CN104633998B - 转子式压缩机并联系统 - Google Patents

转子式压缩机并联系统 Download PDF

Info

Publication number
CN104633998B
CN104633998B CN201510076998.8A CN201510076998A CN104633998B CN 104633998 B CN104633998 B CN 104633998B CN 201510076998 A CN201510076998 A CN 201510076998A CN 104633998 B CN104633998 B CN 104633998B
Authority
CN
China
Prior art keywords
oil
compressor
pipe
equalizing pipe
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510076998.8A
Other languages
English (en)
Other versions
CN104633998A (zh
Inventor
龙伟强
龙伟杰
詹泽鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Guangzhou Compressor Co Ltd
Original Assignee
Mitsubishi Electric Guangzhou Compressor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Guangzhou Compressor Co Ltd filed Critical Mitsubishi Electric Guangzhou Compressor Co Ltd
Priority to CN201510076998.8A priority Critical patent/CN104633998B/zh
Publication of CN104633998A publication Critical patent/CN104633998A/zh
Application granted granted Critical
Publication of CN104633998B publication Critical patent/CN104633998B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/05Cost reduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

本发明涉及一种转子式压缩机并联系统,其包括压缩机、油分离器、均油管和回油管;压缩机为并联的多台,多台压缩机的排气管分别通过高压配管与同一个油分离器连接;均油管的进油口与压缩机的壳体连接,且均油管的进油口位于压缩机的最低油位以上的位置,均油管的出油口与排气管或所述高压配管连接;油分离器通过回油管与压缩机的气液分离器的吸气口连接。本发明在压缩机壳体上安装均油管,利用压缩机本身的压力差,将压缩机中富余的冷冻油排出,并通过回油管带回各个压缩机的壳体内,由此实现了油自动平衡,其结构简单、成本较低。进一步地,均油管的进油口设于压缩机的汽缸的上端面以上,可有效避免压缩机高速运转时发生缺油现象。

Description

转子式压缩机并联系统
技术领域
本发明涉及空调技术领域,特别是涉及一种转子式压缩机并联系统。
背景技术
在制冷系统中,压缩机工作时,必定有一少部分冷冻油(又称润滑油)会连续不断地从气缸中与冷媒一起被压出,进入制冷系统的管路及冷凝器和蒸发器中。当冷冻油不能连续地返回压缩机时,会造成压缩机油面下降,及至冷冻油枯竭,出现压缩机缺油烧毁现象。所以保证冷冻油源源不断地返回压缩机是制冷系统设计中最重要的课题之一。
随着节能意识的普及,多联式空调系统(又称为变冷媒流量系统,英文名为Variable Refrigerant Flow,简称VRF)被广泛用使用。其表现形式一般为一台室外机带着多台室内机组成的系统,根据室内机的ON/OFF变化,系统中的冷媒流量就要跟着变化。如果使用单台压缩机仅采用启停控制作为能量调节措施往往不能适应负荷剧烈变化的需要。所以将多台压缩机并联使用在同一制冷系统中,不仅可以拓宽制冷系统的容量范围,降低启动电流,延长压缩机的使用寿命,还能大幅度地简化系统,降低投资成本。
在只有一台压缩机的系统中,只要采用必要的措施,如采用合理的管路设计,系统各部位形成稳定的油量分布后,冷冻油会顺利地通过压缩机吸气管返回压缩机内部,使压缩机保持正常工作油面。
但是,如果在同一个制冷系统中使用多台压缩机并联,就存在着冷冻油能否顺利返回各台压缩机的问题。随着运转条件的变化,如果压缩机在排出时的油循环量大于吸入时的油循环量,就会出现压缩机油面下降现象;相反,如果压缩机在排出时的油循环量小于吸入时的油循环量,就出现压缩机积油现象。压缩机上的冷冻油过多会出现转子负荷过大,输入功率上升;油少了就会导致机芯异磨耗,损坏机能。因此,保证多台压缩机油面平衡是并联压缩机使用技术关键。
在现有的技术中,很多是通过油位控制器等自控元件判断油位并主动进行补油动作的回油方式。
发明内容
为了保证多台压缩机油面平衡,上述通过自控元件判断油位并主动进行补油动作的回油方式,工作时需要多个控制元件进行配合,控制元件的结构复杂、成本较高,其经济性差。
本发明是基于上述情况而完成的,其目的是提供一种转子式压缩机并联系统,在转子式压缩机并联系统中,利用结构简单、成本较低的均油管结构来进行压缩机的油面自动平衡。
为了实现上述目的,本发明提供一种转子式压缩机并联系统,其包括压缩机、油分离器、均油管和回油管;所述压缩机为并联的多台,多台所述压缩机的排气管分别通过高压配管与同一个油分离器连接;所述均油管的进油口与所述压缩机的壳体连接,且所述均油管的进油口位于所述压缩机的最低油位以上的位置,所述均油管的出油口与所述排气管或所述高压配管连接;所述油分离器通过所述回油管与所述压缩机的气液分离器的吸气口连接。
由此可充分利用转子式压缩机工作时的压力差,通过均油管将各个压缩机中富余的冷冻油排出,冷冻油经排气管或高压配管中的冷媒带到油分离器中,集中在同一个油分离器中的油再通过回油管返回各个压缩机的气液分离器的吸气口,由该气液分离器的吸气口处的冷媒带回压缩机中,由此实现了压缩机中各个压缩机的冷冻油自动平衡,该均油管的设置结构简单、成本较低。
本发明的另一个目的是避免压缩机在高速运转时发生缺油现象。
为了实现上述目的,进一步地,本发明的转子式压缩机并联系统中,所述均油管的进油口位于所述压缩机的汽缸的上端面以上的位置。
实验结果表明,当均油管的进油口位于汽缸的上端面时,压缩机在最高转速时油面的下降处于信赖性保证的油面,因此,均油管的进油口位于压缩机的汽缸的上端面以上,可以确保压缩机高速运转时,不会发生缺油现象,保证压缩机构得到充分的润滑。
进一步地,所述压缩机为单缸转子式压缩机或双缸转子式压缩机。
进一步地,当所述压缩机为双缸转子式压缩机时,所述均油管的进油口位于所述双缸转子式压缩机的上汽缸的上端面以上的位置。
进一步地,所述均油管的进油口位于所述压缩机的定子的下端面以下的位置。由此在压缩机正常运转时不积有过多的冷冻油,避免过多的冷冻油影响马达的输入功率。
如果均油管的内径过大,压缩机在正常运转时就会有过多的冷冻油被冷媒带到均油管系统中,增加了均油管系统的油循环量,进而影响压缩机的压缩性能。实验表明,均油管的管径为排气管的管径的0.5倍时,油循环量增加量为△1%,可以满足压缩机的油循环量增加量的最低标准,对压缩机的性能不会产生影响。
因此,进一步地,所述均油管的管径为所述排气管的管径的0.5倍以下。由此保证压缩机的油循环量增加量在△1%以下,对压缩机的性能不会产生影响。
进一步地,在所述压缩机的壳体内,所述均油管的进油口突出于所述压缩机的壳体内壁。由此使得压缩机在正常油面(油面低于均油管的进油口)运行时,通过均油管排出的冷媒和冷冻油的混合物阻力增加,使得排出困难,在压缩机的正常油面时,有效降低了压缩机的油排出量。
进一步地,所述均油管的进油口与所述压缩机的壳体焊接连接。
进一步地,所述均油管的出油口与所述排气管焊接连接。
上述技术方案所提供的一种转子式压缩机并联系统,均油管连接压缩机的壳体和压缩机的排气管或高压配管,利用转子式压缩机本身的压力差,将压缩机内富余的冷冻油排出,冷冻油被冷媒带到同一油分离器,并通过回油管带回各个压缩机的气液分离器的吸气口,由冷媒带回各个压缩机的壳体内,由此实现了油自动平衡,其结构简单、成本较低。
附图说明
图1是本发明实施例一的转子式压缩机并联系统的结构示意图;
图2是本发明实施例一的压缩机转速-油面高度变化曲线图;
图3是本发明实施例一的双缸转子式压缩机的均油管安装图;
图4是本发明实施例一的单缸转子式压缩机的均油管安装图;
图5是本发明实施例一的均油管的管径与排气管的管径的比值对油循环量增加量的影响曲线图;
图6是图3中O处的放大图;
图7是本发明实施例二的均油管安装结构示意图。
其中,10、压缩机;11、壳体;12、气液分离器;13、排气管;14、汽缸;15、定子;20、均油管;21、均油管的进油口;22、均油管的出油口;30、高压配管;40、油分离器;50、回油管;60、冷凝器;70、节流阀;80、蒸发器。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例一
如图1所示,本发明优选实施例的一种转子式压缩机并联系统,其包括压缩机10、均油管20、油分离器40和回油管50。
本实施例的压缩机10为转子式压缩机,其包括壳体11、与壳体11的侧部连接气液分离器12以及设于壳体11的顶部的排气管13,壳体11内的下部设置压缩机构,该压缩机构包括曲轴、汽缸14和滚动转子,壳体11内的上部设置马达,该马达包括转子和定子15。在空调制冷系统中,压缩机的排气管13通过高压配管30与油分离器40连接,冷媒经油分离器40进行油气分离后,冷媒依次经冷凝器60、节流阀70和蒸发器80后,再经压缩机的气液分离器12的吸气口回到压缩机的壳体11内。
本实施例的压缩机10为并联的多台,该多台压缩机10的排气管13分别通过高压配管30与同一个油分离器40连接,使得多台压缩机10共用一个油分离器40,由此可以在多台压缩机10之间进行油面调节,其中,压缩机10的排气管13为冷媒的排出口。
本实施例中的均油管的进油口21与压缩机10的壳体11连接,且该均油管的进油口21位于压缩机10的最低油位以上的位置,该压缩机的最低油位是指压缩机底部油池的油位,油池位于压缩机的汽缸14的下方,在该油池的油位,压缩机满足一般运转速度下的润滑要求;而均油管的出油口22则与压缩机10的排气管13连接。均油管的进油口21优选与压缩机10的壳体11焊接连接,其制作工艺简单,可保证连接处的气密性。
根据转子式压缩机的结构特点,压缩机的壳体11为高压侧,均油管的进油口21安装在压缩机的壳体11上,不管均油管的出油口22连接到压缩机的任何位置,高于均油管的进油口21的冷冻油都可以通过均油管20排出压缩机10,只需要均油管20的两端的压力差能够克服均油管20的阻力损失和冷冻油自身的重力即可,因此,从理论上讲,均油管的出油口22可以连接到压缩机的任何位置,如可以将均油管的出油口22直接与油分离器连接。
本实施例的均油管的出油口22与压缩机10的排气管13连接,该连接方式与将均油管的出油口22直接连接到油分离器40的结构相比,可以提高系统的能效比,并可以提高实际使用过程中的可操作性。这是因为,根据流体力学的伯努利原理:流速越快,压力越小,流速越慢,压力越大。压缩机10的排气管13处的冷媒流动速度V1远比压缩机10的壳体11的冷媒流动速度V2大,因此压缩机10的壳体11处的冷媒压力P2比排气管13处的冷媒压力P1大。因此,利用压缩机10的壳体11与排气管13之间的压力差,可提高油循环速度,进而可以有效提高压缩机的油平衡系统的能效比和实际使用过程中的可操作性。
本实施例中,压缩机10的壳体11内部富余的冷冻油经上述的均油管20排出压缩机10的壳体11外,之后被冷媒带入油分离器40内进行冷冻油和冷媒的分离,该油分离器40通过回油管50与压缩机10的气液分离器的吸气口12a连接,气液分离器的吸气口12a为压缩机冷媒的入口,冷冻油由回油管50进入气液分离器的吸气口12a侧,最后被吸气口侧的冷媒带回压缩机10中,由此使得压缩机中的冷冻油得以自动平衡,不影响压缩机效率。
本实施例的均油管的出油口22与压缩机10的排气管13连接,冷冻油通过排气管13的高压气体带到油分离器40中,这就要求在压缩机制作过程中,将均油管的出油口22焊接在压缩机10的排气管13上,由此方便于空调系统生产时上线安装。
根据均油管的油流动特性,理论上高于均油管的进油口21的冷冻油都可以排出压缩机10的壳体11外部。而且根据转子式压缩机的运转特性,随着压缩机转速的增加,压缩机冷媒流量加大,冷冻油会随着冷媒一起被甩到壳体11的上部,使得置于压缩机10的定子15与壳体11顶部之间的冷冻油会增多,由此使得壳体11下部的油面随着滚动转子转速的升高而下降。
从上述分析可以得出,如果均油管的进油口21安装位置过低的话,由于压缩机10在高转速时油面会进一步下降,从而会导致压缩机10缺油,无法保证压缩机构所需的润滑油。因此,在压缩机上安装均油管20之后,必须确认压缩机10的油面随转速的变化。
在经过大量的实验之后,得出了图2所示的转速-油面高度曲线图,在该曲线图中,A直线代表信赖性保证的油面,B曲线代表汽缸上端面的油量变化,C曲线代表汽缸下端面的油量变化。
从图2中可以看出,均油管的进油口21位于压缩机10的汽缸14的上端面时,最高转速下的油面下降的最低点在信赖性保证的油面A以上,该信赖性保证的油面使得压缩机在最高转速时,压缩机10下部的压缩机构得以充分的润滑。如果均油管的进油口21位于压缩机的汽缸的下端面,转速约为82rps(即每秒转速为82)时油面下降低于信赖性保证的油面A。因此,为了使压缩机10的压缩机构在高转速下不会缺油,本实施例的均油管的进油口21的最低高度h0应该在压缩机10的汽缸14的上端面以上,压缩机10的汽缸14的上端面的高度设为h。
如图3和图4,所示本实施例的转子式压缩机可以为单缸转子式压缩机或双缸转子式压缩机,或者为单缸转子式压缩机与双缸转子式压缩机的组合。而对于双缸转子式压缩机而言,其包括上汽缸14a和下汽缸14b,均油管的进油口21的安装高度应当是在该双缸转子式压缩机的上汽缸14a的上端面以上,如图3所示。对于单缸转子式压缩机而言,均油管的进油口21的安装高度应当是在该单缸转子式压缩机的汽缸14的上端面以上,如图4所示。
压缩机10的壳体11内的冷冻油如果过多,就会使转子的负荷过大,就会影响壳体上部的马达的输入功率,为了使压缩机10在正常运转时不积有过多的冷冻油,进而不影响马达的输入功率,本实施例的均油管的进油口21的最高位置应当在压缩机的定子15的下端面以下,如图3所示,该定子15的下端面的高度设为H。
因此,均油管的进油口21的安装高度h0应满足以下要求:
h≤h0≤H
本实施例的压缩机10上所安装的均油管20,要求均油管20具有合适的管径,均油管20的管径过大、过小都会对压缩机10的性能造成一定的影响。如果均油管20的管径太大,压缩机10在正常运转时就有过多的冷冻油排到均油管路中去,造成油循环量上升,进而影响压缩机的性能。但是,如果均油管20的管径过小,压缩机10中堆积的冷冻油无法及时排出,则会造成冷冻油不能快速平衡。因此,均油管20管径的大小的设计十分重要。
管径设为d、长度设为L的圆管,在层流状态下,圆管层流的沿程压力损失Δp的计算公式为:
由上面公式可以知道,如果均油管20的管径越大,均油管20层流的沿程压力损失就越小,冷冻油就容易通过均油管20排出压缩机10。但由于均油管的出油口22与油分离器40连接,如果均油管20的管径过大,压缩机10在正常运转时就会有过多的冷冻油被冷媒带到均油管路中,这就增加了压缩机的油循环量,进而影响压缩机10的压缩性能。
因此,选择合适均油管的管径显得尤为重要,本实施例通过不同管径下的油循环量测试的试验验证,以选取最优的均油管20的管径。
在经过了不同管径下的油循环量测试的试验后,得出了如图5所示的油循环量影响曲线图。从图5中可以看出,在压缩机10上安装均油管20后,压缩机10的油循环量会存在一定的恶化。图5中的横坐标为均油管的管径与排气管的管径的比值,纵坐标则为压缩机油循环量的增加值。由空调的匹配经验可知,油循环量的增加量需在△1%以下,因为该油循环量的增加量可以通过系统中油分离器40进行优化消除,可以不排到压缩机中。所以从试验结果可以得出,均油管的管径为排气管的管径的0.5倍时,油循环量增加量为△1%,可以满足油循环量增加量的最低标准,对压缩机的性能不会产生影响。
因此,为了使压缩机的油循环量的增加量控制在△1%以下,以保证压缩机的性能不会产生影响,本实施例的均油管20的管径设计为排气管的管径的0.5倍以下。
均油管的进油口21与压缩机10的壳体11连接时,在压缩机的壳体11内,均油管的进油口21应当突出于压缩机10的壳体11内壁一定的距离a,如图6所示。在均油管的进油口21突出压缩机的壳体11内壁一段距离a后,压缩机10在正常油面(该油面低于均油管的进油口21)运行时,通过均油管20排出的冷媒和冷冻油的混合物阻力增加,排出困难,从而确保在压缩机20的正常油面时,有效降低了压缩机的油排出量。
实施例二
如图7所示,本实施例的转子式压缩机并联系统与实施例一的区别仅在于,本实施例的均油管的出油口22与连接排气管13和油分离器40之间的高压配管30连接,其与实施例一中将均油管的出油口22直接与排气管13连接的方式不同的是,在加工制作压缩机时,不需要将均油管20焊接在排气管13上,而是在高压配管30上预留均油管接头,在整个压缩机装配时在将均油管的出油口22安装到高压配管30的均油管接头上即可,本实施例的均油管20的安装结构可以降低压缩机的加工制作的难度。
由于高压配管30连接压缩机10的排气管13和油分离器40,因此,该高压配管30处的冷媒流动速度远比压缩机10的壳体11上的冷媒流动速度大,因此,该均油管的出油口22连接到高压配管上,同样会使得均油管的进油口21和出油口22之间产生压力差。
综上,本发明的转子式压缩机并联系统,其结构简单、成本较低,采用均油管连接压缩机的壳体和压缩机的排气管或高压配管,利用转子式压缩机本身的压力差,将压缩机内富余的冷冻油排出,冷冻油被冷媒带到同一油分离器,并通过回油管带回各个压缩机的气液分离器的吸气口,由冷媒带回各个压缩机的壳体内,由此实现了油自动平衡。进一步地,均油管的进油口设于压缩机的汽缸的上端面以上,可有效避免压缩机高速运转时发生缺现象,保证压缩机构得到充分的润滑。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本发明的保护范围。

Claims (8)

1.一种转子式压缩机并联系统,其特征在于,包括压缩机、油分离器、均油管和回油管;所述压缩机为并联的多台,多台所述压缩机的排气管分别通过高压配管与同一个油分离器连接;
所述均油管的进油口与所述压缩机的壳体连接,且所述均油管的进油口位于所述压缩机的最低油位以上的位置,所述均油管的出油口与所述排气管或所述高压配管连接;所述油分离器通过所述回油管与所述压缩机的气液分离器的吸气口连接;
所述均油管的管径为所述排气管的管径的0.5倍以下。
2.如权利要求1所述的转子式压缩机并联系统,其特征在于,所述均油管的进油口位于所述压缩机的汽缸的上端面以上的位置。
3.如权利要求2所述的转子式压缩机并联系统,其特征在于,所述压缩机为单缸转子式压缩机或双缸转子式压缩机。
4.如权利要求3所述的转子式压缩机并联系统,其特征在于,当所述压缩机为双缸转子式压缩机时,所述均油管的进油口位于所述双缸转子式压缩机的上汽缸的上端面以上的位置。
5.如权利要求1-4任一项所述的转子式压缩机并联系统,其特征在于,所述均油管的进油口位于所述压缩机的定子的下端面以下的位置。
6.如权利要求1所述的转子式压缩机并联系统,其特征在于,在所述压缩机的壳体内,所述均油管的进油口突出于所述压缩机的壳体内壁。
7.如权利要求1所述的转子式压缩机并联系统,其特征在于,所述均油管的进油口与所述压缩机的壳体焊接连接。
8.如权利要求1所述的转子式压缩机并联系统,其特征在于,所述均油管的出油口与所述排气管焊接连接。
CN201510076998.8A 2015-02-12 2015-02-12 转子式压缩机并联系统 Active CN104633998B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510076998.8A CN104633998B (zh) 2015-02-12 2015-02-12 转子式压缩机并联系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510076998.8A CN104633998B (zh) 2015-02-12 2015-02-12 转子式压缩机并联系统

Publications (2)

Publication Number Publication Date
CN104633998A CN104633998A (zh) 2015-05-20
CN104633998B true CN104633998B (zh) 2017-10-31

Family

ID=53213031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510076998.8A Active CN104633998B (zh) 2015-02-12 2015-02-12 转子式压缩机并联系统

Country Status (1)

Country Link
CN (1) CN104633998B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112524035B (zh) * 2019-09-18 2023-03-28 上海海立电器有限公司 一种压缩机及空调系统
CN110926047B (zh) * 2019-11-22 2020-10-23 珠海格力电器股份有限公司 多联用压缩机均油结构及其控制方法、装置和设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204574622U (zh) * 2015-02-12 2015-08-19 三菱电机(广州)压缩机有限公司 转子式压缩机并联系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024999A (ja) * 2008-09-29 2009-02-05 Sanyo Electric Co Ltd 過冷却装置
CN103776200B (zh) * 2012-10-25 2016-08-24 珠海格力电器股份有限公司 压缩机系统及压缩机系统的控制方法
JP2014196874A (ja) * 2013-03-29 2014-10-16 三菱電機株式会社 冷凍サイクル装置及びそれを備えた空気調和機
CN103528271A (zh) * 2013-10-18 2014-01-22 特灵空调系统(中国)有限公司 一种变频多联机组的油路平衡系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204574622U (zh) * 2015-02-12 2015-08-19 三菱电机(广州)压缩机有限公司 转子式压缩机并联系统

Also Published As

Publication number Publication date
CN104633998A (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
CN102778067B (zh) 一种变频涡旋并联机组的制冷系统及其工作方法
AU2007241898B2 (en) Refrigeration system
CN105051466A (zh) 压缩机轴承冷却
US20120017636A1 (en) Refrigeration cycle apparatus
CN103912493A (zh) 压缩机及具有该压缩机的制冷系统
CN107747544A (zh) 一种带均油管的压缩机、并联式压缩机组及均油方法
KR101380036B1 (ko) 공기 조화기
CN104633998B (zh) 转子式压缩机并联系统
CN104457030B (zh) 用于并联式空调机组的油路系统及并联式空调机组
JP2003042081A (ja) スクリュー圧縮機
CN203489553U (zh) 多孔式气液分离器
CN207647779U (zh) 压缩机及具有其的空调系统
JP5591196B2 (ja) オイルセパレータ、及び、オイルセパレータを備えた圧縮機
CN207920875U (zh) 用于压缩机系统的进气管道及压缩机系统
CN105829716B (zh) 提高压缩机轴承可靠性的方法
CN108167189A (zh) 压缩机及空调机组
JP2003083272A (ja) スクリュー圧縮機
CN204574622U (zh) 转子式压缩机并联系统
CN209344879U (zh) 电机转子、压缩机和空调设备
CN204345983U (zh) 具有双重分离作用的立式油气分离器
CN216557747U (zh) 压缩机组件、空调室外机和空调系统
CN102635551B (zh) 2级螺杆压缩式冷冻装置
CN203385240U (zh) 带有回油结构的变频多联机
CN205279545U (zh) 一种气液分离装置及使用该装置的制冷循环系统
CN105422419B (zh) 一种压缩机及回油切换方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant