CN104508447A - 压力传感器的生产方法和相应的传感器 - Google Patents

压力传感器的生产方法和相应的传感器 Download PDF

Info

Publication number
CN104508447A
CN104508447A CN201380022007.7A CN201380022007A CN104508447A CN 104508447 A CN104508447 A CN 104508447A CN 201380022007 A CN201380022007 A CN 201380022007A CN 104508447 A CN104508447 A CN 104508447A
Authority
CN
China
Prior art keywords
support portion
conductive material
film
electrical contact
strainmeter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380022007.7A
Other languages
English (en)
Other versions
CN104508447B (zh
Inventor
S·布里达
J-F·勒尼尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Auxitrol SA
Original Assignee
Centre National de la Recherche Scientifique CNRS
Auxitrol SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Auxitrol SA filed Critical Centre National de la Recherche Scientifique CNRS
Publication of CN104508447A publication Critical patent/CN104508447A/zh
Application granted granted Critical
Publication of CN104508447B publication Critical patent/CN104508447B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0018Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
    • B81B3/0021Transducers for transforming electrical into mechanical energy or vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/08Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/00182Arrangements of deformable or non-deformable structures, e.g. membrane and cavity for use in a transducer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00341Processes for manufacturing microsystems not provided for in groups B81C1/00023 - B81C1/00261
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0061Electrical connection means
    • G01L19/0069Electrical connection means from the sensor to its support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0061Electrical connection means
    • G01L19/0069Electrical connection means from the sensor to its support
    • G01L19/0076Electrical connection means from the sensor to its support using buried connections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/147Details about the mounting of the sensor to support or covering means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L7/00Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements
    • G01L7/02Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges
    • G01L7/08Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges of the flexible-diaphragm type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
    • G01L9/0045Diaphragm associated with a buried cavity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
    • G01L9/0048Details about the mounting of the diaphragm to its support or about the diaphragm edges, e.g. notches, round shapes for stress relief
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • G01L9/0052Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • G01L9/0052Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
    • G01L9/0054Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements integral with a semiconducting diaphragm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • G01L9/006Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of metallic strain gauges fixed to an element other than the pressure transmitting diaphragm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/04Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of resistance-strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/06Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of piezo-resistive devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0264Pressure sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0127Diaphragms, i.e. structures separating two media that can control the passage from one medium to another; Membranes, i.e. diaphragms with filtering function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/07Interconnects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/09Packages
    • B81B2207/091Arrangements for connecting external electrical signals to mechanical structures inside the package
    • B81B2207/094Feed-through, via
    • B81B2207/095Feed-through, via through the lid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/09Packages
    • B81B2207/091Arrangements for connecting external electrical signals to mechanical structures inside the package
    • B81B2207/094Feed-through, via
    • B81B2207/096Feed-through, via through the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0006Interconnects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0061Electrical connection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/148Details about the circuit board integration, e.g. integrated with the diaphragm surface or encapsulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • G01L9/0052Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
    • G01L9/0055Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements bonded on a diaphragm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/008Transmitting or indicating the displacement of flexible diaphragms using piezoelectric devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45169Platinum (Pt) as principal constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49888Subsequently coating

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

本发明涉及一种压力传感器的制造方法,包括以下步骤:将支撑基片与上面已沉积应变仪的可变形膜相装配,其中所述可变形膜包括在其中央的变薄区,所述支撑基片设在所述可变形膜顶部,所述支撑基片包括上表面以及与所述可变形膜相接触的下表面,并且所述支撑基片还包括设在所述应变仪顶部的侧部凹陷和设在膜的所述变薄区顶部的中央凹陷,以得到微机械结构;并且,一旦获得了装配,就在一个单一步骤中,在所述支撑部的所述上表面上和所述支撑部的所述侧部凹陷中沉积至少一种导电材料,所述导电材料延伸到凹陷中,从而与所述应变仪相接触以形成与所述应变仪相接触的电触头。

Description

压力传感器的生产方法和相应的传感器
技术领域
本发明涉及制造一种用于测量或检测机械量或物理量的微机械结构,特别是涉及一种包括这种微结构的压力传感器。
背景技术
如人们所知,压力传感器包括微机械结构“微机电系统”(MEMS),微机电系统包括装配于支撑部上的可变形膜,支撑部被具有主导参考压力的腔体(例如真空)部分地隔开。
膜所支撑的应变仪能够通过观察该结构的与变形相关联的物理和/或电气性能变化(例如电阻或内应变的变化)来测量由膜受到外部能量供应(例如施加到膜上的压力P)的影响而产生的变形所引起的应变。
这种类型的压力传感器预期在恶劣环境中使用,必须受到保护以免受外部影响。
为此,该微机械结构放置在保护壳体中:微机械结构的封装(更一般来说,是为保护微机械结构而对微机械结构进行的封装)。一旦处于壳体之中,就通过一般以油构成的传输界面把要测量的压力从壳体传送到应变仪。这样的壳体的英文名称为“packaging”。
然而这样的封装也存在缺点。
油的存在限制了所产生的传感器在约200℃的温度下使用。
而且,与微机械结构相互作用的中间元件(油和粘合剂)的存在限制了传感器的精度,特别是影响了长期精度和稳定性。
现在几年来,为了克服这些缺点,可以在制造微机械结构“晶圆级封装”时执行微机械结构的封装。
但已知方法确实存在以下缺点。
用于限定电触头的材料的选择受到限制,在结构的装配过程中引起应变。
玻璃胶经常用于连接,产生相当大的接触电阻,在温度作用下该接触电阻会随时间变化。
使用电线,这会使结构变脆。
在此背景下做出本发明,以提出一种压力传感器的制造方法。
发明内容
根据第一方面,本发明提出一种压力传感器的制造方法,该方法由于其特殊设计,在一个阶段中将微机械结构的敏感元件的制造和保护相结合。
为此目的,本发明提出了一种压力传感器的制造方法,其包括以下步骤:
将支撑基片与上面已沉积应变仪的可变形膜相装配,所述可变形膜包括在其中央的变薄区,所述支撑基片设在所述可变形膜上方,所述支撑基片包括上表面、与所述可变形膜相接触的下表面,所述支撑基片进一步包括设在所述应变仪上方的侧部凹陷和设在膜的所述变薄区上方的中央凹陷,以产生微机械结构;并且一旦装配完成,所述方法包括以下步骤:
在一个单一步骤中,在所述支撑部的所述上表面上和所述支撑部的所述侧部凹陷中沉积至少一种导电材料,所述导电材料延伸到凹陷中,从而与所述应变仪相接触以形成与所述应变仪联接的电触头。
本发明通过单独考虑以下特征或进行任何技术上可能的组合来有利地实现:
-其包括,在装配完成之后,并且在至少一种导电材料的单一沉积步骤之前的,在每个侧部凹陷中的至少一个扩散阻挡层的沉积步骤,所述扩散阻挡层与相应的应变仪相接触;
-其包括,通过与3D热层压技术相关联的光刻法或通过磨碎强拓扑表面的涂层法执行的形成几个电触头的步骤;
所述一种或多种导电材料选自:超掺杂多晶硅、Au、Ag、Ni、Pt、TiW、Cu、Pd、Αl、Τi、ΤiΝ;
-膜由硅制成,并且:所述支撑部由玻璃制成,所述装配包括阳极密封;或者所述支撑部由硅制成,所述装配包括通过具有或不具有中间层的分子或原子键,或通过钎焊进行密封。
-其包括由以下操作组成的步骤:将所述支撑部整合到由包括导电材料制成的电触头的壳体中;所述支撑部通过在所述支撑部上形成的连接件整合到所述壳体中;
-所述支撑部整合到所述壳体中是通过热压方法实现的;
-所述热压方法是在250℃与500℃之间的温度,典型地为320℃的温度下,10Mpa与200Mpa之间的压力,典型地为50MPa的压力下执行的;
所述壳体的电触头由以下材料制成:超掺杂多晶硅、Au、Ag、Ni、Pt、TiW、Cu、Pd、Αl、Τi、ΤiΝ;
-所述支撑基片整合到所述壳体中是通过倒装芯片技术执行的;
-膜通常由基片形成,例如包括诸如SOI或PSOI的单晶硅、诸如SOS的蓝宝石或诸如SiCOI或SiC的其他材料。
本发明还涉及一种通过根据本发明的方法生产的压力传感器。
并且,根据第二方面,本发明提出一种通过根据本发明的第一方面的方法生产的压力传感器。
本发明具有很多优点。
由于在沉积至少一种导电材料然后产生电触头之前完成了支撑部与可变形膜的装配,因此材料选择优于已知技术。
本发明避免使用附加元件在应变仪的水平面实现连接:导电材料的沉积是在一个单一步骤中实现的,并且由此形成了电触头。
而且,本发明的方法在装配之后沉积多种连续导电材料,从而一方面改进了电触头,另一方面使支撑层更容易整合到连接壳体中。
该方法还在支撑部和可变形膜相装配之后沉积扩散阻挡层,该扩散阻挡层防止应变仪中充当电触头的材料的扩散。
而且,利用本发明的方法,由于刻蚀步骤(在此情况下该步骤在装配之后执行)不改变支撑部与可变形膜的表面质量,因此支撑部与可变形膜这两个部件的装配质量提高。
而且,导电材料选择不会限制密封温度。
另一点在于,通过直接金属接触进行的电连接使得接触电阻相对于测量本身而言可忽略,并且其不受温度变化影响。
而且,在一个单一步骤中通过被称作“倒装芯片”的技术进行整合无需借助于其他材料,而借助于其他材料则可能在制造方法过程中产生限制并且/或者可能由于通过热压进行整合而在材料之间产生机械应变。
附图说明
通过以下说明,本发明的其他特征、目的和优点将变得明显,以下说明完全是说明性而非限制性的,并且必须相对于附图来考虑,其中:
-图1a、图1b和图1c示出了根据符合本发明一个实施方式的方法的可变形膜和支撑部的装配;
-图1d示出了符合本发明第二实施方式的扩散阻挡层的沉积;
-图2a和图2b示出了根据符合本发明第一实施方式的方法的一种或多种导电材料的沉积;
-图2c和图2d示出了根据符合本发明第二实施方式的方法的一种或多种导电材料的沉积;
-图3和图4示出了分别根据符合本发明第一和第二实施方式的方法的封装;
-图5示出了符合本发明一个实施方式的方法的步骤。
在所有附图中,相似元件具有相同的附图标记。
具体实施方式
一种压力传感器尤其包括支撑部10和可变形膜20、应变仪30以及设在支撑部10与膜20之间的装配支撑部40。
压力的测量可以是绝对的或差分的。
可变形膜和应变仪所形成的微机械结构因此受到支撑部10的保护。
微机械结构通过包括电触头61的支撑部10电连接到壳体80,壳体80进一步包括设在内部的电触头81。
有利地,可变形膜20包括上表面201和下表面202、悬置于自由空间上方的压力敏感隔膜/或薄部20b以及形成薄部20b的支撑部的厚部20a。
这种膜20一般由基片形成,例如包括单晶硅(例如SOI或PSOI)、蓝宝石(例如SOS)或其他材料(例如SiCOI或SiC)的基片。
该自由空间(在膜的薄部20b的水平面)有利地通过微机械加工形成。
用于形成这种自由空间的微机械加工技术可以是例如化学刻蚀,例如在确定的温度下进行KOH刻蚀和/或在原来平坦的表面基片中进行深反应离子刻蚀(DRIE)。
这种膜20的厚度为几十微米,厚部20a的厚度为100μm至1000μm,典型为500μm,薄部20b的厚度为10μm至200μm。
可变形膜20包括其上部的应变仪30。应变仪30包括位于可变形膜20的上表面201上的由单晶硅制成的微结构(参见图1a)。一般而言,这些微结构通常由光刻法和化学或等离子刻蚀法刻蚀的硅初始层形成。
应变仪30优选设在可变形膜20的最大机械应变区中。
可变形膜20还包括其上表面201上的装配支撑部40,装配支撑部40沉积在可变形膜20的厚部20b的端部。
还可以在可变形膜20的上表面201上设置电绝缘层(未示出),例如SiO2层。在此情况下应变仪30和装配支撑部40沉积于电绝缘层上。
支撑部10具有与可变形膜20的外截面相同的外截面。支撑部10还包括上表面101和下表面102,在以下描述的方法的过程中,下表面102设计成与可变形膜20的上表面201相接触。
支撑部10包括侧部凹陷11和中央凹陷50,在所述膜20和支撑部10已装配时,形成的侧部凹陷11与应变仪30相对,形成的中央凹陷50与可变形膜的薄部20b相对。支撑部10优选包括至少四个侧部凹陷11。侧部凹陷11有利地具有圆形截面。
侧部凹陷11和中央凹陷50通过微机械加工技术(例如在确定的温度下进行KOH刻蚀和/或在原来平坦的表面基片中进行深反应离子刻蚀(DRIE))由基片形成。
支撑部10可以是基于玻璃、石英硅、PyrexTM、蓝宝石、氧化铝、Si、SiC的材料。
支撑部10例如具有50和1000μm之间的厚度。
在压力传感器的制造方法过程中,将支撑部10装配E1到可变形膜20上,在此之前已在可变形膜20上沉积了应变仪30和装配支撑部40。
装配E1可以通过执行阳极密封或通过具有或不具有中间层的分子或原子键,或通过钎焊实现。
当然,其他将支撑部10与可变形膜20装配的可能方式也是可行的,专业技术人员已知的可能方式将不在此描述。
在装配E1之后,在一个单一步骤中,在支撑部10的侧部凹陷11中以及支撑部10的上表面101上沉积E2至少一种导电材料60。因此,导电材料60延伸到侧部凹陷11中,从而与应变仪30相接触,然后形成与应变仪30联接的电触头61。
这样的沉积E2尤其包括在支撑部10的上表面101(与可变形膜20相接触的支撑部10下表面102相对)上沉积导电材料膜。
导电材料60可以是叠加在金属上的超掺杂多晶硅膜、只是金属沉积物、或几个金属层的组合。
更一般来说,导电材料60选自:超掺杂多晶硅、Au、Ag、Ni、Pt、TiW、Cu、Pd、Αl、Τi、ΤiΝ。
至少一种导电材料60的沉积优选通过低压化学气相沉积(LPCVD)技术实现,但也可以通过蒸发、电沉积或磨碎实现。
而且,即使温度低、压力高,该膜是多晶的并且无论沉积在哪都具有同质性。
这样的沉积E2的优点是能够沉积导电材料60的厚膜,其厚度达几十微米,在支撑部10的深腔中尤其如此,这种深腔可以通过对支撑部10进行微机械加工产生以制作凹陷11。换言之,导电材料60填充侧部凹陷11的壁的所有腔体。
以此方式,导电材料或导电材料60沉积到支撑部10的整个上表面101上以及侧部凹陷11中(参见图2)。
接下来,该制造方法包括形成电触头61的步骤E3。这样的步骤E3通过与热3D层压技术相关联的光刻法或通过磨碎感光材料进行“喷涂”的涂层法来执行。以此方式,精确限制了电触头61的有用区。
事实上,与热层压技术相关联的3D光刻技术或磨碎感光材料的涂层法限定了强拓扑表面上的沉积区和保留区;该技术控制沉积物的同质性,即使在倾斜表面上或腔体的基部亦是如此。举例而言,该技术在约500μm深度的凹陷11的基部限定了约十至几十微米的结构(对于约100μm的宽度的基部来说)。
在单一步骤过程中沉积E2至少一种导电材料60之后,3D光刻法允许对装配E1步骤之后在支撑部10和膜20之间沉积的材料进行机械加工,并且能够相应地实现呈几百微米高度的变化的复杂结构形式(例如凹陷11的内部)的E3。
完成电触头形成步骤E3后,电触头61与应变仪30连接(参见图2b)并且从支撑部10的上表面101延伸。
可替代地或者说互补地,在装配E1完成之后,并且在至少一种导电材料60的单一沉积步骤E2之前,制造方法包括在与相应的应变仪30相接触的扩散阻挡层31的每个侧部凹陷11中的沉积步骤E10(参见图1d)。
扩散阻挡层31包括诸如TiW、TiN、Pt、Ta等的金属。更一般来说,扩散阻挡层31包括具有允许其阻挡应变仪30中的另一原子种类扩散的特性的材料。
接下来,如前所述,形成电触头(步骤E3)。
扩散阻挡层31由导电材料,例如用于形成电触头的材料制成。因此,显而易见,该实施方式中,在每个侧部凹陷11中,电触头61与扩散阻挡层31相接触,扩散阻挡层31本身与相应的应变仪30相接触。扩散阻挡层参与每个侧部凹陷11中形成的电触头61。在制作了电触头61之后,带有可变形膜20的结构支撑部10整合E4到包括电触头81的壳体80中。
壳体80的电触头由以下材料制成:超掺杂多晶硅、Au、Ag、Ni、Pt、TiW、Cu、Pd、Αl、Τi、ΤiΝ。
壳体80可以包括基于玻璃、陶瓷或金属或所有三者的混合物的不同材料,并且可以采取各种形式。
壳体80的电触头81设置成与支撑部10的电触头61相对。触头61与触头81之间的电连接可以通过无线布线“引线接合”技术(传统上用于压力传感器的技术)或通过直接接触技术完成。
壳体80的电触头81延伸到壳体80的外部,以允许采集在压力P的测量过程中产生的电信号。
可以执行不同的技术,例如被称作“倒装芯片”的技术,以将结构支撑部10/可变形膜20整合E4到壳体80中。
尤其可以在200℃与500℃之间的温度和10Mpa与250Mpa之间的压力下执行热压方法以将电触头连接在一起。

Claims (12)

1.一种压力传感器的制造方法,包括以下步骤:
将支撑基片(10)与上面已沉积应变仪(30)的可变形膜(20)相装配(E1),所述可变形膜包括在其中央的变薄区(20b),所述支撑基片(10)设在所述可变形膜(20)上方,所述支撑基片(10)包括上表面(101)、与所述可变形膜(20)相接触的下表面(102),所述支撑基片(10)进一步包括设在所述应变仪(30)上方的侧部凹陷(11)和设在膜(20)的所述变薄区(20b)上方的中央凹陷(50),以得到微机械结构;并且一旦装配完成,所述方法包括以下步骤:
在一个单一步骤中,在所述支撑部的所述上表面(101)上和所述支撑部(10)的所述侧部凹陷(11)中沉积(E2)至少一种导电材料(60),所述导电材料(60)延伸到凹陷(11)中,从而与所述应变仪(30)相接触以形成与所述应变仪(30)联接的电触头(61)。
2.根据权利要求1所述的方法,包括,在装配(E1)完成之后,并且在至少一种导电材料(60)的单一沉积步骤(E2)之前的,在每个侧部凹陷(11)中的至少一个扩散阻挡层(31)的沉积步骤(E10),所述扩散阻挡层(31)与相应的应变仪(30)相接触。
3.根据以上权利要求中任一项所述的方法,包括通过与3D热层压技术相关联的光刻法或通过磨碎强拓扑表面的涂层法执行的形成几个电触头(61)的步骤(E3)。
4.根据以上权利要求中任一项所述的方法,其中导电材料选自:超掺杂多晶硅、Au、Ag、Ni、Pt、TiW、Cu、Pd、Αl、Τi、ΤiΝ。
5.根据以上权利要求中任一项所述的方法,其中膜由硅制成,并且:
-所述支撑部(10)由玻璃制成,所述装配(E1)包括阳极密封;或者
-所述支撑部(10)由硅制成,所述装配(E1)包括通过具有或不具有中间层的分子或原子键,或通过钎焊进行密封。
6.根据权利要求1至4中任一项所述的方法,其中膜(20)由基片形成,例如由诸如SOI或PSOI的单晶硅、诸如SOS的蓝宝石或诸如SiCOI或SiC的其他材料构成。
7.根据以上权利要求中任一项所述的方法,包括由以下操作组成的步骤:
-将所述支撑部(10)整合到包括由导电材料制成的电触头(81)的壳体(80)中;所述支撑部通过在所述支撑部上形成的连接件整合到所述壳体中。
8.根据前一权利要求所述的方法,其中所述支撑部整合(E4)到所述壳体中是通过热压方法实现的。
9.根据前一权利要求所述的方法,其中所述热压方法是在250℃与500℃之间的温度,典型地为320℃的温度下,10Mpa与200Mpa之间的压力,典型地为50MPa的压力下执行的。
10.根据权利要求7-9中任一项所述的方法,其中所述壳体(80)的所述电触头由以下材料制成:超掺杂多晶硅、Au、Ag、Ni、Pt、TiW、Cu、Pd、Αl、Τi、ΤiΝ。
11.根据以上权利要求中任一项所述的方法,其中所述支撑基片(10)整合(E4)到所述壳体(80)中是通过倒装芯片技术执行的。
12.一种通过根据以上权利要求中任一项所述的方法得到的压力传感器。
CN201380022007.7A 2012-03-06 2013-03-06 压力传感器的生产方法和相应的传感器 Active CN104508447B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1252042 2012-03-06
FR1252042A FR2987892B1 (fr) 2012-03-06 2012-03-06 Procede de fabrication d'un capteur de pression et capteur correspondant
PCT/EP2013/054531 WO2013131973A1 (fr) 2012-03-06 2013-03-06 Procede de fabrication d'un capteur de pression et capteur correspondant

Publications (2)

Publication Number Publication Date
CN104508447A true CN104508447A (zh) 2015-04-08
CN104508447B CN104508447B (zh) 2017-06-09

Family

ID=47790258

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380022007.7A Active CN104508447B (zh) 2012-03-06 2013-03-06 压力传感器的生产方法和相应的传感器

Country Status (9)

Country Link
US (1) US9643836B2 (zh)
EP (1) EP2823273B1 (zh)
JP (1) JP6122880B2 (zh)
CN (1) CN104508447B (zh)
BR (1) BR112014022052B1 (zh)
CA (1) CA2866388C (zh)
ES (1) ES2743457T3 (zh)
FR (1) FR2987892B1 (zh)
WO (1) WO2013131973A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112723301A (zh) * 2020-12-21 2021-04-30 苏州长风航空电子有限公司 一种航空用高频响压力传感器芯片及制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2982023B1 (fr) * 2011-10-26 2015-03-06 Auxitrol Sa Structure micromecanique a membrane deformable et a protection contre de fortes deformations
US9891124B2 (en) * 2013-05-24 2018-02-13 Hitachi Metals, Ltd. Pressure sensor, and mass flow meter, and mass flow controller using same
EP3001166A1 (de) * 2014-09-09 2016-03-30 Robert Bosch Gmbh Mikromechanische drucksensorvorrichtung und entsprechendes herstellungsverfahren
DE102015217030A1 (de) * 2014-09-09 2016-03-10 Robert Bosch Gmbh Mikromechanische Drucksensorvorrichtung und entsprechendes Herstellungsverfahren
US10163660B2 (en) * 2017-05-08 2018-12-25 Tt Electronics Plc Sensor device with media channel between substrates
JP6950268B2 (ja) * 2017-05-12 2021-10-13 コニカミノルタ株式会社 クリーニング装置、画像形成装置及びプログラム
US11174157B2 (en) * 2018-06-27 2021-11-16 Advanced Semiconductor Engineering Inc. Semiconductor device packages and methods of manufacturing the same
US20220236128A1 (en) * 2021-01-27 2022-07-28 Honeywell International Inc. Pressure sensor components having microfluidic channels

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4777826A (en) * 1985-06-20 1988-10-18 Rosemount Inc. Twin film strain gauge system
US20040103724A1 (en) * 2002-11-28 2004-06-03 Fujikura Ltd. Semiconductor pressure sensor
CN1225643C (zh) * 2000-07-20 2005-11-02 诚实公司 可用于高度洁净及高腐蚀性环境的感测器
JP2008002994A (ja) * 2006-06-23 2008-01-10 Denso Corp 半導体式圧力センサおよびその製造方法
US20110073969A1 (en) * 2009-09-30 2011-03-31 Hubert Benzel Sensor system and method for manufacturing same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54131892A (en) * 1978-04-05 1979-10-13 Hitachi Ltd Semiconductor pressure converter
US4625561A (en) * 1984-12-06 1986-12-02 Ford Motor Company Silicon capacitive pressure sensor and method of making
US6338284B1 (en) * 1999-02-12 2002-01-15 Integrated Sensing Systems (Issys) Inc. Electrical feedthrough structures for micromachined devices and methods of fabricating the same
US6330829B1 (en) * 2000-03-16 2001-12-18 Kulite Semiconductor Products Inc. Oil-filled pressure transducer
US7152478B2 (en) * 2000-07-20 2006-12-26 Entegris, Inc. Sensor usable in ultra pure and highly corrosive environments
EP2287916A3 (de) * 2001-08-24 2012-01-25 Schott AG Verfahren zum Kontaktieren und Gehäusen von integrierten Schaltungen
US7540198B2 (en) * 2004-06-15 2009-06-02 Canon Kabushiki Kaisha Semiconductor device
CN101542257B (zh) * 2006-11-29 2012-04-04 株式会社藤仓 压力传感器模块
JP4967907B2 (ja) * 2007-08-01 2012-07-04 ミツミ電機株式会社 半導体圧力センサ及びその製造方法
US7775119B1 (en) * 2009-03-03 2010-08-17 S3C, Inc. Media-compatible electrically isolated pressure sensor for high temperature applications
JP5218455B2 (ja) * 2010-03-17 2013-06-26 株式会社デンソー 半導体力学量センサおよびその製造方法
US20130214370A1 (en) * 2010-05-03 2013-08-22 S3C, Inc. System and method for minimizing deflection of a membrance of an absolute pressure sensor
US8490495B2 (en) * 2010-05-05 2013-07-23 Consensic, Inc. Capacitive pressure sensor with vertical electrical feedthroughs and method to make the same
JP5779931B2 (ja) * 2011-03-24 2015-09-16 富士通株式会社 半導体装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4777826A (en) * 1985-06-20 1988-10-18 Rosemount Inc. Twin film strain gauge system
CN1225643C (zh) * 2000-07-20 2005-11-02 诚实公司 可用于高度洁净及高腐蚀性环境的感测器
US20040103724A1 (en) * 2002-11-28 2004-06-03 Fujikura Ltd. Semiconductor pressure sensor
JP2008002994A (ja) * 2006-06-23 2008-01-10 Denso Corp 半導体式圧力センサおよびその製造方法
US20110073969A1 (en) * 2009-09-30 2011-03-31 Hubert Benzel Sensor system and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112723301A (zh) * 2020-12-21 2021-04-30 苏州长风航空电子有限公司 一种航空用高频响压力传感器芯片及制备方法

Also Published As

Publication number Publication date
EP2823273A1 (fr) 2015-01-14
FR2987892B1 (fr) 2014-04-18
JP6122880B2 (ja) 2017-04-26
EP2823273B1 (fr) 2019-05-29
BR112014022052A8 (pt) 2021-05-11
BR112014022052A2 (pt) 2020-10-27
JP2015511006A (ja) 2015-04-13
CA2866388A1 (fr) 2013-09-12
CA2866388C (fr) 2021-08-31
US9643836B2 (en) 2017-05-09
US20150033878A1 (en) 2015-02-05
BR112014022052B1 (pt) 2021-06-22
WO2013131973A1 (fr) 2013-09-12
FR2987892A1 (fr) 2013-09-13
CN104508447B (zh) 2017-06-09
ES2743457T3 (es) 2020-02-19

Similar Documents

Publication Publication Date Title
CN104508447A (zh) 压力传感器的生产方法和相应的传感器
KR101296031B1 (ko) 압력 센서 및 그 제작 방법
US7998777B1 (en) Method for fabricating a sensor
CN105776122B (zh) 具多重气密空腔的微机电装置及其制作方法
KR102161035B1 (ko) 센서 디바이스 및 그 제조 방법
CA2777309C (en) Device for measuring environmental forces and method of fabricating the same
US9266720B2 (en) Hybrid integrated component
NO340787B1 (no) Mikromekanisk komponent og fremgangsmåte for fremstilling av samme
CN102853950B (zh) 采用倒装焊接的压阻式压力传感器芯片及其制备方法
CN101825505B (zh) 一种mems压力敏感芯片及其制作方法
JP2011137818A (ja) センサ製造方法
CN109843788B (zh) 具有应力解耦结构的微机械传感器
CN105174198A (zh) 一种封装结构的加速度传感器及其制备方法
US20130181302A1 (en) Method for making a suspended membrane structure with buried electrode
US20120248552A1 (en) Method for creating monocrystalline piezoresistors
CN105000529A (zh) 一种基于mems工艺的压力传感器芯片及其制备方法
JP2013148495A (ja) 半導体センサ
EP2873095B1 (en) Semiconductor secured to substrate via hole in substrate

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant