CN104464996B - 一种烧结钕铁硼永磁材料及其制备方法 - Google Patents

一种烧结钕铁硼永磁材料及其制备方法 Download PDF

Info

Publication number
CN104464996B
CN104464996B CN201410757138.6A CN201410757138A CN104464996B CN 104464996 B CN104464996 B CN 104464996B CN 201410757138 A CN201410757138 A CN 201410757138A CN 104464996 B CN104464996 B CN 104464996B
Authority
CN
China
Prior art keywords
magnetic
powder
raw material
nano
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410757138.6A
Other languages
English (en)
Other versions
CN104464996A (zh
Inventor
王栩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangmen Xinlike Magnetoelectric Co ltd
Original Assignee
Qingdao Shenda Multi-Creation Technology Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Shenda Multi-Creation Technology Service Co Ltd filed Critical Qingdao Shenda Multi-Creation Technology Service Co Ltd
Priority to CN201410757138.6A priority Critical patent/CN104464996B/zh
Priority to CN201610780148.0A priority patent/CN106158212B/zh
Publication of CN104464996A publication Critical patent/CN104464996A/zh
Application granted granted Critical
Publication of CN104464996B publication Critical patent/CN104464996B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

制备该烧结钕铁硼永磁材料的方法,包括以下步骤:将步骤(1)步骤(2)中的甩片,按质量1:4比例混合,并在581℃脱氢9h制成氢爆粉;然后经过气流磨后制成平均粒度均为3.5~4μm的磁粉;(4)将步骤(3)中的磁粉、粒径30nm纳米氧化钇、粒径50nm纳米钨粉、粒径50nm纳米碳化锆粉末按质量比为1000:5:2:3加入到三维混合机中混合均匀,得混合粉料;(5)将步骤(4)中的混合粉料在磁场压机中取向,应用垂直钢磨压、加冷等静压方式成型,放入高真空烧结炉内1151℃烧结3.5h,经一次回火952℃处理2.5 h,以及二级回火748℃处理3小时。

Description

一种烧结钕铁硼永磁材料及其制备方法
技术领域
本发明属于磁性功能材料领域,具体涉及一种烧结钕铁硼永磁材料及其制备方法。
背景技术
钕铁硼,简单来讲是一种磁铁,和我们平时见到的磁铁所不同的是,其优异的磁性能而被称为“磁王”。钕铁硼中含有大量的稀土元素钕、铁及硼,其特性硬而脆。由于表面极易被氧化腐蚀,钕铁硼必须进行表面涂层处理。表面化学钝化是很好的解决方法之一。钕铁硼作为稀土永磁材料的一种具有极高的磁能积和矫顽力,同时高能量密度的优点使钕铁硼永磁材料在现代工业和电子技术中获得了广泛应用,从而使仪器仪表、电声电机、磁选磁化等设备的小型化、轻量化、薄型化成为可能。钕铁硼的优点是性价比高,具良好的机械特性;不足之处在于工作温度低,温度特性差,且易于粉化腐蚀,必须通过调整其化学成分和采取表面处理方法使之得以改进,才能达到实际应用的要求。
发明内容
本发明目的在于克服现有技术中的不足,提供一种烧结钕铁硼永磁材料,该烧结钕铁硼永磁材料,具有较高的磁体矫顽力,较高的磁体工作温度,尤其是提高了晶界的耐蚀性能,磁体的耐蚀性能得到提高。
本发明烧结钕铁硼永磁材料;由以下组分及质量百分比的原料制成:Nd 21~23%、B 0.8~0.9%、Cu 0.3~0.4%、Co 0.8~0.9%、Ga 0.3~0.4%、Nb 0.6~0.7%、Pr 3~4%、Al0.5~0.6%、余量为Fe。
作为优化,该烧结钕铁硼永磁材料,在所述的组份及质量百分比基础上,还加入有纳米氧化钇、纳米钨粉、纳米碳化锆按照质量比5:2:3的混合粉末,其占总质量百分比为0.9~ 1.1%。
制备该烧结钕铁硼永磁材料的方法,包括以下步骤:
(1)按照质量百分比Nd 21.2%、B 0.83%、Cu 0.35%、Co 0.82%、Nb 0.95%、Pr 3.1%、Al 0.32%、余量为Fe配比原料,将该原料放入真空速凝甩带炉中,甩片厚度控制在0.2~0.3mm;
(2)按照质量百分比Nd 23%、B 0.91%、Cu 0.41%、Co 0.89%、Ga 0.45%、Nb 0.55%、Pr 3.9%、Al 0.55%、余量为Fe配比原料,将该原料放入真空速凝甩带炉中,甩片厚度控制在0.1~0.2mm;
(3)将步骤(1)步骤(2)中的甩片,按质量1:4比例混合,然后加入氢破炉,并在575~595℃脱氢9 h 制成氢爆粉;然后经过气流磨后制成平均粒度均为3.5~4μm 的磁粉;
(4)将步骤(3)中的磁粉、纳米氧化钇、纳米钨粉、纳米碳化锆按质量比为1000:5:2:3加入到三维混合机中混合均匀,得混合粉料;
(5)将步骤(4)中的混合粉料在磁场压机中取向,应用垂直钢磨压加冷等静压方式成型,放入高真空烧结炉内1120~1170℃烧结3.5h ,经一次回火930~980℃处理2.5 h ,以及二级回火725~775℃处理3小时。
作为优化,制备该烧结钕铁硼永磁材料的方法,包括以下步骤:
(1)按照质量百分比Nd 21.2%、B 0.83%、Cu 0.35%、Co 0.82%、Nb 0.95%、Pr 3.1%、Al 0.32%、余量为Fe配比原料,将该原料放入真空速凝甩带炉中,甩片厚度控制在0.2~0.3mm;
(2)按照质量百分比Nd 23%、B 0.91%、Cu 0.41%、Co 0.89%、Ga 0.45%、Nb 0.55%、Pr 3.9%、Al 0.55%、余量为Fe配比原料,将该原料放入真空速凝甩带炉中,甩片厚度控制在0.1~0.2mm;
(3)将步骤(1)步骤(2)中的甩片,按质量1:4比例混合,然后加入氢破炉,并在581℃脱氢9 h 制成氢爆粉;然后经过气流磨后制成平均粒度均为3.5~4μm 的磁粉;
(4)将步骤(3)中的磁粉、粒径30nm纳米氧化钇、粒径50nm纳米钨粉、粒径50nm纳米碳化锆粉末按质量比为1000:5:2:3加入到三维混合机中混合均匀,得混合粉料;
(5)将步骤(4)中的混合粉料在磁场压机中取向,应用垂直钢磨压、加冷等静压方式成型,放入高真空烧结炉内1151℃烧结3.5h ,经一次回火952℃处理2.5 h ,以及二级回火748℃处理3小时。
该烧结钕铁硼永磁材料,由两种不同组分的合金粉末,添加粒径30nm纳米氧化钇、粒径50nm纳米钨粉、粒径50nm纳米碳化锆粉末,混合均匀后,通过特殊工艺烧结而成,提高了烧结钕铁硼的工作温度和耐蚀性,使混有粒径30nm纳米氧化钇、粒径50nm纳米钨粉、粒径50nm纳米碳化锆粉末的非磁性晶界相均匀分散于主相晶粒表面层,阻碍了硬磁性相之间的交换耦合作用,改善了微观结构,提高了磁体的矫顽力,提高了磁体的工作温度,而且添加纳米粉末后,其腐蚀电位与主相相差减小,从而提高了晶界的耐蚀性能,磁体的耐蚀性能得到提高。恒温恒压试验箱,96小时 ,(130±2℃(0.27MPa) 失重率<2mg/cm2。
具体实施方式
下面给出的实施例拟对本发明作进一步说明,但不能理解为是对本发明保护范围的限制,本领域技术人员根据本发明内容对本发明的一些非本质的改进和调整,仍属于本发明的保护范围。
实施例1:(1)按照质量百分比Nd 21.2%、B 0.83%、Cu 0.35%、Co 0.82%、Nb 0.95%、Pr 3.1%、Al 0.32%、余量为Fe配比原料,将该原料放入真空速凝甩带炉中,甩片厚度控制在0.2~0.3mm;
(2)按照质量百分比Nd 23%、B 0.91%、Cu 0.41%、Co 0.89%、Ga 0.45%、Nb 0.55%、Pr 3.9%、Al 0.55%、余量为Fe配比原料,将该原料放入真空速凝甩带炉中,甩片厚度控制在0.1~0.2mm;
(3)将步骤(1)步骤(2)中的甩片,按质量1:4比例混合,然后加入氢破炉,并在581℃脱氢9 h 制成氢爆粉;然后经过气流磨后制成平均粒度均为3.5~4μm 的磁粉;
(4)取步骤(3)中的磁粉500公斤、粒径30nm纳米氧化钇2.5公斤、粒径50nm纳米钨粉1公斤、粒径50nm纳米碳化锆粉末1.5公斤,加入到SYH系列三维运动混合机中混合均匀,得混合粉料;
(5)将步骤(4)中的混合粉料在磁场压机中取向,应用垂直钢磨压、加冷等静压方式成型,放入高真空烧结炉内1151℃烧结3.5h ,经一次回火952℃处理2.5 h ,以及二级回火748℃处理3小时;
该烧结钕铁硼永磁材料性能如下:剩磁(Br) 1.39T ;磁感应矫顽力(bHc) 985kA/m ;内禀矫顽力(jHc) 1665 kA/m;最大磁能积(BH)max 382kJ/m3;居里温度(Tc) 369℃;恒温恒压试验箱,96小时 ,(130±2℃(0.27MPa) 失重率1.8mg/cm2。
实施例2:(1)按照质量百分比Nd 20.1%、B 0.85%、Cu 0.32%、Co 0.80%、Nb 0.95%、Pr 3.0%、Al 0.32%、余量为Fe配比原料,将该原料放入真空速凝甩带炉中,甩片厚度控制在0.2~0.3mm;
(2)按照质量百分比Nd 23%、B 0.91%、Cu 0.42%、Co 0.90%、Ga 0.45%、Nb 0.55%、Pr 3.9%、Al 0.55%、余量为Fe配比原料,将该原料放入真空速凝甩带炉中,甩片厚度控制在0.1~0.2mm;
(3)将步骤(1)步骤(2)中的甩片,按质量1:4比例混合,然后加入氢破炉,并在575℃脱氢9 h 制成氢爆粉;然后经过气流磨后制成平均粒度均为3.5~4μm 的磁粉;
(4)取步骤(3)中的磁粉500公斤、粒径30nm纳米氧化钇2.5公斤、粒径50nm纳米钨粉1公斤、粒径50nm纳米碳化锆粉末1.5公斤,加入到三维混合机中混合均匀,得混合粉料;
(5)将步骤(4)中的混合粉料在磁场压机中取向,应用垂直钢磨压、加冷等静压方式成型,放入高真空烧结炉内1120℃烧结3.5h ,经一次回火930℃处理2.5 h ,以及二级回火725℃处理3小时;
该烧结钕铁硼永磁材料性能如下:剩磁(Br) 1.38T ;磁感应矫顽力(bHc) 981kA/m ;内禀矫顽力(jHc) 1647 kA/m;最大磁能积(BH)max 378kJ/m3;居里温度(Tc) 368℃;恒温恒压试验箱,96小时 ,(130±2℃(0.27MPa) 失重率1.8mg/cm2。
实施例3:(1)按照质量百分比Nd 19.1%、B 0.83%、Cu 0.35%、Co 0.82%、Nb 0.95%、Pr 2.8%、Al 0.32%、余量为Fe配比原料,将该原料放入真空速凝甩带炉中,甩片厚度控制在0.2~0.3mm;
(2)按照质量百分比Nd 23.2%、B 0.91%、Cu 0.41%、Co 0.89%、Ga 0.45%、Nb0.55%、Pr 4.0%、Al 0.55%、余量为Fe配比原料,将该原料放入真空速凝甩带炉中,甩片厚度控制在0.1~0.2mm;
(3)将步骤(1)步骤(2)中的甩片,按质量1:4比例混合,然后加入氢破炉,并在595℃脱氢9 h 制成氢爆粉;然后经过气流磨后制成平均粒度均为3.5~4μm 的磁粉;
(4)取步骤(3)中的磁粉500公斤、粒径30nm纳米氧化钇2.5公斤、粒径50nm纳米钨粉1公斤、粒径50nm纳米碳化锆粉末1.5公斤,加入到三维混合机中混合均匀,得混合粉料;
(5)将步骤(4)中的混合粉料在磁场压机中取向,应用垂直钢磨压、加冷等静压方式成型,放入高真空烧结炉内1170℃烧结3.5h ,经一次回火980℃处理2.5 h ,以及二级回火775℃处理3小时;
该烧结钕铁硼永磁材料性能如下:剩磁(Br) 1.37T ;磁感应矫顽力(bHc) 989kA/m ;内禀矫顽力(jHc) 1651 kA/m;最大磁能积(BH)max 379kJ/m3;居里温度(Tc) 367℃;恒温恒压试验箱,96小时 ,(130±2℃(0.27MPa) 失重率1.9mg/cm2。

Claims (2)

1.一种烧结钕铁硼永磁材料,其特征在于由以下组分通过以下步骤制成:
(1)按照质量百分比Nd 21.2%、B 0.83%、Cu 0.35%、Co 0.82%、Nb 0.95%、Pr 3.1%、Al0.32%、余量为Fe配比原料,将该原料放入真空速凝甩带炉中,甩片厚度控制在0.2~0.3mm;
(2)按照质量百分比Nd 23%、B 0.91%、Cu 0.41%、Co 0.89%、Ga 0.45%、Nb 0.55%、Pr3.9%、Al 0.55%、余量为Fe配比原料,将该原料放入真空速凝甩带炉中,甩片厚度控制在0.1~0.2mm;
(3)将步骤(1)步骤(2)中的甩片,按质量1:4比例混合,然后加入氢破炉,并在575~595℃脱氢9 h 制成氢爆粉;然后经过气流磨后制成平均粒度均为3.5~4μm 的磁粉;
(4)将步骤(3)中的磁粉、纳米氧化钇、纳米钨粉、纳米碳化锆按质量比为1000:5:2:3加入到三维混合机中混合均匀,得混合粉料;
(5)将步骤(4)中的混合粉料在磁场压机中取向,应用垂直钢磨压加冷等静压方式成型,放入高真空烧结炉内1120~1170℃烧结3.5h,经一次回火930~980℃处理2.5 h,以及二级回火725~775℃处理3小时。
2.根据权利要求1所述的烧结钕铁硼永磁材料,其特征在于通过以下步骤制成:
(1)按照质量百分比Nd 21.2%、B 0.83%、Cu 0.35%、Co 0.82%、Nb 0.95%、Pr 3.1%、Al0.32%、余量为Fe配比原料,将该原料放入真空速凝甩带炉中,甩片厚度控制在0.2~0.3mm;
(2)按照质量百分比Nd 23%、B 0.91%、Cu 0.41%、Co 0.89%、Ga 0.45%、Nb 0.55%、Pr3.9%、Al 0.55%、余量为Fe配比原料,将该原料放入真空速凝甩带炉中,甩片厚度控制在0.1~0.2mm;
(3)将步骤(1)步骤(2)中的甩片,按质量1:4比例混合,然后加入氢破炉,并在581℃脱氢9 h 制成氢爆粉;然后经过气流磨后制成平均粒度均为3.5~4μm 的磁粉;
(4)将步骤(3)中的磁粉、粒径30nm纳米氧化钇、粒径50nm纳米钨粉、粒径50nm纳米碳化锆粉末按质量比为1000:5:2:3加入到三维混合机中混合均匀,得混合粉料;
(5)将步骤(4)中的混合粉料在磁场压机中取向,应用垂直钢磨压、加冷等静压方式成型,放入高真空烧结炉内1151℃烧结3.5h ,经一次回火952℃处理2.5 h,以及二级回火748℃处理3小时。
CN201410757138.6A 2014-12-11 2014-12-11 一种烧结钕铁硼永磁材料及其制备方法 Active CN104464996B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201410757138.6A CN104464996B (zh) 2014-12-11 2014-12-11 一种烧结钕铁硼永磁材料及其制备方法
CN201610780148.0A CN106158212B (zh) 2014-12-11 2014-12-11 一种烧结钕铁硼永磁材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410757138.6A CN104464996B (zh) 2014-12-11 2014-12-11 一种烧结钕铁硼永磁材料及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201610780148.0A Division CN106158212B (zh) 2014-12-11 2014-12-11 一种烧结钕铁硼永磁材料及其制备方法

Publications (2)

Publication Number Publication Date
CN104464996A CN104464996A (zh) 2015-03-25
CN104464996B true CN104464996B (zh) 2016-11-09

Family

ID=52910921

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201410757138.6A Active CN104464996B (zh) 2014-12-11 2014-12-11 一种烧结钕铁硼永磁材料及其制备方法
CN201610780148.0A Active CN106158212B (zh) 2014-12-11 2014-12-11 一种烧结钕铁硼永磁材料及其制备方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201610780148.0A Active CN106158212B (zh) 2014-12-11 2014-12-11 一种烧结钕铁硼永磁材料及其制备方法

Country Status (1)

Country Link
CN (2) CN104464996B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106229102B (zh) * 2016-08-23 2019-05-31 南京工程学院 一种超细晶NdFeB永磁材料及其制备方法
CN110033914B (zh) * 2019-05-22 2021-03-30 包头稀土研究院 提高烧结钕铁硼磁体的矫顽力的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2267729A2 (en) * 2005-03-23 2010-12-29 Shin-Etsu Chemical Co., Ltd. Functionally graded rare earth permanent magnet
CN103106991A (zh) * 2013-01-30 2013-05-15 浙江大学 基于晶界重构的高矫顽力高稳定性钕铁硼磁体及制备方法
CN104112560A (zh) * 2014-07-31 2014-10-22 江苏晨朗电子集团有限公司 低成本42h和35sh烧结钕铁硼永磁体及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100356487C (zh) * 2005-06-06 2007-12-19 浙江大学 一种烧结钕铁硼磁体的制备方法
US8287661B2 (en) * 2009-01-16 2012-10-16 Hitachi Metals, Ltd. Method for producing R-T-B sintered magnet
CN101615461A (zh) * 2009-05-14 2009-12-30 浙江大学 纳米Zn晶界改性的高耐蚀性烧结钕铁硼磁体及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2267729A2 (en) * 2005-03-23 2010-12-29 Shin-Etsu Chemical Co., Ltd. Functionally graded rare earth permanent magnet
CN103106991A (zh) * 2013-01-30 2013-05-15 浙江大学 基于晶界重构的高矫顽力高稳定性钕铁硼磁体及制备方法
CN104112560A (zh) * 2014-07-31 2014-10-22 江苏晨朗电子集团有限公司 低成本42h和35sh烧结钕铁硼永磁体及其制备方法

Also Published As

Publication number Publication date
CN106158212A (zh) 2016-11-23
CN106158212B (zh) 2018-07-03
CN104464996A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
CN108922710B (zh) 一种高韧性、高矫顽力含Ce烧结稀土永磁体及其制备方法
CN102220538B (zh) 一种提高内禀矫顽力和耐腐蚀性能的烧结钕铁硼制备方法
CN103794322B (zh) 一种超高矫顽力烧结钕铁硼磁体及其制备方法
CN105513737A (zh) 一种不含重稀土元素烧结钕铁硼磁体的制备方法
CN106409497A (zh) 一种钕铁硼磁体晶界扩散的方法
JP7418598B2 (ja) 重希土類合金、ネオジム鉄ホウ素永久磁石材料、原料及び製造方法
CN103824668A (zh) 一种低重稀土高矫顽力烧结钕铁硼磁体及其制备方法
CN103103442A (zh) 主辅合金法制备钕铁硼的方法
CN102534358B (zh) 高矫顽力R-Fe-B系烧结永磁材料的制造方法
WO2012048654A1 (zh) 高耐蚀性烧结钕铁硼磁体及其制备方法
CN101364465A (zh) 稀土永磁材料及其制备方法
CN107275027B (zh) 应用钇的富铈稀土永磁体及其制备方法
CN102751064A (zh) 纳米增韧钕铁硼磁性材料及制备方法
CN103280290A (zh) 含铈低熔点稀土永磁液相合金及其永磁体制备方法
CN104681268A (zh) 一种提高烧结钕铁硼磁体矫顽力的处理方法
CN103426624A (zh) 钕铁硼永磁体的制备方法
CN107492429A (zh) 一种耐高温钕铁硼磁体及其制备方法
CN108269665A (zh) 一种钕铁硼磁体及其制备方法
CN105118655A (zh) 一种纳米锌粉晶界改性制备高矫顽力磁体的方法
CN104575899B (zh) 烧结钕铁硼磁体及其制备方法
CN104464997B (zh) 一种高矫顽力钕铁硼永磁材料的制备方法
CN108517455A (zh) 一种具有双主相结构的纳米晶稀土永磁材料及其制备方法
CN104464996B (zh) 一种烧结钕铁硼永磁材料及其制备方法
CN113838622A (zh) 一种高矫顽力烧结钕铁硼磁体及其制备方法
CN111091945B (zh) 一种r-t-b系永磁材料、原料组合物、制备方法、应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
CB03 Change of inventor or designer information

Inventor after: Wang Xu

Inventor before: Qiao Junqing

COR Change of bibliographic data
TA01 Transfer of patent application right

Effective date of registration: 20160912

Address after: 266000 Shandong Province, Licang District, No. nine East Road, No. 320, building 205, room 2

Applicant after: QINGDAO SHENDAZHONGCHUANG TECHNICAL SERVICES CO.,LTD.

Address before: 042600 Shanxi City, Taiyuan Province, Wan Feng Road, Berlin District No. 140

Applicant before: Qiao Junqing

C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20170526

Address after: Xinhui District, Guangdong city of Jiangmen province 529100 Guzhou Development Zone Zi Chong Industrial Zone No. 34

Patentee after: JIANGMEN XINLIKE MAGNETOELECTRIC CO.,LTD.

Address before: 266000 Shandong Province, Licang District, No. nine East Road, No. 320, building 205, room 2

Patentee before: QINGDAO SHENDAZHONGCHUANG TECHNICAL SERVICES CO.,LTD.

PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A sintered neodymium iron boron permanent magnet material and its preparation method

Effective date of registration: 20230830

Granted publication date: 20161109

Pledgee: Xinhui Branch of China Construction Bank Co.,Ltd.

Pledgor: JIANGMEN XINLIKE MAGNETOELECTRIC CO.,LTD.

Registration number: Y2023980054559

PE01 Entry into force of the registration of the contract for pledge of patent right