CN1044354C - 烃类催化部分氧化工艺方法 - Google Patents

烃类催化部分氧化工艺方法 Download PDF

Info

Publication number
CN1044354C
CN1044354C CN94194660A CN94194660A CN1044354C CN 1044354 C CN1044354 C CN 1044354C CN 94194660 A CN94194660 A CN 94194660A CN 94194660 A CN94194660 A CN 94194660A CN 1044354 C CN1044354 C CN 1044354C
Authority
CN
China
Prior art keywords
processing method
catalyzer
gas
oxygen
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN94194660A
Other languages
English (en)
Other versions
CN1139416A (zh
Inventor
K·P·德·琼
R·J·舍恩比克
K·A·沃克曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN1139416A publication Critical patent/CN1139416A/zh
Application granted granted Critical
Publication of CN1044354C publication Critical patent/CN1044354C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1011Packed bed of catalytic structures, e.g. particles, packing elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1023Catalysts in the form of a monolith or honeycomb
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1029Catalysts in the form of a foam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

一种烃类原料的催化部分氧化工艺方法,它包括将含有烃类原料和含氧气体的进料混合物(该进料混合物中亦含有氮气)与能够对烃类部分氧化反应进行催化的催化剂相接触,其中进料混合物中还含有含硫化合物。本工艺方法能够无需首先将含硫烃类原料进行脱硫处理而对其加工处理。由此,一种由烃类原料制备一氧化碳和/或氢气的工艺方法包括将烃类原料在第一级经上述催化部分氧化工艺处理并将第一级产品的至少一股物料在第二级经一脱硫过程处理。

Description

烃类催化部分氧化工艺方法
本发明涉及一种烃类催化部分氧化的工艺方法,尤其是从甲烷、天然气、伴生气或其它轻质烃类来源制备一氧化碳和氢气混合物的工艺方法。
烃类如甲烷或天然气在催化剂存在下的部分氧化是一种有吸引力的制备本领域熟知的合成气-一氧化碳和氢气混合物的工艺路线。烃类的部分氧化是一强放热反应,用甲烷作为烃类反应物情形下,按下述反应来进行:
         
用于工业规模生产的优化催化部分氧化生产工艺在高压如约30巴和高的体积流速如约1,000,000Nl/kg/h的条件下获得高的一氧化碳和氢气产率。基于热力学原因,为在这些工艺条件下获得高产率的一氧化碳和氢气,必须在高温下进行部分氧化过程。
文献中有许多阐述采用范围广泛的催化剂进行烃类尤其是甲烷的催化部分氧化反应的实验细节。但这些实验的绝大多数均在极温和的条件下或在完全不适合于工业催化部分氧化生产过程的条件下进行。
因此,欧洲专利申请公开No.0303438(EP-A-0303438)公开了一种烃类原料的催化部分氧化工艺过程,其中将烃类原料、氧气或含氧气体以及选择性的蒸汽的气态混合物引入一催化部分氧化段与放置于其间的催化剂相接触。该工艺所采用的催化剂可包括范围广泛的催化活性组分,如钯、铂、铑、铱、锇、钌、镍、铬、钴、铈、镧及其混合物。此外,在EP~A-0303438中提及一些通常认为无催化活性的物质也可用作催化剂,如高熔点氧化物象堇青石、高铝红柱石、钛酸高铝红柱石铝、氧化铬尖晶石及氧化铝。催化剂可制成各种形式,如压制成延展通道的波纹金属薄板或丝网。而在EP-A-0303438中优选采用整体式催化剂。
欧洲专利No.0262947(EP-B-0262947)公开了一种烃类部分氧化生产氢气的工艺过程,其中烃和氧的混合物喷入一整块催化剂。EP-B-0262947中所公开的催化剂包括高熔点固体所承载的氧化铂和氧化铬。
D.A.Hickman和L.D.Schmidt(“Synthesis Gas Formationby Direct Oxidation of Methane over Pt Monoliths”,Journal ofCatalysis 138,267-282,1992)在含有铂或铑的催化剂存在下进行了甲烷的部分氧化反应。所用的催化剂形式为多晶体铂薄片或在陶瓷泡沫载体上承载的铑或铂。部分氧化反应在基本上常压和337~1237℃的温度下进行。
A.T.Ashcroft等(“Selective oxidation of methane to syn-thesis gas using transition metal catalysts”,Nature,vol.344,No.6264,Pages 319~321,22nd March,1990)公开了在一系列含钌催化剂存在下甲烷部分氧化生成合成气的方法。实验目的在于确定部分氧化过程可在温和的条件和低温下进行。为此目的,该实验在低的气体每小时体积流速40,000/hr,压力为101kPa和约777℃的温度下进行。仅报道了一例采用高压的实验,但此时采用过量很多的甲烷以防止爆炸的危险。
P.D.F.Vernon等(“Partial Oxidation of methane to synthe-sis Gas”,Catalysis Letters 6(1990)181-186)公开了一系列实验,其中所用的催化剂包括镍、钌、铑、钯、铱或铂,它们可承载于钒土或置于混合氧化物产物母体中。所报道的实验亦仅限于采用温和操作条件的催化部分氧化工艺过程。作为基本条件,选定一套温和反应条件:压力101kPa,气体每小时体积流速40,000/hr,温度为1050K(777℃)及甲烷/氧气比为2.0。以此为基础,分别考察了各工艺参数。经该项研究得到结论为低温操作具有一定的操作优点,但仅在压力约为101kPa才有实际意义。作者在“Partial Oxidationof Methane to Synthesis Gas,and Carbon Dioxide as on OxidisingAgent for Methane Conversion”,Catalysis Today,13(1992)417-426中报导了同样的实验。
R.H Jones等(“Catalytic conversion of Methane to SythesisGas over Europium Iridate,Eu2Ir2O7”,Catalysis Letters 8(1991)169-174)报道了采用烧绿石铕铱Eu2Ir2O7作催化剂的甲烷选择性部分氧化。在压力为101kPa和温度为873K(600℃)的温和条件下研究了此反应。
J.K.Hockmuth(“Catalytic Partial Oxidation of Methaneover a monolith Supported Catalyst”,Applied Catalyst B:Envi-ronmental,1(1992)89-100)报道了采用包括堇青石整体承载的联合铂和钯催化剂的甲烷催化部分氧化。
美国专利No.5,149,464(US-A-5,149,464)指出一种将反应气体混合物在温度约650℃-900℃下与一固体催化剂相接触将甲烷选择氧化生成一氧化碳和氢气的方法。该固体催化剂一般表示如下:
a)一种分子式为MxMy′O2的催化剂,其中:
M至少为一种选自Mg、B、Al、Ln、Ga、Si、Ti、Zr和Hf的元素;Ln至少为镧和镧系元素中之一;M′为一种d区过渡金属元素,各比值X/Y、Y/Z和(X+Y)/Z各自独立,从0.1-8;或者
b)一种d区过渡金属的氧化物;或
c)在高熔点载体上的d区过渡金属;或
d)在反应条件下或非氧化条件下将a)或b)加热所制成的催化剂。
d区的过渡金属在US-A-5,149,464中认为是选自具有原子数为21~29,40~47,72~79的金属,如钪、钛、钒、铬、锰、铁、钴、镍、铜、锆、铌、钼、锝、钌、铑、钯、银、铪、钽、钨、铼、锇、铱、铂及金等。在US-A-5,149,464中指出优选的金属元素为元素周期表中的第八族元素,即铁、锇、钴、铼、铱、钯、铂、镍及钌。
US-A-5,149,464中所述的工艺过程在650℃~900℃的温度下操作,优选操作温度范围为700℃~800C。在US-A-5,149,464中描述了一系列实验,对多种含有第八族金属的催化剂进行了测定,包括氧化钌、主系/钌氧化物,烧绿石、氧化铝基钌,氧化铝基铑、氧化铝基钯、氧化铝基铂、氧化镍/氧化铝、钙钛矿及氧化镍。
在国际专利申请公开第WO92/11199号中对用于催化部分氧化工艺的催化剂作了相似的总述。WO92/11199具体说明了应用包括铱、钯、钌、铑、镍及氧化铝基铂的催化剂的实验。所有实验均在温和的工艺条件下进行,典型操作条件为压力101kPa,温度777℃和气体每小时体积流速约20,000/hr。
如上所述,为有效用于工业规模生产,催化部分氧化工艺需要在高压高温下操作。业已发现,按工业生产所要求的条件操作时,在氮气存在下,烃类的催化部分氧化可生产一种含有多种副产品、尤其是数量虽少但其影响不容忽视的氨(NH3)和氰化氢(HCN)的合成气产品。业已发现,此类副产品会对将催化部分氧化工艺所得到的一氧化碳和/或氢转化即发生Fischter-Tropsch合成或甲醇工业合成反应的下游工序有不利影响。因此在催化部分氧化过程产品中副产物的存在,尤其是氨和氰化氢的存在是不期望有的。
氮气存在于多种天然气原料中。此外,工业规模制备纯净、不合氮气的氧气技术上复杂且非常昂贵。因此,需要一种在部分氧化反应期间有氮气存在下进行烃类催化部化氧化的工艺过程,该工艺过程可用于工业规模生产含有最少量的象氨及氰化氢这样组分的一氧化碳和/或氢气产品。
令人惊奇的是,已发现在催化部分氧化工艺进料中含有硫或含硫化合物显著降低了所得氨和氰化氢的数量。因此,本发明提供一种用于烃类原料催化部分氧化的工艺方法,该工艺方法包括:在200-12,500kPa压力,950-1300℃温度下,以20,000-100,000,000Nl/kg/hr的气体每小时体积流速,将含有烃类原料和含氧气体的进料混合物,该进料混合物还含有氮气,与含有选自元素周期表第八族金属作催化活性成分的催化剂相接触,所述进料混合物中的烃类原料和含氧气体含量使氧-碳比为0.3-0.8,其中,所述进料混合物还含有含量为0.05-100ppm的含硫化合物。
本发明的工艺方法可用于从任何气态烃或在部分氧化反应期间的操作条件下为气态的低沸点烃类生产一氧化碳和/或氢气。本工艺方法尤其适用于甲烷、天然气、伴生气或其它轻质烃原料的部分氧化。在此,“轻质烃类”这一术语意指具有1到5个碳原子的烃类。本工艺可用于对自然界存在的含有相当数量二氧化碳的甲烷气的转化。进料优选含有至少50%(体积)的甲烷,更优选含有至少75%(体积)的甲烷,尤其是至少80%(体积)甲烷。
在部分氧化反应期间,烃类原料与含氧气体相接触。空气可用作含氧气体,此时在原料与反应混合物中均有大量的氯气。替代方式下,优选采用基本上纯净的氧气,此时氯气量会低得多但仍不容忽视。工业生产中通常采用液化空气的蒸馏来制得基本上纯净的氧气。存在于基本上纯净的氧气中的氮气量取决于空气蒸馏过程的操作条件。本发明工艺方法的一个优势在于空气蒸馏过程的操作裕度大,因此允许在用于催化部分氧化反应的基本上纯净的氧气中存在较多氮气。这反过来又获得了降低空气蒸馏设备的总投资和操作费用的好处。
进料中选择性含有蒸汽。
进料可含有足够数量的烃类原料和氧气以达列适宜的氧-碳比。优选的氧~碳比范围在0.3~0.8之间,更优选在0.45~0.75之间。氧-碳比的参考值系指分子态的氧(O2)与烃类原料中的碳原子之比。优选的氧-碳比范围在0.45~0.70之间,范围在0.45~0.65之间、具有化学计量比0.5的氧-碳比尤为适合。
若在原料中有蒸汽存在,优选的蒸汽-碳之比〔即蒸汽分子(H2O)与烃类的碳原子之比〕范围在大于0.0到3.0,更优选的在大于0.0到2.0。
本发明工艺中与催化剂接触的气态混合物含有一种含硫化合物。该化合物可含有一种或多种含硫化合物。可采用任意合适的当存在所要求数量的该物质时不致对部分氧化反应操作造成显著不利影响的含硫化合物。有机和无机含硫化合物均可采用。合适的无机硫化合物包括硫化氢、氧硫化碳、二硫化碳和二氧化硫、合适的有机含硫化合物包括噻吩、硫醇及硫醚。最合适的含硫化合物为四氢噻吩。若使用天然气或伴生气,当气体在储层产生时就有含硫化合物存在。此含硫烃类原料可便利地用作本发明工艺的进料而不用象通常生产中那样将其先经脱硫处理。
在进料混合物中应含有足够浓度的含硫化合物以减少氨和氰化氢的形成。但是含硫化合物用量不应太大以致显著降低了所用催化剂的活性或选择性。因此进料混合物中所含有的含硫化合物用量优选为其硫(S)含量范围为0.05~100ppm之间,更优选的在0.1~50ppm之间,特别是在0.1~10ppm之间。所用的直接来自天然发生池的烃类原料其中硫含量显著高于上述上限,在将其用于本发明的工艺过程之前优选对其经部分脱硫处理。
烃类原料、氧气及其伴生气、含硫化合物和蒸汽(若有的话)在与催化剂接触之前优选将其良好混合。
本发明的工艺可在任意合适的压力下操作。本发明的工艺优选在高压下操作,即压力显著高于大气压。可在直至15,000kPa的压力下进行操作。优选操作压力范围在200~12,500kPa之间,更优选的在300~10,000kPa之间。
本工艺可在任意合适的温度下操作。但在本工艺占主导地位的高操作压力条件下,必须允许进料气在高温下与催化剂接触以达到工业规模操作所要求的转化率水平。因此,本工艺优选在至少950℃的温度下操作。优选操作温度范围在950~1300℃之间,更优选950~1200℃。温度范围在1000~1200℃之间尤为合适。
在本工艺中可以任意合适的气体体积流速提供进料混合物。本发明工艺的一个优势在于可采用很高的气体体积流速。因此,本工艺的典型体积流速(表示为每小时每千克催化剂的气体标准升)范围在20,000~100,000,000Nl/kg/hr之间,更优选50,000~50,000,000Nl/kg/hr之间。体积流速在500,000~30,000,000Nl/kg/hr之间尤为合适。
适合用于烃类催化部分氧化的催化剂组成为本领域所公知。用于本发明工艺的优选催化剂包括选自元素周期表第八族用作催化活性成分的金属。有关元素周期表定义的参考资料见CAS版,发表于CRC Handbook of Chemistry and Physics,68th Edition。优选用于本工艺的催化剂包括一种选自钌、铑、钯、锇、铱及铂的金属。含有钌、铑或铱作为催化活性金属的催化剂最适宜用于本工艺。
催化活性金属最恰当地用载体承载。合适的载体材料为本领域所公知,包括高熔点氧化物如二氧化硅、氧化铝、二氧化钛、氧化锌及其混合物。混合高熔点氧化物即含有至少两种阳离子的高熔点氧化物亦可用作催化剂载体材料。
可用本领域所公知的技术将催化活性金属沉积在高熔点氧化物载体上。将金属沉积在载体上最适宜的技术是浸渍,该技术通常包括将载体材料与催化活性金属化合物的溶液相接触,之后将所得材料干燥并焙烧。
催化剂可含有任意合适数量的催化活性金属以达到所要求的活性水平。通常,催化剂含有0.01~20%(重量)的活性金属,优选的为0.02~10%(重量),更优选的为0.1~7.5%(重量)。
本发明的工艺中可应用任何适宜的反应方式以将反应物料与催化剂相接触。一种合适的反应方式为流化床,其中催化剂是以被气流流化的颗粒形式使用的。优选用于本工艺的反应方式是一固定床反应器,其中催化剂以固定结构持留在反应区。催化剂颗粒可用于固定床中,用本领域所公知的固定床反应技术持留催化剂颗粒。替代的催化剂固定结构可包括整体式结构的催化剂。最优选的整体式结构包括一种陶瓷泡沫材料。可工业制得适用于本工艺的陶瓷泡沫。此外,催化剂的替代型式包括高熔点氧化物的蜂窝状整体结构。
本发明方法的一个优选实施方案中,进料与持留在具有高曲折因子的固定结构中的催化剂相接触。“曲折因子”这一术语是本领域的一个普通术语,当涉及固定催化剂床层时,它可定义为流过床层的气体所经过的路径长度与通过床层的最短直线路径的长度之比。因此蜂窝状整体结构的曲折因子为1.0。本发明用到“高曲折因子”这一术语,在此是将其作为具有总体上大于蜂窝状结构的曲折因子、特别是曲折因子至少为1.1的床层结构的参考值。催化剂颗粒固定床的曲折因子一般为1.5而可制成曲折因子在3.0~4.0之间或甚至更高的陶瓷泡沫。通常,固定床结构的的曲折因子优选在1.1~10.0之间,更优选的在1.1~5.0之间。最适宜的曲折因子范围在1.3~4.0之间。
业已发现在具有高曲折因子的固定床结构中使用催化剂使得反应气体与催化剂之间只用很短的接触时间即可达到所要求的转化率。这样仅需要很小体积的催化剂,反过来这又使得在工业规模的生产中容易达到本工艺过程的很高的气体体积流速。
本发明工艺的更为有利的特征是催化剂处于一种具有大量小孔的固定结构形态。在此,“小孔”这一术语一般意指在固定结构中催化剂两相邻部分之间的空间或空隙。因此,在催化剂颗粒的固定床中,“小孔”这一术语意指二相邻颗粒之间的空间。当用于陶瓷泡沫时,小孔这一术语意指陶瓷结构相邻两部分或两块之间的空隙或空间。因而本发明在此所提到的小孔具有0.1mm数量级的公称直径是很可贵的。这些可与催化剂载体物质本身所具有的小孔作一对比。载体物质可是多孔物质。
固定结构每平方厘米包括至少750个小孔。固定结构优选每平方厘米包括约1000~约15000个小孔,更优选的每平方厘米包括约1250~约10000个小孔。
烃类原料和含氧气体的气态混合物优选在绝热条件下与催化剂相接触。对本说明书来说,“绝热”这一术语意指除了反应器的气体流出物中所带走的热量以外,基本上防止了反应区所有热损失及热辐射的反应条件。
另一方面,本发明涉及任何由上述工艺方法所制得的一氧化碳或氢气。
本发明的工艺所制得的一氧化碳和氢气混合物特别适用于烃类合成,如通过Fischer-Tropsch合成方法;或用于烃类氧化物的合成,如合成甲醇。由一氧化碳和氢混合物转化生成此类产品的工艺方法为本领域所公知。
如上所述,本发明的一个优势在于天然产生的含有硫或含硫化合物的烃类原料不需经过脱硫级对其处理而进行催化部分氧化反应,这与传统的加工天然产生的烃类原料如天然气或伴生气的方法不同。传统工艺在利用这些烃类原料之前将其进行脱硫处理。因此可知仅在本工艺的一氧化碳和/或氢气产品用于诸如Fischer-Tropsch合成等对硫的存在敏感的场合时才需要应用脱硫处理。在这些应用场合下,可对催化部分氧化工艺的产品物流进行脱硫处理。
因此再一方面,本发明提供了一种由烃类原料生产一氧化碳和/或氢气的工艺方法,它包括将烃类原料在第一级进行上述的催化部分氧化过程并将第一级产品的至少一股物料在第二级经一脱硫过程处理。
参考本发明的含硫烃类原料催化部分氧化工艺方法的一个实施方案的流程图来进一步详述本发明的方法。
参见附图,经管线4将含有基本上纯净的氧气和含硫天然气的进料混合物加入一催化部分氧化反应器2。基本上纯净的氧是在一经管线6与催化部分氧化工艺单元连接的蒸馏单元(未示出)内将液化空气蒸馏而制得,其中含有微量的氮。催化部分氧化反应器2的热产品物流经管线8引入一换热器10,在此用来预热经管线12去往该换热器的天然气。预热后的天然气进料经管线14送往催化部分氧化反应器的入口。
冷却后的催化部分氧化反应器的产品物流经管线16排出换热器。含有一氧化碳和氢气的产品物流经管线18离开本操作单元后作为耐硫应用场合(未示出)的进料。一股冷却产品物流经管线20去往一脱硫单元22。一股基本上无硫的产品物流经管线24从脱硫单元22排出作为对硫敏感应用场合的供料。
合适的用于脱硫单元从一氧化碳/氢气产品中脱除含硫组分的工艺方法为本领域所公知。适宜的技术包括将产品物流流经诸如活性碳或氧化锌这样的合适的吸附剂床层将含硫化合物吸附除去。
下述说明性的实施例用于进一步描述本发明的工艺方法。其中实施例1和2为本发明的实施方案,实施例3仅用作比较之目的。
                        实施例1催化剂制备
六铝酸钡(BaAl12O19)制备如下:
在氮气氛下将钡(21.0g)加入异丙醇(1500ml)中,将所得混合物回流加热1.5小时。另外往所得溶液中加入异丙醇(1000ml),此后,逐滴加入异丙醇铝(379.65g)并将混合物回流加热5小时。所得混合物(601.87g)与软水(22.5g)混合并在搅拌下回流加热1小时。其后将所得溶液加热蒸发掉溶剂留下固体物。将固体物加热到120℃干燥并在此温度下保持4小时。其后,在第一级经4小时将固体物加热到450℃焙烧并在此温度下保持1小时;之后在第二级经1小时将固体物加热到1300℃并在该温度下保持5小时。
将三氯化铑(RhCl3,2.0g)和盐酸(37%,1.0g)溶于软水中制得铑浓度为10%(重量)的水溶液。将上述所制得的六铝酸钡(30/80目,2.0g)在前述的水溶液(1.07g)中浸渍。所得的混合物首先在一轧钢机中拌合1小时,之后在一旋转干燥机中干燥1小时。所得物料在一加热炉内加热干燥并在120℃温度下保持5小时,之后将其加热5小时焙烧并在500℃的温度下保持1小时。所得催化剂含有5.0%(重量)的铑。催化部分氧化
反应器具有在透明聚碳酸酯外管内同心设置的透明青玉管。所制得的上述含铑催化剂装入青玉管内并以曲折因子为1.5的催化剂颗粒固定床形式持留在管内。含有足够数量甲烷和氧气其氧-碳比为0.63的进料混合物在进入反应器与催化剂固定床层相接触之前充分混合。进料混合物在320kPa的压力下和气体每小时体积流速(GHSV)1,400,000 Nl/kg/hr下加入反应器。进料混合物含有10%(体积)的氮气。在进料混合物中有四氢噻吩,其含量足以使硫(S)浓度达到4.5ppmv。
催化剂床层的操作温度用光学高温测量技术测量。离开反应器的气体混合物组分含量用气相色谱测定。亦测定了本方法生成CO和H2反应的转化率和选择性(基于转化的甲烷计)。产品气中的氨含量可通过使气体物流流经硫酸水溶液将氨脱除,再对硫酸溶液进行滴定测得。氰化氢的含量使用氢氧化钾水溶液经与测定氨含量相似的方法测得。
反应器的操作条件及实验结果归总于下表中。实施例2
遵循实施例1中所描述的催化剂的制备和工艺方法,但进料混合物中四氢噻吩的含量为足以使硫(S)浓度达到0.6ppm。反应器的操作条件及实验结果归总于下表中。实施例3比较例
遵循实施例1中所描述的催化剂的制备和工艺方法,但进料混合物中不含硫。反应器的操作条件及实验结果归总于下表中。
                         表
实施例1 实施例2 实施例3
进料组成
N2含量(%体积)     10     10     10
S含量(ppmv)1     4.5     0.6     0.0
氧/碳比     0.63     0.63     0.63
操作条件
压力(kPa)     320     320     320
GHSV(1000Nl/kg/hr)     1400     1400     1400
产品物流
NH3含量(ppmv)     0.62     2.32     10.02
 HCN含量(ppmv)     <0.1     <0.1     1.03
1以四氢噻吩形式存在2精度±0.5ppmv3精度±0.1ppmv

Claims (20)

1.一种烃类原料的催化部分氧化工艺方法,该工艺方法包括:在200-12,500kPa压力,950-1300℃温度下,以20,000-100,000,000Nl/kg/hr的气体每小时体积流速,将含有烃类原料和含氧气体的进料混合物,该进料混合物还含有氮气,与含有选自元素周期表第八族的金属作催化活性成分的催化剂相接触,所述进料混合物中的烃类原料和含氧气体含量使氧-碳比为0.3-0.8,其中,所述进料混合物还含有含量为0.05-100ppm的含硫化合物。
2.根据权利要求1的工艺方法,其特征在于烃类原料包括甲烷、天然气、伴生气或轻质烃原料。
3.根据权利要求1或2的工艺方法,其特征在于含氧气体为基本上纯净的氧。
4.根据权利要求1或2的工艺方法,其特征在于所述进料含有烃类原料和含氧气体,其含量使氧-碳比为0.45-0.75。
5.根据权利要求1或2的工艺方法,其特征在于含硫化合物是硫化氢、二氧化硫、氧硫化碳、二硫化碳、硫醇、有机硫醚或噻吩。
6.根据权利要求5的工艺方法,其特征在于含硫化合物是四氢噻吩。
7.根据权利要求1或2的工艺方法,其特征在于含硫化合物含量为0.1-50ppm。
8.根据权利要求7的工艺方法,其特征在于含硫化合物含量为0.1-10ppm。
9.根据权利要求1或2的工艺方法,其特征在于,在300-10,000kPa压力下将进料与催化剂相接触。
10.根据权利要求1或2的工艺方法,其特征在于,在1000-1200℃温度下将进料与催化剂相接触。
11.根据权利要求1或2的工艺方法,其特征在于,以50,000-50,000,000Nl/kg/hr的气体每小时体积流速将进料与催化剂相接触。
12.根据权利要求1或2的工艺方法,其特征在于,以500,000-30,000,000Nl/kg/hr的气体每小时体积流速将进料与催化剂相接触。
13.根据权利要求1或2的工艺方法,其特征在于,催化剂含有铑、钌或铱。
14.根据权利要求1或2的工艺方法,其特征在于催化剂持留于一固定结构上。
15.根据权利要求14的工艺方法,其特征在于所述固定结构为催化剂颗粒的固定床形式或陶瓷泡沫形式。
16.根据权利要求15的工艺方法,其特征在于所述固定结构为陶瓷泡沫形式。
17.根据权利要求14的工艺方法,其特征在于,催化剂的固定结构具有1.1-10.0的曲折因子。
18.根据权利要求17的工艺方法,其特征在于,催化剂的固定结构具有1.3-4.0的曲折因子。
19.根据权利要求14的工艺方法,其特征在于,催化剂的固定结构每平方厘米有1000-15000个小孔。
20.根据权利要求1或2的工艺方法,其特征在于,进料与催化剂在基本上绝热的条件下相接触。
CN94194660A 1993-12-27 1994-12-22 烃类催化部分氧化工艺方法 Expired - Fee Related CN1044354C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP93203703 1993-12-27
EP93203703.9 1993-12-27

Publications (2)

Publication Number Publication Date
CN1139416A CN1139416A (zh) 1997-01-01
CN1044354C true CN1044354C (zh) 1999-07-28

Family

ID=8214249

Family Applications (1)

Application Number Title Priority Date Filing Date
CN94194660A Expired - Fee Related CN1044354C (zh) 1993-12-27 1994-12-22 烃类催化部分氧化工艺方法

Country Status (18)

Country Link
US (1) US5720901A (zh)
EP (1) EP0737163B1 (zh)
JP (1) JPH09502695A (zh)
CN (1) CN1044354C (zh)
AT (1) ATE179395T1 (zh)
AU (1) AU682239B2 (zh)
BR (1) BR9408420A (zh)
CA (1) CA2179911A1 (zh)
CO (1) CO4410233A1 (zh)
DE (1) DE69418213T2 (zh)
DZ (1) DZ1840A1 (zh)
ES (1) ES2133719T3 (zh)
NO (1) NO962682L (zh)
NZ (1) NZ277807A (zh)
RU (1) RU2132299C1 (zh)
SG (1) SG48008A1 (zh)
WO (1) WO1995018062A1 (zh)
ZA (1) ZA9410245B (zh)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040228792A1 (en) * 1998-06-30 2004-11-18 Assink Gerrit Jan Barend Catalyst comprising two catalytically-active metals
US6475960B1 (en) 1998-09-04 2002-11-05 Exxonmobil Research And Engineering Co. Premium synthetic lubricants
US6080301A (en) 1998-09-04 2000-06-27 Exxonmobil Research And Engineering Company Premium synthetic lubricant base stock having at least 95% non-cyclic isoparaffins
US6221280B1 (en) 1998-10-19 2001-04-24 Alliedsignal Inc. Catalytic partial oxidation of hydrocarbon fuels to hydrogen and carbon monoxide
US6403051B1 (en) * 1999-07-30 2002-06-11 Conoco Inc. Recovery of sulfur from H2S and concurrent production of H2 using short contact time CPOX
US6800269B2 (en) 1999-07-30 2004-10-05 Conocophillips Company Short contact time catalytic sulfur recovery system for removing H2S from a waste gas stream
US6579510B2 (en) 1999-07-30 2003-06-17 Alfred E. Keller SPOX-enhanced process for production of synthesis gas
US6946111B2 (en) 1999-07-30 2005-09-20 Conocophilips Company Short contact time catalytic partial oxidation process for recovering sulfur from an H2S containing gas stream
WO2001060515A2 (en) * 2000-02-18 2001-08-23 Conoco Inc. Reticulated ceramic foam catalysts for synthesis gas production
FR2805531B1 (fr) * 2000-02-24 2003-02-21 Air Liquide Procede de production d'hydrogene par oxydation partielle d'hydrocarbures
US6497856B1 (en) 2000-08-21 2002-12-24 H2Gen Innovations, Inc. System for hydrogen generation through steam reforming of hydrocarbons and integrated chemical reactor for hydrogen production from hydrocarbons
AU3264901A (en) * 2000-07-25 2002-02-05 Conoco Inc Spox-enhanced process for production of synthesis gas
US7122170B2 (en) * 2000-07-25 2006-10-17 Conocophillips Company Catalysts for SPOC™ enhanced synthesis gas production
US7326397B2 (en) * 2000-12-18 2008-02-05 Conocophillips Company Catalytic partial oxidation process for recovering sulfur from an H2S-containing gas stream
EP1355719B1 (en) * 2000-12-18 2009-06-24 ConocoPhilips Company Short contact time catalytic sulfur recovery system for removing h2s from a waste gas stream
US7357908B2 (en) * 2000-12-18 2008-04-15 Conocophillips Company Apparatus and catalytic partial oxidation process for recovering sulfur from an H2S-containing gas stream
US6673230B2 (en) 2001-02-08 2004-01-06 Bp Corporation North America Inc. Process for oxygenation of components for refinery blending of transportation fuels
US6881325B2 (en) * 2001-02-08 2005-04-19 Bp Corporation North America Inc. Preparation of components for transportation fuels
US6872231B2 (en) * 2001-02-08 2005-03-29 Bp Corporation North America Inc. Transportation fuels
US20020148754A1 (en) * 2001-02-08 2002-10-17 Gong William H. Integrated preparation of blending components for refinery transportation fuels
GB0113370D0 (en) 2001-06-01 2001-07-25 Kvaerner Process Tech Ltd Process
US20030103892A1 (en) * 2001-10-17 2003-06-05 Conoco Inc. Promoted cobalt-chromium oxide catalysts on lanthanide-modified supports and process for producing synthesis gas
CA2470344A1 (en) * 2001-12-18 2003-06-26 Conocophillips Company Catalyst for spoc-enhanced synthesis gas production
FR2833863B1 (fr) * 2001-12-20 2004-08-20 Air Liquide Reacteur catalytique, installation et procede de reaction correspondants
US20030119658A1 (en) * 2001-12-21 2003-06-26 Conocophillips Company Recovery of rhenium from a spent catalyst via sublimation
US7303606B2 (en) * 2002-01-08 2007-12-04 The Boc Group, Inc. Oxy-fuel combustion process
US6783749B2 (en) * 2002-05-13 2004-08-31 The Boc Group, Inc. Gas recovery process
US6911161B2 (en) * 2002-07-02 2005-06-28 Conocophillips Company Stabilized nickel-containing catalysts and process for production of syngas
US7094730B2 (en) * 2002-10-31 2006-08-22 Delphi Technologies, Inc. Gas treatment device, methods for making and using the same, and a vehicle exhaust system
US7074375B2 (en) 2002-12-03 2006-07-11 Engelhard Corporation Method of desulfurizing a hydrocarbon gas by selective partial oxidation and adsorption
WO2004055135A1 (en) * 2002-12-17 2004-07-01 Shell Internationale Research Maatschappij B.V. Process for the catalytic selective oxidation of sulphur compounds
US7041621B2 (en) 2003-01-17 2006-05-09 Conocophillips Company Sulfided catalysts for improved performance in hydrocarbon processing
US8273139B2 (en) * 2003-03-16 2012-09-25 Kellogg Brown & Root Llc Catalytic partial oxidation reforming
US7932296B2 (en) * 2003-03-16 2011-04-26 Kellogg Brown & Root Llc Catalytic partial oxidation reforming for syngas processing and products made therefrom
US6974843B2 (en) * 2003-04-02 2005-12-13 Conoco Phillips Company Cogeneration of organic compounds with synthesis gas by catalytic partial oxidation
US7316806B2 (en) * 2003-10-29 2008-01-08 Nippon Shokubai Co., Ltd. Modifying catalyst for partial oxidation and method for modification
US20050154069A1 (en) * 2004-01-13 2005-07-14 Syntroleum Corporation Fischer-Tropsch process in the presence of nitrogen contaminants
US7108842B2 (en) * 2004-01-15 2006-09-19 Conocophillips Company Process for the catalytic partial oxidation of H2S using staged addition of oxygen
US7022742B2 (en) * 2004-04-08 2006-04-04 Syntroleum Corporation Process to control nitrogen-containing compounds in synthesis gas
EP1838611B1 (en) * 2004-11-18 2013-09-25 Praxair Technology, Inc. Steam methane reforming method
US7037485B1 (en) 2004-11-18 2006-05-02 Praxair Technology, Inc. Steam methane reforming method
US7226572B1 (en) * 2006-03-03 2007-06-05 Conocophillips Company Compact sulfur recovery plant and process
US7501111B2 (en) 2006-08-25 2009-03-10 Conoco Phillips Company Increased capacity sulfur recovery plant and process for recovering elemental sulfur
ATE539814T1 (de) * 2006-11-08 2012-01-15 Air Liquide Verfahren zur herstellung einesträgerkatalysators
EP1920830A1 (en) 2006-11-08 2008-05-14 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Group VIII and ceria/zirconia containing catalysts for catalytic hydrocarbon reforming or oxidation
US20080260631A1 (en) * 2007-04-18 2008-10-23 H2Gen Innovations, Inc. Hydrogen production process
JP4496346B2 (ja) * 2007-10-11 2010-07-07 石油資源開発株式会社 炭化水素リフォーミング用触媒およびこれを用いた合成ガスの製法
JP4639247B2 (ja) 2008-07-23 2011-02-23 石油資源開発株式会社 炭化水素リフォーミング用触媒およびその製造方法ならびにこれを用いた合成ガスの製法
US8007761B2 (en) * 2008-12-24 2011-08-30 Praxair Technology, Inc. Carbon dioxide emission reduction method
CN101811047B (zh) * 2009-02-20 2012-10-03 中科合成油技术有限公司 一种费托合成用铁基催化剂、其制备方法和应用
DE102010034848B4 (de) 2010-08-13 2019-05-09 Arianegroup Gmbh Zweistoff-Triebwerk

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0303438A2 (en) * 1987-08-14 1989-02-15 DAVY McKEE CORPORATION Production of synthesis gas from hydrocarbonaceous feedstock
WO1992011199A1 (en) * 1990-12-24 1992-07-09 British Gas Plc Improved processes for the conversion of methane to synthesis gas
US5149464A (en) * 1989-06-30 1992-09-22 Gas Research Institute Catalytic gas conversion method
WO1993001130A1 (en) * 1991-07-02 1993-01-21 University Of Warwick Catalysts for the production of carbon monoxide

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4927857A (en) * 1982-09-30 1990-05-22 Engelhard Corporation Method of methanol production
GB8623482D0 (en) * 1986-09-30 1986-11-05 Johnson Matthey Plc Catalytic generation of hydrogen
US5087271A (en) * 1990-11-19 1992-02-11 Texaco Inc. Partial oxidation process
ATE156778T1 (de) * 1991-07-09 1997-08-15 Ici Plc Synthesegaserzeugung
US5250083A (en) * 1992-04-30 1993-10-05 Texaco Inc. Process for production desulfurized of synthesis gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0303438A2 (en) * 1987-08-14 1989-02-15 DAVY McKEE CORPORATION Production of synthesis gas from hydrocarbonaceous feedstock
US5149464A (en) * 1989-06-30 1992-09-22 Gas Research Institute Catalytic gas conversion method
WO1992011199A1 (en) * 1990-12-24 1992-07-09 British Gas Plc Improved processes for the conversion of methane to synthesis gas
WO1993001130A1 (en) * 1991-07-02 1993-01-21 University Of Warwick Catalysts for the production of carbon monoxide

Also Published As

Publication number Publication date
AU1317395A (en) 1995-07-17
NZ277807A (en) 1997-04-24
ZA9410245B (en) 1995-08-29
CA2179911A1 (en) 1995-07-06
WO1995018062A1 (en) 1995-07-06
NO962682D0 (no) 1996-06-25
DE69418213D1 (de) 1999-06-02
EP0737163A1 (en) 1996-10-16
AU682239B2 (en) 1997-09-25
BR9408420A (pt) 1997-08-26
SG48008A1 (en) 1998-04-17
US5720901A (en) 1998-02-24
NO962682L (no) 1996-08-15
CN1139416A (zh) 1997-01-01
JPH09502695A (ja) 1997-03-18
CO4410233A1 (es) 1997-01-09
RU2132299C1 (ru) 1999-06-27
EP0737163B1 (en) 1999-04-28
ES2133719T3 (es) 1999-09-16
DZ1840A1 (fr) 2002-02-17
ATE179395T1 (de) 1999-05-15
DE69418213T2 (de) 1999-10-14

Similar Documents

Publication Publication Date Title
CN1044354C (zh) 烃类催化部分氧化工艺方法
CN1036987C (zh) 烃的催化部分氧化的方法
CN1039698C (zh) 烃的催化部分氧化方法
CN1036913C (zh) 烃类的部分催化氧化方法
US4743576A (en) Catalyst for the production of synthesis gas or hydrogen and process for the production of the catalyst
US6376423B2 (en) Catalyst for preparation of synthesis gas and process for preparing carbon monoxide
CN1139417A (zh) 制备一氧化碳和/或氢气的工艺方法
AU737644B2 (en) Process for the production of synthesis gas
KR100818900B1 (ko) 수소 함유 가스 혼합물 중의 일산화탄소의 촉매적 전환방법
US4863707A (en) Method of ammonia production
US20040198845A1 (en) Selective removal of oxygen from syngas
KR100542911B1 (ko) 연료전지 자동차에 이용되는 가솔린 개질용 저압차 촉매와 이의 제조방법
US5498404A (en) Process for the steam reforming of hydrocarbons
EA016492B1 (ru) Каталитическая конверсия диоксида углерода в смесь синтез-газа
CN1684771A (zh) 用于烃自热水蒸气转化的多层催化剂和使用所述催化剂的方法
CN1321609A (zh) 富氢气体的制备方法
US5989457A (en) Process for the production of synthesis gas
US4522802A (en) Steam reforming utilizing iron oxide catalyst
KR20020079612A (ko) 개질 가스로부터 일산화탄소를 제거하기 위한 촉매 및 공정
CN1104173A (zh) 制备一氧化碳和氢气的方法
US20050025701A1 (en) Steam reforming catalyst composition and process
US20070093559A1 (en) Catalytic reduction and oxidation processes
CN1062240C (zh) 一种由甲烷直接催化氧化制合成气的方法
US20100147749A1 (en) Multi-Metallic Catalysts For Pre-Reforming Reactions
JP4083556B2 (ja) 改質ガス中の一酸化炭素の選択酸化触媒

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee