CN104610693A - 石墨相氮化碳/聚甲基丙烯酸甲酯复合材料及其制备方法 - Google Patents

石墨相氮化碳/聚甲基丙烯酸甲酯复合材料及其制备方法 Download PDF

Info

Publication number
CN104610693A
CN104610693A CN201410838030.XA CN201410838030A CN104610693A CN 104610693 A CN104610693 A CN 104610693A CN 201410838030 A CN201410838030 A CN 201410838030A CN 104610693 A CN104610693 A CN 104610693A
Authority
CN
China
Prior art keywords
polymethyl methacrylate
composite material
carbon nitride
phase carbon
graphite phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410838030.XA
Other languages
English (en)
Other versions
CN104610693B (zh
Inventor
陈银广
孙寒
冯雷雨
曹越
罗景阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201410838030.XA priority Critical patent/CN104610693B/zh
Publication of CN104610693A publication Critical patent/CN104610693A/zh
Application granted granted Critical
Publication of CN104610693B publication Critical patent/CN104610693B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种石墨相氮化碳/聚甲基丙烯酸甲酯复合材料,由以下方法制备得到:将聚甲基丙烯酸甲酯加入到有机溶剂中,搅拌溶解后形成聚甲基丙烯酸甲酯溶液,加入介孔状石墨相氮化碳,超声反应,混合反应结束后,洗涤、分离、干燥,得到石墨相氮化碳/聚甲基丙烯酸甲酯复合材料。本发明还公开了上述材料的制备方法及其用作可见光降解的用途。本发明的方法具有工艺简单、成本低廉、产率高、周期短、环境友好等优点。

Description

石墨相氮化碳/聚甲基丙烯酸甲酯复合材料及其制备方法
技术领域
本发明属于纳米复合材料技术领域,尤其涉及一种改性石墨相氮化碳复合材料及其制备方法。
背景技术
石墨相氮化碳(g-C3N4)是一种典型的非金属聚合物半导体材料,其结构中的C、N原子以sp2杂化形成高度离域的π共轭体系,可以在温和的条件下由一系列含碳富氮的前驱物(单氰胺、三聚氰胺等)进行大量制备,其独特的电子架构和半导体能带结构使其成为了一种富有潜力的光催化材料,近年来其在光解水产氢、光催化降解污染物方面的用途引起了广泛的关注(文献Nature Materials,2009,8,76-80)。
石墨相氮化碳作为一种非金属半导体光催化材料,也有其不足之处,如比表面积小、产生光生载流子的激子结合能高、光生电子-空穴复合严重、量子效率低和禁带宽度较大而不能有效利用太阳光等,严重制约其在能源、环境光催化领域的大规模推广应用。因此,对纯氮化碳进行物理化学改性是很有必要的,使其具有更加优异而稳定的性能。常见的改性方法有金属元素或非金属元素掺杂,复合其他半导体材料以及聚合物改性等等(文献Applied CatalystB:Environmental,2014,156,323-330)。
发明内容
针对现有技术的缺陷,本发明的目的是提供一种石墨相氮化碳/聚甲基丙烯酸甲酯复合材料。
本发明的另一个目的是提供一种上述石墨相氮化碳/聚甲基丙烯酸甲酯复合材料的制备方法。
为了实现上述目的,本发明的技术方案如下:
本发明提供了一种石墨相氮化碳/聚甲基丙烯酸甲酯复合材料,由以下方法制备得到:
将聚甲基丙烯酸甲酯加入到有机溶剂中,搅拌溶解后形成聚甲基丙烯酸甲酯溶液,加入介孔状石墨相氮化碳,超声反应,混合反应结束后,洗涤、分离、干燥,得到石墨相氮化碳/聚甲基丙烯酸甲酯复合材料。
所述有机溶剂为乙酸、甲苯或氯仿。
所述聚甲基丙烯酸甲酯溶液的浓度为0.5~2g/L。
所述介孔状石墨相氮化碳与聚甲基丙烯酸甲酯的质量比为10:1~100:1。
所述超声反应的温度为20~60℃。
所述超声反应的时间为5~15h。
所述超声反应的功率为30~120W。
所述洗涤是用乙醇和去离子水洗涤,离心分离的次数为4~6次。
所述干燥采用55℃烘干或冷冻干燥。
所述干燥的时间为12~24h。
本发明还提供了一种上述石墨相氮化碳/聚甲基丙烯酸甲酯复合材料的制备方法,包括以下步骤:
将聚甲基丙烯酸甲酯加入到有机溶剂中,搅拌溶解后形成聚甲基丙烯酸甲酯溶液,加入介孔状石墨相氮化碳,超声反应,混合反应结束后,洗涤、分离、干燥,得到石墨相氮化碳/聚甲基丙烯酸甲酯复合材料。
本发明还公开了一种上述石墨相氮化碳/聚甲基丙烯酸甲酯复合材料用作可见光降解的用途。
本发明同现有技术相比,具有以下优点和有益效果:
本发明中通过聚甲基丙烯酸甲酯改性介孔状石墨相氮化碳而形成的介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料的产率在99%以上;具有工艺简单、成本低廉、产率高、周期短、环境友好等优点,可以适用于工业化大规模生产介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料;该材料具有优异的光催化降解性能,相比于未经过修饰的原始介孔状石墨相碳化氮,其降解染料的性能大幅提高。
附图说明
图1为原始介孔状石墨相氮化碳的SEM形貌图。
图2为实施例1所制备的石墨相氮化碳/聚甲基丙烯酸甲酯复合材料的SEM形貌图。
具体实施方式
下面结合附图所示实施例对本发明作进一步详细的说明。
实施例1
石墨相氮化碳/聚甲基丙烯酸甲酯复合材料的制备方法,包括以下步骤:
将10mg聚甲基丙烯酸甲酯加入到10mL乙酸中,常温下搅拌直至其彻底溶解在乙酸中,形成聚甲基丙烯酸甲酯的乙酸溶液。
将300mg介孔状石墨相氮化碳加入到上述聚甲基丙烯酸甲酯的乙酸溶液中,略加搅拌混匀,之后进行超声混合反应10h,反应温度设置为40℃,功率为100W。
超声混合反应结束后,用乙醇和去离子水反复洗涤和离心分离5次,得到复合材料。将复合材料干燥,干燥方式为55℃烘干15h,得到介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料。介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料的产率在99%以上。如图2所示,图2为实施例1所制备的石墨相氮化碳/聚甲基丙烯酸甲酯复合材料的SEM形貌图。从图2中可以看出,复合材料基本上未改变原始介孔状石墨相氮化碳(如图1所示,图1为原始介孔状石墨相氮化碳的SEM形貌图。)的形貌,复合材料表面仍然基本呈现小球状,但由于聚甲基丙烯酸甲酯高分子的引入,出现了复合材料表面的小球被连接成条状的情况。
所制备的介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料的光催化性能测试按下述步骤进行:在敞口反应器中加入50mg所制备的介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料和50mL浓度为50mg/L的罗丹明B溶液,在无光条件下搅拌30min达到吸附平衡之后。开启可见光源(300W卤钨灯并加盖滤光片滤除掉400nm以下光线)照射,每隔60min从反应体系中取样,经高速离心分离复合材料后,取上清液用分光光度计在553nm波长下测定吸光度,得到溶液中罗丹明B的浓度变化情况。实验结果表明,在可见光照射240min时,介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料对罗丹明B光催化降解率为97.1%,相同条件下制备的纯介孔状石墨相氮化碳对罗丹明B的可见光降解率仅为66.2%。
实施例2
本实施例与实施例1不同的是:聚甲基丙烯酸甲酯的有机溶剂为氯仿。其他步骤和参数与实施例1相同。介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料对罗丹明B光催化降解率为95.0%。
实施例3
本实施例与实施例1不同的是:聚甲基丙烯酸甲酯的有机溶剂为甲苯。其他步骤和参数与实施例1相同。介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料对罗丹明B光催化降解率为95.0%。
实施例4
本实施例与实施例1不同的是:聚甲基丙烯酸甲酯的质量为3mg。其他步骤和参数与实施例1相同。介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料对罗丹明B光催化降解率为85.2%。
实施例5
本实施例与实施例1不同的是:聚甲基丙烯酸甲酯的质量为8mg。其他步骤和参数与实施例1相同。介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料对罗丹明B光催化降解率为90.9%。
实施例6
本实施例与实施例1不同的是:聚甲基丙烯酸甲酯的质量为15mg。其他步骤和参数与实施例1相同。介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料对罗丹明B光催化降解率为91.1%。
实施例7
本实施例与实施例1不同的是:聚甲基丙烯酸甲酯的质量为20mg。其他步骤和参数与实施例1相同。介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料对罗丹明B光催化降解率为97.6%。
实施例8
本实施例与实施例1不同的是:聚甲基丙烯酸甲酯的质量为25mg。其他步骤和参数与实施例1相同。介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料对罗丹明B光催化降解率为95.2%。
实施例9
本实施例与实施例1不同的是:聚甲基丙烯酸甲酯的质量为30mg。其他步骤和参数与实施例1相同。介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料对罗丹明B光催化降解率为93.4%。
实施例10
本实施例与实施例1不同的是:超声混合反应的时间为5h。其他步骤和参数与实施例1相同。介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料对罗丹明B光催化降解率为89.1%。
实施例11
本实施例与实施例1不同的是:超声混合反应的时间为8h。其他步骤和参数与实施例1相同。介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料对罗丹明B光催化降解率为90.1%。
实施例12
本实施例与实施例1不同的是:超声混合反应的时间为13h。其他步骤和参数与实施例1相同。介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料对罗丹明B光催化降解率为95.1%。
实施例13
本实施例与实施例1不同的是:超声混合反应的时间为15h。其他步骤和参数与实施例1相同。介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料对罗丹明B光催化降解率为98.0%。
实施例14
本实施例与实施例1不同的是:超声混合反应的功率为30W。其他步骤和参数与实施例1相同。介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料对罗丹明B光催化降解率为98.3%。
实施例15
本实施例与实施例1不同的是:超声混合反应的功率为80W。其他步骤和参数与实施例1相同。介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料对罗丹明B光催化降解率为94.5%。
实施例16
本实施例与实施例1不同的是:超声混合反应的功率为120W。其他步骤和参数与实施例1相同。介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料对罗丹明B光催化降解率为97.0%。
实施例17
本实施例与实施例1不同的是:超声混合反应的温度设置为20℃。其他步骤和参数与实施例1相同。介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料对罗丹明B光催化降解率为96.0%。
实施例18
本实施例与实施例1不同的是:超声混合反应的温度设置为50℃。其他步骤和参数与实施例1相同。介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料对罗丹明B光催化降解率为97.5%。
实施例19
本实施例与实施例1不同的是:超声混合反应的温度设置为60℃。其他步骤和参数与实施例1相同。介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料对罗丹明B光催化降解率为97.0%。
实施例20
本实施例与实施例1不同的是:用乙醇和去离子水洗涤并离心分离的次数为4次。其他步骤和参数与实施例1相同。介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料对罗丹明B光催化降解率为96.9%。
实施例21
本实施例与实施例1不同的是:用乙醇和去离子水洗涤并离心分离的次数为6次。其他步骤和参数与实施例1相同。介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料对罗丹明B光催化降解率为99.0%。
实施例22
本实施例与实施例1不同的是:复合材料的干燥方式为冷冻干燥。其他步骤和参数与实施例1相同。介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料对罗丹明B光催化降解率为92.2%。
实施例23
本实施例与实施例1不同的是:复合材料的干燥时间为12h。其他步骤和参数与实施例1相同。介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料对罗丹明B光催化降解率为90.1%。
实施例24
本实施例与实施例1不同的是:复合材料的干燥时间为18h。其他步骤和参数与实施例1相同。介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料对罗丹明B光催化降解率为97.9%。
实施例25
本实施例与实施例1不同的是:复合材料的干燥时间为20h。其他步骤和参数与实施例1相同。介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料对罗丹明B光催化降解率为95.6%。
实施例26
本实施例与实施例1不同的是:复合材料的干燥时间为24h。其他步骤和参数与实施例1相同;介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料对罗丹明B光催化降解率为89.1%。
实施例27
本实施例与实施例1不同的是:乙酸的体积为20mL,聚甲基丙烯酸甲酯的浓度为0.5g/L。其他步骤和参数与实施例1相同;介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料对罗丹明B光催化降解率为95.1%。
实施例28
本实施例与实施例1不同的是:乙酸的体积为5mL,聚甲基丙烯酸甲酯的浓度为2g/L。其他步骤和参数与实施例1相同;介孔状石墨相氮化碳/聚甲基丙烯酸甲酯复合材料对罗丹明B光催化降解率为96.0%。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和应用本发明。熟悉本领域技术的人员显然可以容易地对这些实施做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于这里的实施例,本领域技术人员根据本发明的揭示,对于本发明做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

1.一种石墨相氮化碳/聚甲基丙烯酸甲酯复合材料,其特征在于:由以下方法制备得到:
将聚甲基丙烯酸甲酯加入到有机溶剂中,搅拌溶解后形成聚甲基丙烯酸甲酯溶液,加入介孔状石墨相氮化碳,超声反应,混合反应结束后,洗涤、分离、干燥,得到石墨相氮化碳/聚甲基丙烯酸甲酯复合材料。
2.根据权利要求1所述的石墨相氮化碳/聚甲基丙烯酸甲酯复合材料,其特征在于:所述有机溶剂为乙酸、甲苯或氯仿。
3.根据权利要求1所述的石墨相氮化碳/聚甲基丙烯酸甲酯复合材料,其特征在于:所述聚甲基丙烯酸甲酯溶液的浓度为0.5~2g/L。
4.根据权利要求1所述的石墨相氮化碳/聚甲基丙烯酸甲酯复合材料,其特征在于:所述介孔状石墨相氮化碳与聚甲基丙烯酸甲酯的质量比为10:1~100:1。
5.根据权利要求1所述的石墨相氮化碳/聚甲基丙烯酸甲酯复合材料,其特征在于:所述超声反应的温度为20~60℃。
6.根据权利要求1所述的石墨相氮化碳/聚甲基丙烯酸甲酯复合材料,其特征在于:所述超声反应的时间为5~15h。
7.根据权利要求1所述的石墨相氮化碳/聚甲基丙烯酸甲酯复合材料,其特征在于:所述超声反应的功率为30~120W。
8.根据权利要求1所述的石墨相氮化碳/聚甲基丙烯酸甲酯复合材料,其特征在于:所述洗涤是用乙醇和去离子水洗涤,离心分离的次数为4~6次;
或所述干燥采用55℃烘干或冷冻干燥;
或所述干燥的时间为12~24h。
9.一种权利要求1至8任一所述的石墨相氮化碳/聚甲基丙烯酸甲酯复合材料的制备方法,其特征在于:包括以下步骤:
将聚甲基丙烯酸甲酯加入到有机溶剂中,搅拌溶解后形成聚甲基丙烯酸甲酯溶液,加入介孔状石墨相氮化碳,超声反应,混合反应结束后,洗涤、分离、干燥,得到石墨相氮化碳/聚甲基丙烯酸甲酯复合材料。
10.一种权利要求1至8任一所述的石墨相氮化碳/聚甲基丙烯酸甲酯复合材料用作可见光降解的用途。
CN201410838030.XA 2014-12-25 2014-12-25 石墨相氮化碳/聚甲基丙烯酸甲酯复合材料及其制备方法 Active CN104610693B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410838030.XA CN104610693B (zh) 2014-12-25 2014-12-25 石墨相氮化碳/聚甲基丙烯酸甲酯复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410838030.XA CN104610693B (zh) 2014-12-25 2014-12-25 石墨相氮化碳/聚甲基丙烯酸甲酯复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN104610693A true CN104610693A (zh) 2015-05-13
CN104610693B CN104610693B (zh) 2016-11-23

Family

ID=53145357

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410838030.XA Active CN104610693B (zh) 2014-12-25 2014-12-25 石墨相氮化碳/聚甲基丙烯酸甲酯复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN104610693B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106752122A (zh) * 2016-11-29 2017-05-31 东南大学 一种氮化碳复合物、其制备方法及应用
CN108262053A (zh) * 2018-02-12 2018-07-10 四川旭航新材料有限公司 一种可见光催化喷剂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067452A1 (es) * 2009-12-04 2011-06-09 Consejo Superior De Investigaciones Científicas (Csic) Materiales nanocompuestos de polipropileno y nitruros de carbono, procedimiento para su obtención y aplicaciones
CN103657719A (zh) * 2013-12-18 2014-03-26 江苏大学 一种石墨相氮化碳/聚吡咯复合光催化材料及其制备方法
CN104017313A (zh) * 2014-03-14 2014-09-03 江苏大学 一种类石墨型氮化碳/聚偏氟乙烯复合材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067452A1 (es) * 2009-12-04 2011-06-09 Consejo Superior De Investigaciones Científicas (Csic) Materiales nanocompuestos de polipropileno y nitruros de carbono, procedimiento para su obtención y aplicaciones
CN103657719A (zh) * 2013-12-18 2014-03-26 江苏大学 一种石墨相氮化碳/聚吡咯复合光催化材料及其制备方法
CN104017313A (zh) * 2014-03-14 2014-09-03 江苏大学 一种类石墨型氮化碳/聚偏氟乙烯复合材料及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106752122A (zh) * 2016-11-29 2017-05-31 东南大学 一种氮化碳复合物、其制备方法及应用
CN106752122B (zh) * 2016-11-29 2019-02-05 东南大学 一种氮化碳复合物、其制备方法及应用
CN108262053A (zh) * 2018-02-12 2018-07-10 四川旭航新材料有限公司 一种可见光催化喷剂及其制备方法
CN108262053B (zh) * 2018-02-12 2021-05-04 四川旭航新材料有限公司 一种可见光催化喷剂及其制备方法

Also Published As

Publication number Publication date
CN104610693B (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
Li et al. Photoredox-catalyzed biomass intermediate conversion integrated with H 2 production over Ti 3 C 2 T x/CdS composites
Tang et al. One-dimensional core-shell Zn0. 1Cd0. 9S/Snln4S8 heterojunction for enhanced visible light photocatalytic degradation
Mu et al. Construction of 3D hierarchical microarchitectures of Z-scheme UiO-66-(COOH) 2/ZnIn2S4 hybrid decorated with non-noble MoS2 cocatalyst: A highly efficient photocatalyst for hydrogen evolution and Cr (VI) reduction
Zhao et al. A photochemical synthesis route to typical transition metal sulfides as highly efficient cocatalyst for hydrogen evolution: from the case of NiS/g-C3N4
Zeng et al. Cd0. 5Zn0. 5S/Ti3C2 MXene as a Schottky catalyst for highly efficient photocatalytic hydrogen evolution in seawater
Yu et al. Unique nitrogen-deficient carbon nitride homojunction prepared by a facile inserting-removing strategy as an efficient photocatalyst for visible light-driven hydrogen evolution
Zhou et al. Cellular heterojunctions fabricated through the sulfurization of MOFs onto ZnO for high-efficient photoelectrochemical water oxidation
CN108794756A (zh) 一种镍离子修饰的共价有机框架材料的制备方法及其应用
CN105032468A (zh) 一种Cu2O-TiO2/g-C3N4三元复合物及其制备和应用方法
Zhang et al. Ternary nanocomposite ZnO-g–C3N4–Go for enhanced photocatalytic degradation of RhB
CN103785434A (zh) 一种g-C3N4纳米片/CdS复合可见光催化剂
Zhang et al. Type II cuprous oxide/graphitic carbon nitride pn heterojunctions for enhanced photocatalytic nitrogen fixation
CN104277219B (zh) 一种光催化材料聚酰亚胺及其制备方法和应用
CN105664997A (zh) 一种氮化碳异质结光催化剂的制备方法和应用
Hezam et al. 2D/1D MoS2/TiO2 heterostructure photocatalyst with a switchable CO2 reduction product
Yang et al. Facile synthesis of nitrogen-defective gC 3 N 4 for superior photocatalytic degradation of rhodamine B
CN105312088B (zh) 铁掺杂共价三嗪有机聚合物可见光催化剂及其制备和应用
CN105126908B (zh) 硫掺杂共价三嗪有机聚合物可见光催化剂及其制备与应用
CN108704662A (zh) 一种金属卟啉/石墨相氮化碳复合光催化剂
Shi et al. Hydrophilic hydrogen-bonded organic frameworks/g-C3N4 all-organic Z-scheme heterojunction for efficient visible-light photocatalytic hydrogen production and dye degradation
CN114377708A (zh) 一种含氧空位的碳酸氧铋纳米片及其制备方法和应用
Cong et al. Oxygen-modified graphitic carbon nitride with nitrogen-defect for metal-free visible light photocatalytic H2O2 evolution
Yang et al. Surface modification induced construction of core-shell homojunction of polymeric carbon nitride for boosted photocatalytic performance
CN103934005B (zh) 一种亚铜离子掺杂的硫化锌铜纳米线可见光催化剂及其制备成法和应用
Zhuge et al. Boosting photocatalytic hydrogen evolution rate over carbon nitride through tuning its crystallinity and its nitrogen composition

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant