CN104377104B - 使用环境透射电子显微镜的方法以及环境透射电子显微镜 - Google Patents

使用环境透射电子显微镜的方法以及环境透射电子显微镜 Download PDF

Info

Publication number
CN104377104B
CN104377104B CN201410392945.2A CN201410392945A CN104377104B CN 104377104 B CN104377104 B CN 104377104B CN 201410392945 A CN201410392945 A CN 201410392945A CN 104377104 B CN104377104 B CN 104377104B
Authority
CN
China
Prior art keywords
gas
sample
electron microscope
transmission electron
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410392945.2A
Other languages
English (en)
Other versions
CN104377104A (zh
Inventor
P.C.蒂伊梅杰
S.J.P.科宁斯
A.亨斯特拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FEI Co
Original Assignee
FEI Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FEI Co filed Critical FEI Co
Publication of CN104377104A publication Critical patent/CN104377104A/zh
Application granted granted Critical
Publication of CN104377104B publication Critical patent/CN104377104B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • H01J37/263Contrast, resolution or power of penetration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/006Details of gas supplies, e.g. in an ion source, to a beam line, to a specimen or to a workpiece
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/2602Details
    • H01J2237/2605Details operating at elevated pressures, e.g. atmosphere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/262Non-scanning techniques

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

本发明公开了使用环境透射电子显微镜的方法以及环境透射电子显微镜。环境透射电子显微镜遭受气体诱发的分辨率劣化。已发现该劣化并不是样品上的电流密度的函数,而是电子束的总电流的函数。发明人得出结论,劣化是由于ETEM的样品室中的气体的电离而引起的,并且提出使用样品室中的电场来移除电离气体,从而减小气体诱发的分辨率劣化。电场不需要是强场,并且能通过例如使样品114相对于样品室138偏置而引起。经由电压源144施加的100 V的偏置电压足以实现气体诱发的分辨率劣化的显著改善。极化并不是重要的。备选地,能通过例如将电偏置导线或纱网154离轴地放置在样品室中来使用垂直于光轴104的电场。

Description

使用环境透射电子显微镜的方法以及环境透射电子显微镜
技术领域
本发明涉及使用环境(Environmental)透射电子显微镜的方法,所述环境透射电子显微镜包括:
·电子源,用于产生电子束;
·聚光镜(condenser)系统,用于将电子束指引(directing)到样品,所述样品位于样品室中;
·成像系统,用于在检测器系统上对透射通过样品的电子进行成像;
·气体调节系统,用于调节样品室中的气体压力和气体组成,所述气体调节系统使样品室的至少部分中保持在0.5与50 mbar之间的压力,
ETEM遭受气体诱发的分辨率劣化(resolution deterioration)。
本发明还涉及环境透射电子显微镜。
背景技术
尤其可从欧洲专利No. EP2555221了解此类环境透射电子显微镜(ETEM)。此类ETEM类似于透射电子显微镜,但是作为具有高真空(例如,10-4 mbar或更小)的样品室的替代,使用具有例如在0.1至50 mbar之间的压力的真空室。这例如使得能够对催化剂中的化学过程进行直接观察。
此类ETEM可从例如美国希尔斯伯勒市(Hillsboro)的FEI公司以Titan ETEM G2的名称商业获得。
要注意的是,ETEM可配备有扫描装置,使得其能够作为环境扫描透射电子显微镜来操作。
还要注意的是,ETEM并不是配备有所谓的环境室(cell)的TEM,也即配备有其中放置样品的封闭容积的TEM,封闭容积处于高于样品室的压力的压力下且被放置在TEM的样品室中。
在ETEM中、尤其当使用高射束(beam)电流时出现的问题是分辨率劣化,尤其当使用高射束电流和高气体压力时更是如此。
在J.R. Jinschek在Microscopy and Microanalysis、第18卷、第S2期、 第1148-1149页中的“On the gas-dependent image resolution in an aberration-correctedETEM”中描述了这种所谓的气体诱发的分辨率劣化。
存在对于具有减小的气体诱发的分辨率劣化的ETEM的需要。
发明内容
本发明的一个目的是要提供用来减小气体诱发的分辨率劣化的技术方案。
为此,本发明的特征在于,环境透射电子显微镜包括在样品室中产生去除所述电离气体的电场的装置,作为其结果,减小了气体诱发的分辨率劣化。
本发明基于这样的认识,即气体诱发的分辨率劣化由电子对电离气体的散射而引起。此电离气体通过电子与中性气体的碰撞而形成,但是一旦被电离,气体形成对于电子束的散射点,直至电离气体原子和分子被从射束中去除足够远。发明人认识到样品室中的电场去除电离颗粒。
要注意的是,由于电场的功能仅用于去除电离气体,所以其不需要是强场,并且对由具有通常在80 keV和300 keV之间的可选择能量的电子组成的射束的影响是最小的。
在本发明的实施例中,电场平行于电子束。
在本实施例中,用平行于射束的场来去除电离气体。该技术方案的优点是场并不使射束偏转,仅发生轻微的散焦(defocus)。
如技术人员所已知的,使用样品架(sample holder)来将样品保持并定位于样品室中。能通过使样品架相对于样品室的壁偏置(bias)而引起场,所述偏置是正的或负的。当偏置是正的时,带负电的气体朝着样品漂移,当偏置是负的时,带负电的气体朝着样品室的壁漂移。
在本发明的另一实施例中,电场垂直于电子束。
在该实施例中,不需要使样品架偏置。替代地,一个或多个电极引起垂直于射束的场。这能够是横向场(偶极子场),但是其也可以是高阶多极场,或者由被偏心地(off-centre)放置在样品室中的导线或纱网(gauze)引起的场,或者由例如围绕射束的一个或多个环状电极引起的场。
在又一实施例中,电场是垂直于射束的场,并且垂直于射束且垂直于电场的磁场对抗(counter)电场对射束的影响。
通过添加垂直于射束和电场两者的磁场,形成针对射束的维恩(Wien)滤波器,并且射束的轨迹是直线路径。要注意的是,维恩滤波器显示出能量分散且无偏转,但是在另一激励下,可能的是操作滤波器以使得发生偏转,而没有能量分散。
在另一实施例中,样品室被嵌入在ETEM的真空室中。
该实施例描述了ETEM的使用,其中,ETEM由与定位于TEM(透射电子显微镜)的样品室内的环境室协作的标准TEM或STEM(扫描透射电子显微镜)形成,环境室包围高压力区。例如从J.F. Creemer等人在Journal of Microelectromechanical Systems、第19卷、第2期、2010年4月中的“A MEMS reactor for atomic-scale microscopy of nanomaterialsunder industrial relevant conditions”中可了解此类环境室。
要注意的是,已知其中由检测器在样品室中产生电场的透射电子显微镜。此类检测器必要地包括用于信号处理(放大等)的电子装置,并且仅在扫描模式下使用,因为然后射束的位置确定位置信息。
因此,在本发明的一方面,提供环境透射电子显微镜,所述环境透射电子显微镜包括:
·电子源,用于产生电子束;
·聚光镜系统,用于将电子束指引到样品上,所述样品位于样品室中;
·成像系统,用于在检测器系统上对透射通过样品的电子进行成像;
·气体调节系统,用于调节样品室中的气体压力和气体组成,所述气体调节系统能使样品室的至少部分中保持在0.5和50 mbar之间的压力,
所述环境透射电子显微镜在工作时遭受气体诱发的分辨率劣化,
其特征在于,
所述环境透射电子显微镜被提供有用于在样品室中产生电场的装置,所述电场去除电离气体,所述装置不是检测器的一部分或不包括检测器。
电场在这里因此被用来去除电离气体,而不(帮助)检测信号。
附图说明
现在利用附图来阐述本发明,其中相同的附图标记指代相应的特征。为此:
图1示意性地示出具有偏置的样品架的ETEM,
图2示意性地示出具有环状电极的ETEM的样品室,
图3示意性地示出具有偏转器(deflector)的ETEM的样品室。
具体实施方式
图1示意性地示出具有偏置的样品架的ETEM。
ETEM 100包括用于产生沿着光轴104的电子束的电子源102,电子具有例如在60与300 keV之间的可选择能量,虽然更低和更高的能量已知被使用。
电子束被聚光镜系统106操纵(聚焦、定位),聚光镜系统包括透镜108、偏转器112以及物镜的照明(illuminating)部分110。
要注意的是,聚光镜系统可包括用来使聚光镜系统、更特别地物镜的照明部分的像差(aberration)最小化的修正器(corrector)。
由聚光镜系统聚焦和对准的电子束进入样品室138且撞击在被样品架116保持和定位的样品114上。样品架116通常在三个方向上使样品相对于射束定位,并且常常能够使样品沿着一个或多个轴旋转。样品架在这里经由绝缘体142被馈送到样品室中,使得样品架能够相对于ETEM的其余部分、更特别地样品室的壁140偏置。电压源144经由电引线(electric lead)146被连接到样品架以用于使样品架偏置。
通过样品的电子进入成像系统118并在检测器126上形成大大地放大的图像。所述成像系统包括物镜的成像部分120、放大透镜122和用于将电子对准到每个透镜的光轴的偏转器124。
要注意的是,所述成像系统可包括用来使成像系统、更特别地物镜的成像部分120的像差最小化的修正器。
在离开成像系统之后,电子撞击在检测器126上。该检测器系统可例如是像素化检测器(CMOS摄像机、具有将屏幕连接到CCD摄像机的光纤的荧光屏)、由人眼或摄像机经由窗口观察的荧光屏或电子能耗谱仪。
样品室138由真空壁140以及孔134和136形成,孔134和136接近于光轴104用于使射束从聚光镜系统106传递至样品室以及从样品室至成像系统118。气体调节系统128经由进口通道130和返回通道132连接到样品室。所述孔充当限压孔,因为样品室138内的压力比聚光镜系统和成像系统中的压力(通常10-6 mbar或更小)高得多(0.1-50 mbar)。
电子束在穿过样品室时使气体电离。电离气体将缓慢地漂移,直至其到达导电部分,诸如样品室的壁140。在此类电离气体原子或分子在射束中或接近于射束的时间期间,其使电子偏转。这导致气体诱发的分辨率劣化。发明人发现分辨率劣化取决于气体的压力和组成及射束电流。在10 nA的射束电流和氩气的8 mbar的压力下,测量到从0.12 nm至0.2nm的分辨率损失。此分辨率损失的出乎预料方面是其并不太多地取决于样品处的单位面积的射束电流,而是仅仅取决于总射束电流。
此效应的解释是电子束使气体电离,并且电离气体随机地导致电子(在聚光镜系统与样品之间的那些电子和在样品与成像系统之间的那些电子)的散射,因此使图像模糊(blurring)。
发明人发现,通过向样品架施加例如100 V的偏置,得到了显著的改善(在重新聚焦之后)。要注意的是,用负电压还是正电压使样品架偏置是无关紧要的。
作为示例,在Ar(氩气)的8 mbar的压力和10 nA的射束电流下,在室中没有电场的情况下的分辨率是0.2 nm,而通过使样品和样品架相对于样品室偏置至100 V(无论极性如何)而引起的场导致改善到0.12 nm。
同样地,在N2的10 mbar的压力和5.5 nA的射束电流下,在室中没有电场的情况下的分辨率是0.23 nm,而通过使样品和样品架偏置至100V(无论极性如何)而引起的场导致改善到0.2 nm。
图2示意性地示出具有环状电极的ETEM的样品室。
图2是从图1的中间部分导出的。差别是:删除了电绝缘体/馈通(feed-through)142,并且替代地经由电引线146和电馈通148而将来自电压源144的电压引导至两个环状电极150和152。这些环状电极在轴上引起场。要注意的是,环状电极不需要形成完整的圆,并且非对称是有利的,因为围绕轴104的完全对称的场在轴处不具有梯度。
图3示意性地示出具有偏转器的ETEM的样品室。
图3与图2相同,除了用偏转器板154来替换环状电极150和152。该偏转器将从轴吸引或排斥电离气体。要注意的是,可将电极形成为板、纱网或者甚至一个导线(平行于射束或垂直于射束)。

Claims (6)

1.一种使用环境透射电子显微镜(100)的方法,所述环境透射电子显微镜包括:
·电子源(102),用于产生电子束;
·聚光镜系统(106),用于将所述电子束指引到样品(114)上,所述样品位于样品室(138)中;
·成像系统(118),用于在检测器系统(126)上对透射通过所述样品的电子进行成像;
·气体调节系统(128),用于调节所述样品室中的气体压力和气体组成,所述气体调节系统使所述样品室的至少部分中保持0.5与50 mbar之间的压力,
所述环境透射电子显微镜遭受气体诱发的分辨率劣化,
其特征在于,
所述环境透射电子显微镜包括在所述样品室中产生去除电离气体的电场的装置(144、146、142),作为其结果,气体诱发的分辨率劣化被减小。
2.根据权利要求1所述的方法,其中,所述电场是平行于射束的电场。
3.根据权利要求1所述的方法,其中,所述电场是垂直于射束的电场。
4.根据权利要求3所述的方法,其中,垂直于射束且垂直于电场的磁场对抗所述电场对射束的影响。
5.根据前述权利要求中的任一项所述的方法,其中,所述样品室被嵌入在所述环境透射电子显微镜的真空室中。
6.一种环境透射电子显微镜(100),所述环境透射电子显微镜包括:
· 电子源(102),用于产生电子束;
· 聚光镜系统(106),用于将所述电子束指引到样品(114)上,所述样品位于样品室(138)中;
· 成像系统(118),用于在检测器系统(126)上对透射通过所述样品的电子进行成像;
· 气体调节系统(128),用于调节所述样品室中的气体压力和气体组成,所述气体调节系统能使所述样品室的至少部分中保持在0.5与50 mbar之间的压力,
所述环境透射电子显微镜在工作中遭受气体诱发的分辨率劣化,
其特征在于,
所述环境透射电子显微镜被提供有用于在所述样品室中产生电场的装置( 144、146、142),所述电场去除电离气体,所述装置不是检测器的一部分或不包括检测器。
CN201410392945.2A 2013-08-12 2014-08-12 使用环境透射电子显微镜的方法以及环境透射电子显微镜 Active CN104377104B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP13180022.9 2013-08-12
EP13180022.9A EP2838108A1 (en) 2013-08-12 2013-08-12 Method of using an environmental transmission electron microscope

Publications (2)

Publication Number Publication Date
CN104377104A CN104377104A (zh) 2015-02-25
CN104377104B true CN104377104B (zh) 2018-04-13

Family

ID=48948341

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410392945.2A Active CN104377104B (zh) 2013-08-12 2014-08-12 使用环境透射电子显微镜的方法以及环境透射电子显微镜

Country Status (4)

Country Link
US (1) US9570270B2 (zh)
EP (2) EP2838108A1 (zh)
JP (1) JP6192618B2 (zh)
CN (1) CN104377104B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9927939B2 (en) * 2014-08-13 2018-03-27 Samsung Display Co., Ltd. Touch panel and display apparatus including the same
WO2019000021A1 (en) * 2017-06-26 2019-01-03 Gerasimos Daniel Danilatos MEANS FOR SAMPLE MANAGEMENT FOR PARTICLE BEAM MICROSCOPY
CN110231354B (zh) * 2019-05-31 2020-09-08 武汉大学 一种非激光激发的四维透射电子显微镜装置及其使用方法
US11081314B2 (en) * 2019-10-01 2021-08-03 National Technology & Engineering Solutions Of Sandia, Llc Integrated transmission electron microscope
CN113241295A (zh) * 2021-04-28 2021-08-10 中国科学院大连化学物理研究所 一种用于环境透射电子显微镜的负压气氛控制系统
CN115116812B (zh) * 2022-08-29 2022-11-11 深圳市宗源伟业科技有限公司 一种高精度电子显微镜

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102637571A (zh) * 2011-02-14 2012-08-15 Fei公司 用于带电粒子显微术中的检测方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130365U (ja) * 1983-02-21 1984-09-01 日本電子株式会社 電子顕微鏡における試料通電装置
GB8604004D0 (en) * 1986-02-18 1986-03-26 Cambridge Instr Ltd Specimen chamber
JP4084427B2 (ja) 1997-12-08 2008-04-30 エフ イー アイ カンパニ 改善された2次電子検出のための多極界を用いた環境制御型sem
DE69821467T2 (de) 1997-12-08 2004-07-22 Fei Co., Hillsboro Rasterelektronenmikroskop unter kontrollierter umgebung mit einem magnetfeld zur erhöhten sekundärelektronenerfassung
US8872129B2 (en) * 2007-05-09 2014-10-28 Protochips, Inc. Microscopy support structures
JP2009129799A (ja) * 2007-11-27 2009-06-11 Hitachi Ltd 走査透過型電子顕微鏡
JP5226378B2 (ja) * 2008-04-28 2013-07-03 株式会社日立ハイテクノロジーズ 透過型電子顕微鏡、及び試料観察方法
US8299432B2 (en) * 2008-11-04 2012-10-30 Fei Company Scanning transmission electron microscope using gas amplification
JP2011034895A (ja) * 2009-08-05 2011-02-17 Hitachi High-Technologies Corp 荷電粒子線装置及び試料汚染除去機構
DE112010005188B4 (de) * 2010-01-27 2016-04-07 Hitachi High-Technologies Corp. Vorrichtung zum Bestrahlen mit geladenen Teilchen
EP2555221B1 (en) * 2011-08-03 2013-07-24 Fei Company Method of studying a sample in an ETEM

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102637571A (zh) * 2011-02-14 2012-08-15 Fei公司 用于带电粒子显微术中的检测方法

Also Published As

Publication number Publication date
JP2015037079A (ja) 2015-02-23
US20150041647A1 (en) 2015-02-12
EP2838109A1 (en) 2015-02-18
JP6192618B2 (ja) 2017-09-06
CN104377104A (zh) 2015-02-25
US9570270B2 (en) 2017-02-14
EP2838108A1 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
CN104377104B (zh) 使用环境透射电子显微镜的方法以及环境透射电子显微镜
US7915584B2 (en) TEM with aberration corrector and phase plate
US8841630B2 (en) Corrector for axial aberrations of a particle-optical lens
JP4176159B2 (ja) 改善された2次電子検出のための磁界を用いた環境制御型sem
JP2015099789A (ja) 集束イオンビームカラムを制御する方法及びデュアルビームシステム
JP2006216396A (ja) 荷電粒子線装置
EP2478546B1 (en) Distributed ion source acceleration column
JPS61277145A (ja) 微量分析装置
US7034297B2 (en) Method and system for use in the monitoring of samples with a charged particle beam
US7223974B2 (en) Charged particle beam column and method for directing a charged particle beam
KR102524584B1 (ko) 하전 입자 현미경의 건 렌즈 설계
JP2017517119A (ja) 2重ウィーンフィルタ単色計を用いる電子ビーム画像化
JP2001185066A (ja) 電子線装置
CN110431649B (zh) 带电粒子束装置
JP2003157789A (ja) 走査電子顕微鏡等のカソードルミネッセンス検出装置
US20160013012A1 (en) Charged Particle Beam System
US9018581B2 (en) Transmission electron microscope
JP2007287495A (ja) 2レンズ光学系走査型収差補正集束イオンビーム装置及び3レンズ光学系走査型収差補正集束イオンビーム装置及び2レンズ光学系投影型収差補正イオン・リソグラフィー装置並びに3レンズ光学系投影型収差補正イオン・リソグラフィー装置
US6717141B1 (en) Reduction of aberrations produced by Wien filter in a scanning electron microscope and the like
JP2008171610A (ja) 荷電粒子ビーム装置
JP6261228B2 (ja) 集束イオンビーム装置、集束イオン/電子ビーム加工観察装置、及び試料加工方法
JP2004247321A (ja) 走査形電子顕微鏡
KR20140015834A (ko) 전기장 형성방식의 렌즈를 갖는 전자현미경
SO et al. 882 Ichige, Katsuta, Ibaraki 312 Japan

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant