CN104568908A - 基于表面增强拉曼散射的高效测定谷物中微量呕吐毒素的新方法 - Google Patents

基于表面增强拉曼散射的高效测定谷物中微量呕吐毒素的新方法 Download PDF

Info

Publication number
CN104568908A
CN104568908A CN201510064464.3A CN201510064464A CN104568908A CN 104568908 A CN104568908 A CN 104568908A CN 201510064464 A CN201510064464 A CN 201510064464A CN 104568908 A CN104568908 A CN 104568908A
Authority
CN
China
Prior art keywords
don
sers
cereal
sample
nano silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510064464.3A
Other languages
English (en)
Other versions
CN104568908B (zh
Inventor
孙传文
袁景
杨海峰
郭小玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Normal University
Original Assignee
Shanghai Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Normal University filed Critical Shanghai Normal University
Priority to CN201510064464.3A priority Critical patent/CN104568908B/zh
Publication of CN104568908A publication Critical patent/CN104568908A/zh
Application granted granted Critical
Publication of CN104568908B publication Critical patent/CN104568908B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种基于表面增强拉曼散射的高效测定谷物中微量呕吐毒素的新方法,以银纳米粒子作为表面增强拉曼散射的基底,通过测定谷物中的DON的表面增强拉曼散射(SERS)光谱,检测谷物中是否有超出限量的DON。发明在玉米和芸豆表面DON检测限是10-6M,在燕麦表面DON检测限是10-4M,均远低于目前规定的限量标准。发明第一次利用SERS技术来分析谷物中的DON,并且达到了快速、灵敏、准确和便携的效果,不仅做到了测试低成,还做到了可以进行现场检测。相比较于其它传统的方法,发明提供的SERS技术可以很好地被应用于多种真菌毒素的检测,是一种具有潜在应用价值和开发应用前景的新型测试方法。

Description

基于表面增强拉曼散射的高效测定谷物中微量呕吐毒素的新方法
技术领域
本发明属于仪器分析化学领域,具体涉及一种基于表面增强拉曼散射的新型、高效测定谷物中呕吐毒素(DON)的方法。更具体地涉及一种以银纳米粒子作为表面增强拉曼散射的基底,采用便携式拉曼系统,通过测定玉米、芸豆、燕麦等几种谷物中的DON的表面增强拉曼散射(SERS)光谱,检测谷物中存有的微量DON的新型、高效测定谷物中呕吐毒素的方法。
背景技术
真菌毒素是谷物中真菌的次级代谢产物,产生于田间、运输、加工或储存的过程。每年世界范围内有25%的农作物受到真菌毒素的污染,从而导致了严重的经济损失和安全风险。呕吐毒素的学名为脱氧雪肤镰刀菌烯醇(deoxynivalenol,简写为DON),是一种B型单端孢霉烯族真菌毒素,由禾谷镰刀菌与黄色镰刀菌产生,主要发生于动物饲料和人类粮食中,如燕麦、玉米、小麦、大麦。
DON对于多种动物和细胞培养过程都有免疫刺激和免疫抑制功能。在细胞水平,主要通过绑定在核糖体上来抑制蛋白质的合成。DON不仅引起谷物的减产,而且对人类和家畜有严重的毒害作用,摄入已被DON污染谷物后,人类和动物会产生的神经性厌食、呕吐、腹泻、消化失调等症状以及随之而来的体重减轻和病理性出血。
为此,许多国家和食品安全组织建立了DON在食品和饲料中的限量标准和指导意见。例如,中国规定DON在粮食和粮食制品中的最大限量为1000μg/kg。日本2002年出台临时限量标准规定DON在小麦中的最大限量为1100μg/kg;加拿大规定DON最大限量在小麦中为2000μg/kg,在小麦粉中为1200μg/kg,在婴儿食品小麦粉中为600μg/kg;2004年,德国对于DON的限量标准着更为严格的规定,为婴儿食品中的100μg/kg至其它谷物产品中的500μg/kg;除此之外,美国规定在已完成的食品中DON限量标准为1000μg/kg;欧盟规定在已加工完成和幼儿食品中DON最大限量为200μg/kg,未加工的硬质小麦、燕麦、玉米种的最大限量为1750μg/kg。
目前很多的分析方法已经被用于DON的检测,例如生物传感序列、荧光偏振免疫分析、气相色谱分析、质谱分析法、液相色谱串联质谱法。然而共同的缺点是成本高、费时、对设备要求高、灵敏度不高,操作繁琐,一般需要粉碎,对环境照成严重污染等,特别是难于现场检测和环境不友好。因此,急需开发一种新型、高效、快速、准确、方便的测定谷物中DON的检测方法,以保证食品安全和人民健康。
拉曼光谱技术对非极性基团中共价键的对称振动十分敏感,它对水不敏感和少有光谱重叠带的特性,为谷物中DON的检测提供更为有效的信息,然而普通拉曼光谱的吸收强度不高,造成检测灵敏度达不到要求。表面增强拉曼散射光谱(SERS)通过将所检测分子绑定在粗糙的银纳米粒子等金属表面,能够巨大增强普通拉曼光谱的强度,SERS基底的最高增强因子可以达到108
本专利以银纳米粒子作为表面增强拉曼散射的基底,采用便携式拉曼系统,通过检测玉米、芸豆、燕麦等几种谷物中的DON的SERS光谱,达到检测谷物中存有的微量DON的目的。本技术第一次利用SERS技术来分析谷物中的DON,并且达到了快速、灵敏、准确和便携的效果。相比较于其它传统方法,本发明提供的SERS技术不仅可以很好地被应用于多种真菌毒素的检测,还做到了测试低成本,并做到了可以进行现场检测,是一种具有潜在应用价值和开发应用前景的新型测试方法。
发明内容
本发明提供一种基于表面增强拉曼散射的新型、高效测定谷物中呕吐毒素(呕吐毒素)的方法。更具体地是提供一种以银纳米粒子作为表面增强拉曼散射的基底,采用便携式拉曼系统,通过检测玉米、芸豆、燕麦等几种谷物中的DON的表面增强拉曼散射(SERS)光谱,检测谷物中存有的微量DON的新型、高效测定谷物中呕吐毒素的方法。
本发明的方案是:
一种基于表面增强拉曼散射的高效测定谷物中微量呕吐毒素的新方法,具体步骤如下:
(1)确定DON在待测谷物表面的检测限,如检测限低于规定限量,则可将本方法用于检测;
(2)取银纳米粒子基底溶液滴加于待测谷物样品上,测量该样品的SERS光谱,检查所得样品的SERS光谱是具有DON的特征吸收峰,以确定样品中呕吐毒素超限。
拉曼光谱带范围设置为500至2200cm-1
纳米粒子基底溶液的制备步骤为:将硝酸银溶液用超纯水稀释,在100℃下搅拌5~10min,搅拌下加入柠檬酸三钠溶液,持续加热25~30min后得到银纳米粒子溶液,加入体积为其1%的10-2M氯化钠并继续搅拌,室温下保存两个小时。
确定DON特征吸收峰及其在待测谷物表面的检测限的步骤为:
(1)测量银纳米粒子基底的SERS光谱;
(2)测量以银纳米粒子基底的不同梯度浓度的纯DON的SERS光谱;
(3)比较银纳米粒子基底的不同梯度浓度的纯DON的SERS光谱和银纳米粒子基底的SERS光谱,确定纯DON的特征吸收峰;
(4)测量以银纳米粒子为基底的,被不同梯度浓度DON污染的待测谷物样品的SERS光谱,比较干净且干燥的待测谷物样品的SERS光谱,确定DON在待测谷物表面的检测限。
为了鉴定不同的拉曼振动模式,密度泛函理论(DFT)被应用于计算DON的拉曼光谱。DFT的可靠性取决于交换相关能量的近似法则,提供了有效且合理的方法来计算现实模型下的基台能量。本计算使用的是Gaussian03W,并且在B3LYP水平下执行。为了去计算DON的振动频率和峰带,6-311++G(d,p)被应用。计算结果在一定范围内很好地验证了实验检测的可靠性。
本技术第一次利用SERS技术来分析谷物中的DON,并且达到了快速、灵敏、准确和便携的效果,不仅做到了测试低成本,还做到了可以进行现场检测。相比较于其它传统的方法,本发明提供的SERS技术可以很好地被应用于多种真菌毒素的检测,是一种具有潜在应用价值和开发应用前景的新型测试方法。
附图说明
图1:银纳米粒子的紫外光谱图。
图2:在去离子水中,以银纳米粒子为基底的不同浓度纯品DON溶液的SERS光谱图。
图3:DON特征峰1449cm-1在1×10-4M至1×10-3M浓度范围内的线性关系图。
图4:(a)1×10-2M至1×10-6M浓度的DON位于玉米表面的SERS光谱;(b)基于银纳米粒子的1×10-3M浓度DON溶液位于铝箔纸上的SERS光谱;(c)空白玉米的拉曼光谱。
图5:(a)基于银纳米粒子的芸豆表面DON的SERS图;(b)空白芸豆拉曼光谱。
图6:(a)基于银纳米粒子的燕麦表面DON的SERS图;(b)空白燕麦拉曼光谱。
具体实施方式
下面结合具体实施例进一步阐述本发明,这些实施例并不构成对本发明保护范围的限制。
本发明提供一种新型、高效、快速、准确、方便的测定谷物中DON的检测方法。具体来说是采用便携式拉曼系统,通过测定银纳米粒子为基底的玉米、芸豆和燕麦等谷物的SERS光谱,来检测谷物中是否存有的微量DON的新型检测方法。
本发明优选的实施例为:
实施例1:玉米样品中DON的检测
实施例2:芸豆样品中DON的检测
实施例3:燕麦样品中DON的检测
实施例4:密度泛函理论(DFT)计算及其计算结果
实施例1:玉米样品中DON的检测
步骤1:银纳米粒子基底的合成与UV和SERS表征
0.0255g硝酸银被加入到含有150mL超纯水的烧杯中,在100℃下搅拌。溶液沸腾5~10min,加入3mL 1%的柠檬酸三钠溶液,快速搅拌。持续加热25~30min后得到银纳米粒子。抽取10mL银纳米粒子放入烧杯中,加入10-2M氯化钠0.1mL并搅拌,室温下保存两个小时待用,测定紫外光谱,采用便携式拉曼系统测量空白银纳米基底(AgNPs)的SERS光谱。
银纳米粒子的紫外光谱图见附图1,λmax 425nm处的银纳米粒子的等离子振体峰可以被观察到,从而证明了银纳米粒子的存在。
空白银纳米基底的SERS光谱图见附图2(图2中位于1027cm-1和1385cm-1的吸收峰是来自于柠檬酸盐)。
步骤2:纯净DON的SERS检测
1.纯净DON的SERS检测:将DON纯品溶解于去离子水中,配制成10-2M、10-3M、10-4M、10-5M、10-6M、10-7M不同梯度浓度。等量的银纳米粒子和DON溶液相继滴加到铝箔纸上并混合均匀。10-2~10-7M浓度的DON分别用此方法的滴加,在室温下干燥后,采用便携式拉曼系统,测量不同梯度浓度的纯DON的SERS光谱。拉曼光谱带范围设置为500至2200cm-1
2.SERS表征:以银纳米粒子为基底的,纯品DON在去离子水中10-2M、10-3M、10-4M、10-5M、10-6M、10-7M不同梯度浓度溶液的SERS光谱图见附图2。
3.SERS图谱解析:在图2中:对比空白银纳米基底,555cm-1,675cm-1,780cm-1,855cm-1,924cm-1,996cm-1,1139cm-1,1234cm-1,1409cm-1,1449cm-1,1488cm-1,1565cm-1和1676cm-1等处的峰来自纯净DON,是纯净DON的特征SERS吸收峰。特征峰为1449cm-1
4.结论:由图2说明,纯品DON溶液在银纳米粒子上的检出限可以达到1×10-7M。
5.特征峰为1449cm-1
由图3:R2值为0.9864,说明1449cm-1特征峰的强度在DON浓度为1×10-3M至1×10-4M范围内呈良好的线性关系。
步骤3:被DON污染的玉米样品的SERS检测
1.被DON污染的玉米样品的SERS检测:步骤2中已配制的10-2M、10-3M、10-4M、10-5M、10-6M、10-7M浓度的DON溶液分别与步骤1中得到的银纳米粒子以1:0.9~1.3的比例(体积)在离心管里混匀。放置一定时间后,各取10μL上述不同浓度的混合物,分别滴加于待观察的玉米上。采用785nm便携式拉曼系统,测量不同梯度浓度的被DON污染的玉米样品的SERS光谱。同时测量事先用去离子水清洗干净并室温干燥好的玉米的SERS光谱。拉曼光谱带范围设置为500至2200cm-1
2.SERS表征:以银纳米粒子为基底的,被DON污染的玉米样品在去离子水中10-2M、10-3M、10-4M、10-5M、10-6M、10-7M不同梯度浓度溶液的SERS光谱图,见附图4。
3.SERS图谱解析:
在附图4(a)中,位于1449cm-1和855cm-1两处的特征峰仍然可见。这两个峰在空白玉米上是没有出现的,可以推断这两处峰可能来自于DON分子。
4.结论:在玉米表面DON检测限是10-6M,低于目前规定的限量标准。
实施例2:芸豆样品中DON的检测
步骤1和步骤2同实施例1。
步骤3:被DON污染的芸豆样品中的SERS检测与SERS表征
1.被DON污染的芸豆样品中的SERS检测:步骤2中已配制的10-2M、10-3M、10-4M、10-5M、10-6M、10-7M浓度的DON溶液分别与步骤1中得到的银纳米粒子以1:0.9~1.3的比例(体积)在离心管里混匀。放置一定时间后,各取10μL上述不同浓度的混合物,分别滴加于待观察的芸豆样品上。采用785nm便携式拉曼系统,测量不同梯度浓度的被DON污染的芸豆样品的SERS光谱。同时测量事先用去离子水清洗干净并室温干燥好的芸豆样品的SERS光谱。拉曼光谱带范围设置为500至2200cm-1
2.SERS表征:以银纳米粒子为基底的,被DON污染的芸豆样品在去离子水中10-2M、10-3M、10-4M、10-5M、10-6M、10-7M不同梯度浓度溶液的SERS光谱图,见附图5。
3.SERS图谱解析:
在附图5中,被DON污染的芸豆样品出现了DON的特征峰:1449cm-1,同时在638cm-1,718cm-1,948cm-1,995cm-1等处有吸收峰。而对照的未滴加DON混合液的芸豆样品中未出现这些吸收峰。可以推断这两处峰可能来自于DON分子。
4.结论:在芸豆表面DON检测限是10-6M,低于目前规定的限量标准。
实施例3:燕麦样品中DON的检测
步骤1和步骤2同实施例1。
步骤3:被DON污染的燕麦样品中的SERS检测与SERS表征
1.被DON污染的燕麦样品中的SERS检测:步骤2中已配制的10-2M、10-3M、10-4M、10-5M、10-6M、10-7M浓度的DON溶液分别与步骤1中得到的银纳米粒子以1:0.9~1.3的比例(体积)在离心管里混匀。放置一定时间后,各取10μL上述不同浓度的混合物,分别滴加于待观察的燕麦样品上。采用785nm便携式拉曼系统,测量不同梯度浓度的被DON污染的燕麦样品的SERS光谱。同时测量事先用去离子水清洗干净并室温干燥好的燕麦样品的SERS光谱。拉曼光谱带范围设置为500至2200cm-1
2.SERS表征:以银纳米粒子为基底的,被DON污染的燕麦样品在去离子水中10-2M、10-3M、10-4M、10-5M、10-6M、10-7M不同梯度浓度溶液的SERS光谱图,见附图6。
3.SERS图谱解析:
在附图6中,被DON污染的燕麦样品出现了DON的特征峰:634cm-1,976cm-1,1005cm-1,1204cm-1,,1447cm-1,1667cm-1,1680cm-1的新的峰。而未滴加DON混合液的对照燕麦样品中未出现这些吸收峰。可以推断这两处峰可能来自于DON分子。
4.结论:在燕麦表面DON检测限是10-4M,低于目前规定的限量标准。
实施例4:密度泛函理论(DFT)计算及其计算结果
1.密度泛函理论计算:
为了鉴定不同的拉曼振动模式,密度泛函理论(DFT)被应用于计算DON的拉曼光谱。DFT的可靠性取决于交换相关能量的近似法则,提供了有效且合理的方法来计算现实模型下的基台能量。本计算使用的是Gaussian03W,并且在B3LYP水平下执行。为了去计算DON的振动频率和峰带,6-311++G(d,p)被应用。
2.计算结果
计算结果如附表1所示,1449cm-1处的强峰可以被归属于甲基。尽管有一些偏差,密度泛函理论的结果能够在一定范围内很好的验证实验检测的可靠性。
表1 DFT计算得到的DON振动模式和SERS峰的相关信息表

Claims (4)

1.一种基于表面增强拉曼散射的高效测定谷物中微量呕吐毒素的新方法,其特征在于,具体步骤如下:
(1)确定DON在待测谷物表面的检测限,如检测限低于规定限量,则可将本方法用于检测;
(2)取银纳米粒子基底溶液滴加于待测谷物样品上,测量该样品的SERS光谱,检查所得样品的SERS光谱是具有DON的特征吸收峰,以确定样品中呕吐毒素超限。
2.根据权利要求1所述的基于表面增强拉曼散射的高效测定谷物中微量呕吐毒素的新方法,其特征在于,拉曼光谱带范围设置为500至2200cm-1
3.根据权利要求1所述的基于表面增强拉曼散射的高效测定谷物中微量呕吐毒素的新方法,其特征在于,纳米粒子基底溶液的制备步骤为:将硝酸银溶液用超纯水稀释,在100℃下搅拌5~10min,搅拌下加入柠檬酸三钠溶液,持续加热25~30min后得到银纳米粒子溶液,加入体积为其1%的10-2M氯化钠并继续搅拌,室温下保存两个小时。
4.根据权利要求1所述的基于表面增强拉曼散射的高效测定谷物中微量呕吐毒素的新方法,其特征在于,确定DON特征吸收峰及其在待测谷物表面的检测限的步骤为:
(1)测量银纳米粒子基底的SERS光谱;
(2)测量以银纳米粒子基底的不同梯度浓度的纯DON的SERS光谱;
(3)比较银纳米粒子基底的不同梯度浓度的纯DON的SERS光谱和银纳米粒子基底的SERS光谱,确定纯DON的特征吸收峰;
(4)测量以银纳米粒子为基底的,被不同梯度浓度DON污染的待测谷物样品的SERS光谱,比较干净且干燥的待测谷物样品的SERS光谱,确定DON在待测谷物表面的检测限。2 -->
CN201510064464.3A 2015-02-06 2015-02-06 基于表面增强拉曼散射的高效测定谷物中微量呕吐毒素的新方法 Expired - Fee Related CN104568908B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510064464.3A CN104568908B (zh) 2015-02-06 2015-02-06 基于表面增强拉曼散射的高效测定谷物中微量呕吐毒素的新方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510064464.3A CN104568908B (zh) 2015-02-06 2015-02-06 基于表面增强拉曼散射的高效测定谷物中微量呕吐毒素的新方法

Publications (2)

Publication Number Publication Date
CN104568908A true CN104568908A (zh) 2015-04-29
CN104568908B CN104568908B (zh) 2017-12-01

Family

ID=53085477

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510064464.3A Expired - Fee Related CN104568908B (zh) 2015-02-06 2015-02-06 基于表面增强拉曼散射的高效测定谷物中微量呕吐毒素的新方法

Country Status (1)

Country Link
CN (1) CN104568908B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109342602A (zh) * 2018-11-21 2019-02-15 中国计量大学 一种液体中黄曲霉毒素检测装置
CN111504974A (zh) * 2020-04-22 2020-08-07 安徽大学 用于呕吐毒素检测的溶液、基底制备方法及检测方法
CN112649414A (zh) * 2020-11-30 2021-04-13 安徽大学 赤霉病病变小麦穗部镰刀菌烯醇类毒素的在体探测方法
US20230180798A1 (en) * 2017-07-31 2023-06-15 Poet Research, Inc. Remediation of toxins in biorefinery process streams

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1934438A (zh) * 2004-02-04 2007-03-21 英特尔公司 表面增强拉曼散射中使用锂盐的化学增强
US7824926B1 (en) * 2000-09-22 2010-11-02 Iowa State University Research Foundation, Inc. Raman-active reagents and the use thereof
CN102507942A (zh) * 2011-11-03 2012-06-20 中国科学院化学研究所 一种水中微囊藻毒素的检测方法
US20120281209A1 (en) * 2011-05-06 2012-11-08 Nanosirius, Inc. Fiber Based SERS Sensor
CN104142321A (zh) * 2014-07-24 2014-11-12 江西农业大学 茶叶中农药残留的表面增强拉曼光谱快速检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7824926B1 (en) * 2000-09-22 2010-11-02 Iowa State University Research Foundation, Inc. Raman-active reagents and the use thereof
CN1934438A (zh) * 2004-02-04 2007-03-21 英特尔公司 表面增强拉曼散射中使用锂盐的化学增强
US20120281209A1 (en) * 2011-05-06 2012-11-08 Nanosirius, Inc. Fiber Based SERS Sensor
CN102507942A (zh) * 2011-11-03 2012-06-20 中国科学院化学研究所 一种水中微囊藻毒素的检测方法
CN104142321A (zh) * 2014-07-24 2014-11-12 江西农业大学 茶叶中农药残留的表面增强拉曼光谱快速检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Y. LIU, S.R.DELWICHE AND Y.DONG: "Feasiblity of FT-Raman spectroscopy for rapid screening for DON toxin in ground wheat and barley", 《FOOD ADDICTIVES AND CONTAMINANTS》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230180798A1 (en) * 2017-07-31 2023-06-15 Poet Research, Inc. Remediation of toxins in biorefinery process streams
US11800884B2 (en) * 2017-07-31 2023-10-31 Poet Research, Inc. Remediation of toxins in biorefinery process streams
US11882861B2 (en) 2017-07-31 2024-01-30 Poet Research, Inc. Remediation of toxins in biorefinery process streams
US11950617B2 (en) 2017-07-31 2024-04-09 Poet Research, Inc. Remediation of toxins in biorefinery process streams
CN109342602A (zh) * 2018-11-21 2019-02-15 中国计量大学 一种液体中黄曲霉毒素检测装置
CN111504974A (zh) * 2020-04-22 2020-08-07 安徽大学 用于呕吐毒素检测的溶液、基底制备方法及检测方法
CN112649414A (zh) * 2020-11-30 2021-04-13 安徽大学 赤霉病病变小麦穗部镰刀菌烯醇类毒素的在体探测方法

Also Published As

Publication number Publication date
CN104568908B (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
Yuan et al. A rapid Raman detection of deoxynivalenol in agricultural products
Bezerra et al. On-line system for preconcentration and determination of metals in vegetables by inductively coupled plasma optical emission spectrometry
Llorente-Mirandes et al. Inorganic arsenic determination in food: a review of analytical proposals and quality assessment over the last six years
CN102353728B (zh) 一种黄酒生产过程质量控制快速检测方法
CN102998298B (zh) 表面增强拉曼光谱快速检测亚硝酸根方法及其应用
CN104568908A (zh) 基于表面增强拉曼散射的高效测定谷物中微量呕吐毒素的新方法
CN104777156A (zh) 一种基于碳点荧光关-开模式检测肌醇六磷酸的方法
CN102967568A (zh) 一种分光光度双波长检测方法
CN107021953A (zh) 一种香豆素荧光探针和制备方法及其在检测次氯酸根离子上的应用
Huang et al. Detection of difenoconazole pesticides in pak choi by surface-enhanced Raman scattering spectroscopy coupled with gold nanoparticles
Wang et al. Highly sensitive fluorescent quantification of carbendazim by two-dimensional Tb-MOF nanosheets for food safety
CN103411954A (zh) 用表面增强拉曼光谱测定亚硝酸盐的方法
CN106323938A (zh) 基于表面增强拉曼光谱技术的甲基硫菌灵残留的测定方法
Wu et al. First fluorescence sensor for detecting pesticide starane
CN107727758A (zh) 一种测定痕量硒元素形态的方法及其检测富硒饲料的应用
CN104316522A (zh) 采用纳米金比色法快速测定蔬菜中有机磷农药的方法
CN103344588A (zh) 一种微量铜离子浓度检测方法
CN106083645A (zh) 一种铁离子荧光探针化合物及其制备方法和应用
CN105973880B (zh) 一种快速评估食品中铝元素含量的即用型试纸及其使用方法和应用
CN110964042B (zh) 一种n,n-二(2-吡啶甲基)胺基bodipy类镍离子荧光探针的制备方法及其应用
CN101893576A (zh) 一种重金属检测试纸及其制备方法和应用
CN105973869A (zh) 一种利用拉曼光谱快速检测乌洛托品的方法
Hu et al. Ratiometric pyrene-based fluorescent sensor for on-site monitoring of formaldehyde in foods and living cells
Ding et al. Rapid determination of thiram and atrazine pesticide residues in fruit and aqueous system based on surface-enhanced Raman scattering
CN106706555A (zh) 基于近红外光谱技术的奶粉测定方法及系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171201

Termination date: 20220206