CN104671255A - β分子筛及其制备方法 - Google Patents

β分子筛及其制备方法 Download PDF

Info

Publication number
CN104671255A
CN104671255A CN201310605006.7A CN201310605006A CN104671255A CN 104671255 A CN104671255 A CN 104671255A CN 201310605006 A CN201310605006 A CN 201310605006A CN 104671255 A CN104671255 A CN 104671255A
Authority
CN
China
Prior art keywords
molecular sieve
beta
hours
accordance
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310605006.7A
Other languages
English (en)
Other versions
CN104671255B (zh
Inventor
刘昶
王凤来
杜艳泽
赵红
关明华
王珂琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Original Assignee
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Fushun Research Institute of Petroleum and Petrochemicals filed Critical China Petroleum and Chemical Corp
Priority to CN201310605006.7A priority Critical patent/CN104671255B/zh
Publication of CN104671255A publication Critical patent/CN104671255A/zh
Application granted granted Critical
Publication of CN104671255B publication Critical patent/CN104671255B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种β分子筛及其制备方法。该分子筛的性质如下:比表面积为400m2/g~800m2/g,总孔容为0.4ml/g~0.55mL/g,SiO2/Al2O3摩尔比为30~60,相对结晶度为120%~140%,红外酸量为0.55~1.0mmol/g,非骨架铝占总铝的1%以下,NH3-TPD方法测得的中强酸的酸量占总酸量的70%~85%,Na2O≤0.15wt%。制备方法包括:将β分子筛原粉在常压、动态的水蒸汽条件下进行处理,然后用强碱稀溶液处理。本发明β分子筛具有硅铝比适宜、大比表面积、酸性适宜、孔结构合理和非骨架铝含量低,以其为裂化组分制备的加氢催化剂可用于多产低凝点柴油和改善化工原料性质。

Description

β分子筛及其制备方法
技术领域
本发明涉及一种β分子筛及其制备方法,特别是涉及作为裂化催化剂的活性组分、可以生产低凝点清洁交通运输燃料和优质化工原料的β分子筛及其制备方法。
背景技术
目前应用于裂化催化剂中起裂化作用的关键组分多为Y型分子筛和β分子筛。相对于Y型分子筛,β分子筛具有三维十二元环孔结构,但没有像Y型分子筛那样的超笼结构,其主要特点是两个4元环和四个5元环的双6元环单位晶穴结构,属于立方晶系,主孔道直径在0.56-0.75nm。β分子筛的具有拓扑结构和立体三维孔道特点使得它在裂解反应中对链状烃选择性断裂具有很好的作用,并具有很强的异构性能,作为裂解组分可用于多产低凝点中间馏分油,在工业上得到了广泛的应用。
β分子筛硅铝结构具有多样性和复杂性。β分子筛的骨架结构相比于Y型分子筛更加复杂,三个相互交叉的孔道体系中两个线性孔道相互正交并垂直于[001]方向,孔道尺寸为0.57nm×0.75nm,第三个十二元环孔道体系平行于[001]方向,是非线性孔道,孔道尺寸为0.56nm×0.65nm;晶化完全的β分子筛骨架硅铝结构也存在多样性,骨架硅铝结构是四配位结构且这种结构占分子筛中总的硅铝存在形式的主体,其基本结构是由含量不同的Si(4Al)、Si(3Al)、Si(2Al)、Si(1Al)和Si(0Al)结构单元组成,并且以Si(3Al)和Si(2Al)结构形式为主;另外分子筛中还存在着六配位的非骨架铝;这些各种结构的硅铝存在方式及含量在后续的不同改性过程中发生不同的变化,从而将产生不同的催化性能。
现有的对β分子筛的改性方法(比如CN1105646A)中,一般是先进行铵交换脱钠,然后再高温焙烧除去模板剂(有机胺),再进行脱铝和恒压水热处理,这样可以大幅度提高β分子筛的硅铝比。尤其是高温焙烧除胺的过程,在CN99113577.6、CN00123134.0等专利中特别强调分段焙烧脱胺,这样不但制备过程复杂,而且在分段烧铵前分子筛要先经过铵盐交换钠,钠离子是用于平衡分子筛骨架中的负电荷(一般为骨架铝形成的),而脱钠后再进行的烧铵处理(无论是一步高温处理还是多步不同温度处理)将使分子筛骨架脱铝加剧,并存在无选择性骨架脱铝,使改性后分子筛的骨架结构不均一,存在非常大的缺陷,并在孔道中形成了大量的六配位的非骨架铝结构(堵塞孔道,部分掩蔽骨架酸中心,易发生非理想裂化反应),而后续的酸处理或水热处理,都将继续对分子筛的骨架结构进一步破坏,使分子筛骨架结构中存在着比例不同的Si(X-Al)结构和分子筛中存在一定量的非骨架铝结构,使得分子筛具有不同强度酸中心,表现出不同的裂化性能,将大大影响催化剂目的产物的选择性。正是由于β分子筛中硅铝结构的复杂性,上述方法中采用不同的改性方法使得改性后分子筛骨架结构不均一,直接影响改性分子筛的酸强度和酸密度,进而影响催化剂的性能。
CN101450318A中公开了一种β分子筛的改性方法。该方法是将钠型β分子筛与铵盐交换,再用含磷化合物溶液和含有过渡金属化合物的溶液对分子筛进行浸渍改性,得到的β分子筛具有更高的比表面积和更高的相对结晶度,能够进一步择形裂化生成低碳烯烃。
CN01106042.5公开了一种β分子筛的改性方法。该方法过程如下:(1)晶化完全的β分子筛直接进行铵盐交换,(2)铵盐交换后的β分子筛进行过滤、水洗、干燥和焙烧,(3)焙烧脱铵后的β分子筛进行酸处理、过滤,(4)酸处理完的β分子筛进行加压水热处理。该方法中,先对β沸石进行酸处理,然后再进行水热处理,在酸处理过程中是采用无机酸处理的,在这一过程中将会破坏部分分子筛的骨架结构,分子筛结晶度下降,形成大块的非骨架结构留在分子筛孔道中,难以被除去,影响改性分子筛的酸分布和酸强度,另外,在酸处理后还进行了高温水热处理,也会在分子筛中形成一定量的非骨架铝,这将直接影响分子筛的孔结构和酸性质,分子筛的酸分布和酸性质的变化将直接影响由此分子筛作为裂化组分的催化剂的性能,尤其是影响加氢裂化柴油和化工料的性质。另外该方法改性分子筛的步骤较长,制备过程中目的分子筛的收率较低,同时多步骤的改性处理使得改性成本和能耗大大提高。
发明内容
为了克服现有技术中的不足之处,本发明提供了一种硅铝比适宜、大比表面积、酸性适宜、孔结构合理和非骨架铝含量低的β分子筛及其制备方法。由本发明分子筛为裂化组分制备的加氢催化剂具有多产低凝点柴油和进一步改善化工原料性质等特点。
本发明的β分子筛,其性质如下:比表面积为400m2/g~800m2/g,优选为500~750m2/g,总孔容为0.4ml/g~0.55mL/g,SiO2/Al2O3摩尔比为30~60,优选为35~55,相对结晶度为120%~140%,红外酸量为0.55~1.0mmol/g,非骨架铝占总铝的1%以下,NH3-TPD方法测得的中强酸的酸量占总酸量的70%~85%,优选为75%~85%,Na2O≤0.15wt%,优选为≤0.10wt%。
本发明的β分子筛中,总铝是指分子筛中骨架铝中的铝和非骨架铝中的铝的总和。非骨架铝是指分子筛中以六配位结构形式存在的铝。骨架铝是指分子筛中以四配位结构形式存在的铝。
本发明β分子筛的制备方法,包括:
(1)将β分子筛原粉在常压、动态的水蒸汽条件下进行处理,处理温度为500~650℃,处理时间为5~10小时;
(2)用强碱稀溶液处理步骤(1)所得的β分子筛,然后过滤、水洗和干燥,得到β分子筛。
步骤(1)β分子筛原粉是采用水热晶化法合成的,其SiO2/Al2O3摩尔比20.0~25.0,Na2O含量为小于0.2wt%。
步骤(1)β分子筛原粉在常压、动态的水蒸汽条件处理,一般可以采用流动的水蒸汽进行,采用100wt%水蒸汽。水蒸汽按每千克β分子筛20~100L/h通过β分子筛。
步骤(2)中,所述强碱稀溶液中,稀碱的浓度(以OH-计)0.01~0.2mol/L,优选0.02~0.15mol/L。所述强碱稀溶液可以采用强碱加入水中配制而成,强碱可以为氢氧化锂、氢氧化钠、氢氧化钾中的一种或多种。强碱稀溶液与β分子筛的重量比为5:1~20:1。所述的处理条件:温度40~120℃,优选为70~100℃,时间为1.0~8.0小时,优选2.0~4.0小时。所述的水洗条件:水洗温度50~90℃,优选60~80,水洗时间0.5~1.0小时,直到洗涤液pH值接近中性为止,然后在100~120℃的条件下干燥3~6小时。
本发明方法首先采用常压、动态水热处理分子筛原粉,在动态高温水蒸汽的作用下可以实现分子筛脱铵(脱模板剂)和选择性降低骨架铝活化能,并避免了对分子筛骨架结构的破坏,并保持分子筛骨架结构的均一性,与后续的强碱稀溶液改性过程相配合,能够有效地将非骨架铝均匀脱出,形成畅通的孔结构,并使少量的OH-吸附在分子筛的骨架结构上,有利于改善分子筛的酸强度和酸密度,有利于提高催化剂的异构性能。相对于现有方法中采用酸处理和后水热处理的方法进行分子筛的改性,在强酸酸化过程中由于有大量的H+存在会对分子筛中的骨架铝和非骨架铝结构是无选择性脱出,既可以脱出部分非骨架铝结构,也可脱出部分骨架铝结构,严重影响分子筛骨架硅铝结构及分子筛酸性质,另外,在酸化后又进行高温水热处理,也能够在这一改性步骤中再次产生非骨架铝结构,进一步影响分子筛的酸性质,大量非骨架铝结构存在于改性后分子筛的孔道中将严重堵塞分子筛的孔结构,而且还会掩蔽部分分子筛骨架中的酸中心,大大影响改性后分子筛的性能,进而影响到裂化催化剂目的产品选择性和产品性质。
本发明β分子筛具有硅铝比适宜、大比表面积、结晶度高、酸性适宜、孔结构合理和非骨架铝含量低的特点,特别对长链烷烃和芳烃、环烷烃的长侧链烷基有适宜的裂解作用和很强的异构作用,使由其制备的加氢裂化催化剂能在保持高柴油收率的同时,较大幅度降低柴油馏分的凝点,达到增产低凝柴油的作用。
采用本发明b分子筛为裂化组分的催化剂具有更高的催化活性和异构能力,适合于生产低凝点宽馏分优质的柴油产品和高质量的化工原料。
具体实施方式
本发明的b分子筛的制备方法,具体包括如下步骤:
(1)将β分子筛原粉在常压、动态的水蒸汽条件下进行处理,处理温度为500~650℃,处理时间为5~10小时;
本发明采用水热晶化合成的β分子筛原粉。所采用β分子筛原粉的化学SiO2/Al2O3摩尔比20.0~25.0,Na2O含量为小于0.2wt%,相对结晶度95%以上;
本发明中采用的水热处理条件是水蒸汽是100wt%水蒸汽,水蒸汽按每千克β分子筛20~100L/h通过β分子筛。为了使分子筛处理的更均匀,最好将分子筛置于转动容器中,水蒸汽从容器的一端进入经过分子筛后再从容器的另一端出去。容器内的压力保持常压状态,处理温度保持在500~650℃,处理时间为5~10小时;
本发明方法中,β分子筛原粉置于容器比如管式炉中,采用程序升温,升温速率为50~150℃/小时,优选升至250~450℃时,进一步优选在250~400℃时开始引入水蒸汽,然后在引入水蒸汽的同时升温至500~650℃,并在此温度下处理5~10小时;
(2)用强碱稀溶液处理步骤(3)所得的β分子筛,然后过滤、水洗和干燥;
在带有回流系统并密闭的容器中加入强碱稀溶液,其中强碱稀溶液浓度(以OH-计)0.01~0.2mol/L,优选0.02~0.15mol/L,搅拌并升温到40~120℃,优选为70~100℃,然后按强碱稀溶液与分子筛的重量比为5:1~20:1,加入步骤(3)获得的分子筛,恒温搅拌1.0~8.0小时,优选2.0~4.0小时,过滤、洗涤,洗涤直到洗涤液pH值接近中性为止,并在100~120℃的条件下干燥3~6小时,得到本发明的β分子筛。其中强碱稀溶液可以是氢氧化锂、氢氧化钠、氢氧化钾中的一种或多种的水溶液。
下面的实施例用于更详细地说明本发明,但本发明的范围不只限于这些实施例的范围。本发明中,wt%为质量分数。
本发明分析方法:比表面积和孔容采用低温液氮物理吸附法,硅铝摩尔比采用化学法,红外酸量采用吡啶吸附红外光谱法,中强酸的酸量和总酸量由NH3-TPD方法测定(通过NH3-TPD方法测定:150~250℃对应的酸为弱酸,250~400℃对应的酸为中强酸,400~500℃对应的酸为强酸;弱酸、中强酸和强酸酸量的和为总酸量),钠含量采用等离子发射光谱法,相对结晶度采用XRD方法测定。
本发明中,采用核磁共振波谱法(NMR法)测得27Al MAS NMR谱图,从而得到骨架铝及非骨架铝的比例,以铝原子计。核磁共振波谱法(NMR法)是采用Bruker AVANCE III 500型核磁共振谱仪,其中软件采用Topspin 2.0。在测27Al MAS NMR谱图时,采用的标准物质为三氯化铝,共振频率为133MHz,实验条件:4-6微秒脉冲宽度,60-120秒弛豫延迟。所得27Al MAS NMR谱图中,骨架铝对应的化学位移为40~65ppm,非骨架铝对应的化学位移为-10~10ppm。
 
实施例 1
取β分子筛原粉约3500g,其化学硅铝SiO2/Al2O3(摩尔比)比为22.68,氧化钠含量为0.18wt%。将β分子筛装入管式炉中,采用程序升温的方法(升温速率为100℃/小时),在管式炉温度升到300℃时开始引入100wt%的水蒸汽,水蒸汽按每千克β分子筛40L/h通过β分子筛,将管式炉加热到550℃,恒温时间为8小时。所得分子筛编号为BH-1,性质见表1。
实施例2
取β分子筛原粉约3500g,同实施例1。将分子筛装入管式炉中,采用程序升温的方法(升温速率为100℃/小时),在管式炉温度升到300℃时开始引入100wt%的水蒸汽,水蒸汽按每千克β分子筛70L/h通过β分子筛,将管式炉加热到620℃,恒温时间为8小时。所得分子筛编号为BH-2,性质见表1。
实施例3
称取50g BH-1分子筛放入带有回流装置并可以密闭的烧瓶中,加入浓度0.04mol/L NaOH水溶液400ml,NaOH水溶液与BH-1分子筛的重量比为8:1,在95℃下恒温搅拌2.0小时,过滤,并用热去离子水洗涤滤饼,以洗涤液的pH值接近7后停止洗涤。滤饼在烘箱中120℃干燥5小时,得到本发明的β型分子筛,其编号BJ-1,分子筛性质见表1。
实施例4
称取50g BH-1分子筛放入带有回流装置并可以密闭的烧瓶中,加入浓度0.1mol/L NaOH水溶液700ml,NaOH水溶液与BH-1分子筛的重量比为14:1,在90℃下恒温搅拌2.5小时,过滤,并用热去离子水洗涤滤饼,以洗涤液的pH值接近7后停止洗涤。滤饼在烘箱中120℃干燥5小时。得到本发明的β型分子筛,其编号BJ-2,分子筛性质见表1。
实施例5
称取50g BH-2分子筛放入带有回流装置并可以密闭的烧瓶中,加入浓度0.15mol/L KOH水溶液1000ml,KOH水溶液与BH-2分子筛的重量比为20:1,在80℃下恒温搅拌2.0小时,过滤,并用热去离子水洗涤滤饼,以洗涤液的pH值接近7后停止洗涤。滤饼在烘箱中120℃干燥5小时,得到本发明的β型分子筛,其编号BJ-3,分子筛性质见表1。
实施例6
称取50g BH-2分子筛放入带有回流装置并可以密闭的烧瓶中,加入浓度0.06mol/L (NaOH+KOH,二者摩尔比例为1:1)水溶液300ml,NaOH和KOH水溶液与BH-2分子筛的重量比为6:1,在90℃下恒温搅拌3.0小时,过滤,并用热去离子水洗涤滤饼,以洗涤液的pH值接近7后停止洗涤。滤饼在烘箱中120℃干燥5小时,得到本发明的β型分子筛,其编号BJ-4,分子筛性质见表1。
比较例1
采用CN01106042.5中的方法制备改性分子筛。所得分子筛为BD-1,性质见表1,具体过程如下:
(1)取实施例1中的分子筛原粉300g,用2.0M硝酸铵溶液以液固比为10:1进行交换,升温至90~95℃,恒温搅拌2小时,然后降温至50~60℃过滤,湿滤饼再进行第二次交换,条件同第一次。
(2)经两次铵盐交换的β分子筛,洗涤至pH达到6,然后放入干燥箱中,110℃干燥6小时;
(3)干燥后的β分子筛放入马福炉中在1小时内升温至250℃,恒温2小时,然后继续在1小时内升温至400℃,再恒温4小时,最后升温到540℃,恒温10小时,物料全部烧白,残炭≤0.2%;
(4)高温焙烧脱铵的β分子筛经粉碎、过筛,称量400g,加入0.4M HCl 4000ml,搅拌升温至80℃,恒温搅拌2小时,冷却过滤洗涤。
(5)经酸处理的β分子筛过滤洗涤,然后在110℃干燥6小时,干基为85%。
(6)将上述干燥的样品置于密闭水热处理炉中,均匀喷洒0.4(kg水/kg干燥样品)的净水,然后密闭、升温,控制压力300KPa,温度600℃,升温速度为500℃/小时,恒温恒压焙烧3小时,然后自然降温,即得到比较例改性分子筛。
比较例2
(1)取工业合成SiO2/Al2O24.35,Na2O 3.75wt%的Naβ分子筛过程中晶化后的浆液1000ml,含固相300g(以干基计),加入2M氯化铵溶液2000mL,搅拌、升温至95℃,恒温搅拌2小时,然后降温至60℃过滤,湿滤饼再进行第二次交换,条件同第一次;
(2)经两次铵盐交换的β分子筛,洗涤至pH达到6,然后放入干燥箱中,110℃干燥6小时;
(3)干燥后的β分子筛放入马福炉中在1小时内升温至250℃,恒温2小时,然后继续在1小时内升温至400℃,再恒温4小时,最后升温到540℃,恒温10小时,物料全部烧白,残炭≤0.2%;
(4)β分子筛放入带有回流装置并可以密闭的烧瓶中,加入浓度0.04mol/L NaOH水溶液400ml,NaOH水溶液与分子筛的液固重量比为8:1,在95℃下恒温搅拌2.0小时,过滤,并用热去离子水洗涤滤饼,以洗涤液的pH值接近7后停止洗涤。滤饼在烘箱中120℃干燥5小时,得到β分子筛,其编号BD-2,分子筛性质见表1。
比较例3
采用β分子筛原粉同实施例1。取上述分子筛1000g,装入密闭水热处理炉中,采用程序升温的方法(升温速率为100℃/小时),水热处理温度620℃,水热处理压力为0.2MPa。在采用原料进行碱处理,采用浓度为0.04mol/L的NaOH溶液处理,NaOH溶液与分子筛的液固重量比为8:1,处理温度为95℃,处理时间为2.0小时,恒温结束后,将浆液过滤,并用热去离子水洗涤滤饼,以洗涤液的pH值接近7后停止洗涤。在烘箱中120℃干燥5小时,得到β分子筛,编号为BD-3,物化性质列于表1。
表1  实施例和比较例所得分子筛的性质
续表1
实施例7
以BJ-1、BD-1、BD-2和BD-3为催化剂裂化组分别制备成加氢裂化催化剂。在常温均匀捏合改性分子筛、氧化铝、无定形硅铝,加入粘合剂后,经过碾压、成型后,在120℃下干燥4小时,然后在550℃焙烧4小时后得到催化剂载体,然后将得到的载体在常温下采用浸渍法浸渍金属后,在120℃下干燥4小时,然后在500℃焙烧4小时后得得到相应的催化剂样品,分别为HC-1、HC-2、HC-3、HC-4见表2。在小型评价装置上以减压馏分油(VGO)为原料(性质见表3)评价HC-1、HC-2、HC-3、HC-4催化剂,结果见表4。由评价结果可以看出由本发明制备的不同处理深度的分子筛而得到相应的催化剂的活性、目的产品收率、液收以及产品质量均好于参比催化剂,而且化学氢耗较低。
表2  催化剂组成
表3 原料油性质
表4  HC-1、HC-2、HC-3和HC-4催化剂评价结果

Claims (16)

1.一种β分子筛,其性质如下:比表面积为400m2/g~800m2/g,总孔容为0.4ml/g~0.55mL/g,SiO2/Al2O3摩尔比为30~60,相对结晶度为120%~140%,红外酸量为0.55~1.0mmol/g,非骨架铝占总铝的1%以下,NH3-TPD方法测得的中强酸的酸量占总酸量的70%~85%,Na2O≤0.15wt%。
2.按照权利要求1所述的分子筛,其特征在于所述β分子筛的比表面积为500~750m2/g,总孔容为0.4ml/g~0.55mL/g。
3.按照权利要求1所述的分子筛,其特征在于所述β分子筛的SiO2/Al2O3摩尔比为35~55。
4.按照权利要求1所述的分子筛,其特征在于所述β分子筛中,NH3-TPD方法测得的中强酸的酸量占总酸量的75%~85%。
5.权利要求1~4任一所述的β分子筛的制备方法,包括:
(1)将β分子筛原粉在常压、动态的水蒸汽条件下进行处理,处理温度为500~650℃,处理时间为5~10小时;
(2)用强碱稀溶液处理步骤(1)所得的β分子筛,然后过滤、水洗和干燥,得到β分子筛。
6.按照权利要求5所述的方法,其特征在于步骤(1)β分子筛原粉的性质:SiO2/Al2O3摩尔比20.0~25.0,Na2O含量为小于0.2wt%。
7.按照权利要求5所述的方法,其特征在于步骤(1)采用流动的100wt%水蒸汽处理。
8.按照权利要求5或7所述的方法,其特征在于步骤(1)中,水蒸汽按每千克β分子筛20~100L/h通过β分子筛。
9.按照权利要求5或7所述的方法,其特征在于步骤(1)中,步骤(1)中,β分子筛原粉置于容器中,采用程序升温,升温速率为50~150℃/小时,升至250~450℃时,开始引入水蒸汽,然后在引入水蒸汽的同时升温至500~650℃,并在此温度下处理5~10小时。
10.按照权利要求5所述的方法,其特征在于步骤(2)中,所述强碱为氢氧化锂、氢氧化钠、氢氧化钾中的一种或多种。
11.按照权利要求5或10所述的方法,其特征在于步骤(2)中,所述强碱稀溶液中,稀碱的浓度以OH-计0.01~0.2mol/L。
12.按照权利要求5或10所述的方法,其特征在于步骤(2)中,所述强碱稀溶液中,稀碱的浓度以OH-计0.02~0.15mol/L。
13.按照权利要求5所述的方法,其特征在于所述强碱稀溶液与β分子筛的重量比为5:1~20:1。
14.按照权利要求5所述的方法,其特征在于步骤(2)所述的处理条件:温度40~120℃,时间为1.0~8.0小时。
15.按照权利要求5所述的方法,其特征在于步骤(2)所述的处理条件:温度70~100℃,时间为2.0~4.0小时。
16.按照权利要求5所述的方法,其特征在于步骤(2)所述的干燥是在100~120℃的条件下干燥3~6小时。
CN201310605006.7A 2013-11-26 2013-11-26 β分子筛及其制备方法 Active CN104671255B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310605006.7A CN104671255B (zh) 2013-11-26 2013-11-26 β分子筛及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310605006.7A CN104671255B (zh) 2013-11-26 2013-11-26 β分子筛及其制备方法

Publications (2)

Publication Number Publication Date
CN104671255A true CN104671255A (zh) 2015-06-03
CN104671255B CN104671255B (zh) 2017-05-17

Family

ID=53306920

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310605006.7A Active CN104671255B (zh) 2013-11-26 2013-11-26 β分子筛及其制备方法

Country Status (1)

Country Link
CN (1) CN104671255B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0955093A1 (fr) * 1998-05-06 1999-11-10 Institut Francais Du Petrole Catalyseur à base de zéolithe bêta et d'element promoteur et procédé d'hydrocraquage
CN1268546A (zh) * 1999-03-30 2000-10-04 中国石油化工集团公司 β沸石及其改性方法
CN1362361A (zh) * 2001-01-05 2002-08-07 中国石油化工股份有限公司 β沸石及其制备方法
CN1769169A (zh) * 2004-10-29 2006-05-10 中国石油化工股份有限公司 具有多级孔道的β沸石颗粒及其制备方法
CN103100427A (zh) * 2011-11-09 2013-05-15 中国石油化工股份有限公司 一种含β分子筛的加氢裂化催化剂载体及其制备方法
CN103100416A (zh) * 2011-11-09 2013-05-15 中国石油化工股份有限公司 一种柴油加氢改质催化剂及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0955093A1 (fr) * 1998-05-06 1999-11-10 Institut Francais Du Petrole Catalyseur à base de zéolithe bêta et d'element promoteur et procédé d'hydrocraquage
CN1268546A (zh) * 1999-03-30 2000-10-04 中国石油化工集团公司 β沸石及其改性方法
CN1362361A (zh) * 2001-01-05 2002-08-07 中国石油化工股份有限公司 β沸石及其制备方法
CN1769169A (zh) * 2004-10-29 2006-05-10 中国石油化工股份有限公司 具有多级孔道的β沸石颗粒及其制备方法
CN103100427A (zh) * 2011-11-09 2013-05-15 中国石油化工股份有限公司 一种含β分子筛的加氢裂化催化剂载体及其制备方法
CN103100416A (zh) * 2011-11-09 2013-05-15 中国石油化工股份有限公司 一种柴油加氢改质催化剂及其制备方法

Also Published As

Publication number Publication date
CN104671255B (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
CN103100417B (zh) 一种加氢裂化催化剂及其制备方法
CN102173436B (zh) 一种稀土y分子筛的制备方法
CN103100427B (zh) 一种含β分子筛的加氢裂化催化剂载体及其制备方法
CN102247880B (zh) 一种原位晶化裂化催化剂及其制备方法
CN104667984B (zh) 一种加氢改质催化剂载体及其制备方法
CN103100429B (zh) 一种柴油加氢改质催化剂载体及其制备方法
CN102649574B (zh) 介孔zsm-11沸石的制备方法
CN106140296A (zh) 一种催化裂化废催化剂再利用的方法
CN104667968B (zh) 一种加氢裂化催化剂载体及其制备方法
CN103100416B (zh) 一种柴油加氢改质催化剂及其制备方法
CN103101923B (zh) 一种β分子筛及其制备方法
CN104667958B (zh) 加氢裂化催化剂及其制法
CN104667969B (zh) 一种加氢裂化催化剂及其制法
CN103100430B (zh) 一种加氢裂化催化剂载体及其制备方法
CN104667955B (zh) 一种加氢改质催化剂及其制备方法
CN104671251A (zh) 一种β分子筛及其制备方法
CN104667970B (zh) 一种加氢裂化催化剂及其制备方法
CN104667966B (zh) 加氢裂化催化剂及其制备方法
CN104671255B (zh) β分子筛及其制备方法
CN104667957B (zh) 加氢裂化催化剂载体及其制法
CN105712374A (zh) 一种空心usy分子筛的制备方法
JP3949336B2 (ja) 炭化水素接触分解用触媒組成物の製造方法
CN102259884A (zh) 水热处理无有机模板合成Beta分子筛的方法
CN104667971B (zh) 一种加氢裂化催化剂载体及其制备方法
CN112808296A (zh) 一种含y型分子筛的催化剂及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant