱非注入区2c的掺杂浓度越小、所述局部场氧化层4的第一侧的电场强度越小、NLDMOS器件的击穿电压越高;本发明实施例中通过调节所述深阱非注入区2c的掺杂浓度使所述NLDMOS器件的击穿电压达到700伏特以上。所述漏区8b和所述局部场氧化层4的第二侧自对准。
栅极结构,包括依次形成于所述硅衬底1表面的栅介质层5和多晶硅栅6;较佳为,所述栅介质层5为栅氧化层。所述栅极结构覆盖部分所述P阱3并延伸到所述深阱非注入区2c以及所述局部场氧化层4上方,被所述栅极结构所述覆盖的所述P阱3的表面用于形成沟道;由位于所述漏区8b和所述P阱3之间的所述N型深阱组成漂 移区。
在所述漏端深阱注入区2b中形成有第一P型埋层10a,所述第一P型埋层10a和所述局部场氧化层4的底部相隔一段距离;在所述源端深阱注入区2a中形成有第二P型埋层10b,所述第二P型埋层10b的深度和所述第一P型埋层10a的深度相同;所述第一P型埋层10a和所述第二P型埋层10b用于对所述漂移区进行纵向耗尽、降低所述漂移区的表面电场强度。
第三N型注入区11形成于所述深阱非注入区2c中并位于所述深阱非注入区2c中的底部区域,较佳为,所述第三N型注入区11为一N型阱区,采用N型阱区注入实现。所述第三N型注入区11的顶部和所述深阱非注入区2c的顶部相隔一段距离。
如图3所示,是图2中的寄生PNP示意图,所述P阱3、所述N型深阱的所述源端深阱注入区2a、所述深阱非注入区2c、所述第三N型注入区11和所述P型硅衬底1形成寄生PNP三极管,所述第三N型注入区11的掺杂浓度大于所述深阱非注入区2c的掺杂浓度,所述第三N型注入区11的掺杂浓度越高,所述寄生PNP三极管的基区的掺杂浓度越高、宽度也越大,这样能使所述寄生PNP三极管的集电极和发射极的穿通电压越高,本发明实施例通过所述第三N型注入区11的设置能使所述寄生PNP三极管的集电极和发射极的穿通电压为40V以上。所以本发明实施例通过设置所述深阱非注入区2c能使器件的击穿电压达到700V以上,而通过所述第三N型注入区11的设置,能够消除所述深阱非注入区2c的掺杂浓度过低而使所述寄生PNP三极管的C-E穿通电压较小的影响,使得寄生PNP三极管的C-E穿通电压能达到40V以上,使得本发明实施例器件能够应用于源端电压为40V以上、漏端电压为700V以上的场合。
以上通过具体实施例对本发明进行了详细的说明,但这些并非构成对本发明的限制。在不脱离本发明原理的情况下,本领域的技术人员还可做出许多变形和改进,这些也应视为本发明的保护范围。

Claims (4)

1.一种NLDMOS器件,其特征在于,包括:
形成于P型硅衬底上的N型深阱,所述N型深阱包括源端深阱注入区、漏端深阱注入区和深阱非注入区,所述源端深阱注入区和所述漏端深阱注入区的N型杂质都由相同的离子注入形成,所述深阱非注入区位于所述源端深阱注入区和所述漏端深阱注入区之间,所述深阱非注入区的N型杂质由所述源端深阱注入区和所述漏端深阱注入区的N型杂质横向扩散形成;所述深阱非注入区的掺杂浓度小于所述源端深阱注入区或所述漏端深阱注入区的掺杂浓度,所述源端深阱注入区和所述漏端深阱注入区之间的间距越大、所述深阱非注入区的掺杂浓度越小;
P阱,形成于所述源端深阱注入区中;
源区,由形成于所述P阱中的N+区组成;
P阱引出区,由形成于所述P阱中的P+区组成;
漏区,由形成于所述漏端深阱注入区中的N+区组成;
在所述漏区和所述P阱之间的所述硅衬底表面形成有局部场氧化层,所述局部场氧化层的第一侧延伸到所述深阱非注入区上,所述深阱非注入区的掺杂浓度越小、所述局部场氧化层的第一侧的电场强度越小、NLDMOS器件的击穿电压越高;所述漏区和所述局部场氧化层的第二侧自对准;
栅极结构,包括依次形成于所述硅衬底表面的栅介质层和多晶硅栅,所述栅极结构覆盖部分所述P阱并延伸到所述深阱非注入区以及所述局部场氧化层上方,被所述栅极结构所述覆盖的所述P阱的表面用于形成沟道;由位于所述漏区和所述P阱之间的所述N型深阱组成漂移区;
在所述漏端深阱注入区中形成有第一P型埋层,所述第一P型埋层和所述局部场氧化层的底部相隔一段距离;在所述源端深阱注入区中形成有第二P型埋层,所述第二P型埋层的深度和所述第一P型埋层的深度相同;所述第一P型埋层和所述第二P型埋层用于对所述漂移区进行纵向耗尽、降低所述漂移区的表面电场强度;
第三N型注入区形成于所述深阱非注入区中并位于所述深阱非注入区中的底部区域,所述第三N型注入区的顶部和所述深阱非注入区的顶部相隔一段距离,所述P阱、所述N型深阱和所述P型硅衬底形成寄生PNP三极管,所述第三N型注入区的掺杂浓度大于所述深阱非注入区的掺杂浓度,所述第三N型注入区的掺杂浓度越高、所述寄生PNP三极管的集电极和发射极的穿通电压越高。
2.如权利要求1所述的NLDMOS器件,其特征在于:所述NLDMOS器件的击穿电压为700V以上。
3.如权利要求1所述的NLDMOS器件,其特征在于:所述寄生PNP三极管的集电极和发射极的穿通电压为40V以上。
4.如权利要求1所述的NLDMOS器件,其特征在于:所述第三N型注入区为一N型阱区。
CN201310652810.0A 2013-12-03 2013-12-03 Nldmos器件 Active CN104681610B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310652810.0A CN104681610B (zh) 2013-12-03 2013-12-03 Nldmos器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310652810.0A CN104681610B (zh) 2013-12-03 2013-12-03 Nldmos器件

Publications (2)

Publication Number Publication Date
CN104681610A CN104681610A (zh) 2015-06-03
CN104681610B true CN104681610B (zh) 2017-08-08

Family

ID=53316432

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310652810.0A Active CN104681610B (zh) 2013-12-03 2013-12-03 Nldmos器件

Country Status (1)

Country Link
CN (1) CN104681610B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105957880B (zh) * 2016-04-27 2019-04-09 上海华虹宏力半导体制造有限公司 高压n型ldmos器件及工艺方法
TWI798825B (zh) * 2021-09-11 2023-04-11 力晶積成電子製造股份有限公司 半導體元件的製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1220323A2 (en) * 2000-12-31 2002-07-03 Texas Instruments Incorporated LDMOS with improved safe operating area
CN101771082A (zh) * 2009-12-30 2010-07-07 四川长虹电器股份有限公司 绝缘衬底上的硅基横向双扩散金属氧化物半导体器件
CN102097484A (zh) * 2011-01-12 2011-06-15 深圳市联德合微电子有限公司 一种多通道ldmos及其制备方法
CN103178087A (zh) * 2011-12-26 2013-06-26 上海华虹Nec电子有限公司 超高压ldmos器件结构及制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8174070B2 (en) * 2009-12-02 2012-05-08 Alpha And Omega Semiconductor Incorporated Dual channel trench LDMOS transistors and BCD process with deep trench isolation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1220323A2 (en) * 2000-12-31 2002-07-03 Texas Instruments Incorporated LDMOS with improved safe operating area
CN101771082A (zh) * 2009-12-30 2010-07-07 四川长虹电器股份有限公司 绝缘衬底上的硅基横向双扩散金属氧化物半导体器件
CN102097484A (zh) * 2011-01-12 2011-06-15 深圳市联德合微电子有限公司 一种多通道ldmos及其制备方法
CN103178087A (zh) * 2011-12-26 2013-06-26 上海华虹Nec电子有限公司 超高压ldmos器件结构及制备方法

Also Published As

Publication number Publication date
CN104681610A (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
CN105226058B (zh) 利用深扩散区在单片功率集成电路中制备jfet和ldmos晶体管
US10910472B2 (en) Integrated circuit, LDMOS with bottom gate and ballast drift
CN104685614B (zh) 场效应晶体管以及半导体装置
CN101300679B (zh) 制造半导体器件的方法
US20020053695A1 (en) Split buried layer for high voltage LDMOS transistor
CN102201406B (zh) 一种基于n型外延层的bcd集成器件及其制造方法
US7999315B2 (en) Quasi-Resurf LDMOS
CN1520616A (zh) 具有防止基区穿通的横向延伸基区屏蔽区的功率半导体器件及其制造方法
KR20100056101A (ko) 횡형 디모스 소자 및 그의 제조 방법
CN105931983A (zh) 用于高压器件的低成本的掩膜还原方法及器件
CN102194818A (zh) 一种基于p型外延层的bcd集成器件及其制造方法
US20130056824A1 (en) Semiconductor device and manufacturing method for the same
CN104659090B (zh) Ldmos器件及制造方法
CN107785411A (zh) 集成有结型场效应晶体管的器件及其制造方法
CN100361315C (zh) 垂直dmos晶体管装置、集成电路及其制造方法
CN106571388A (zh) 具有resurf结构的横向扩散金属氧化物半导体场效应管
CN104681610B (zh) Nldmos器件
CN105679831B (zh) 横向扩散场效应晶体管及其制造方法
CN102386227B (zh) 双向表面电场减弱的漏极隔离dddmos晶体管及方法
CN101777584B (zh) p沟道横向双扩散金属氧化物半导体器件
CN207896095U (zh) 一种双通道变掺杂ldmos器件
CN110504314A (zh) 一种沟槽型绝缘栅双极晶体管及其制备方法
CN107910358A (zh) Ldmos及其制造方法
CN103811547B (zh) 降低ldmos器件峰值电场的版图结构及方法
CN108172623A (zh) 一种高能注入埋层双通道ldmos器件及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant