JP4084427B2 - 改善された2次電子検出のための多極界を用いた環境制御型sem - Google Patents

改善された2次電子検出のための多極界を用いた環境制御型sem Download PDF

Info

Publication number
JP4084427B2
JP4084427B2 JP53040899A JP53040899A JP4084427B2 JP 4084427 B2 JP4084427 B2 JP 4084427B2 JP 53040899 A JP53040899 A JP 53040899A JP 53040899 A JP53040899 A JP 53040899A JP 4084427 B2 JP4084427 B2 JP 4084427B2
Authority
JP
Japan
Prior art keywords
sample
multipole
particle
magnetic field
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP53040899A
Other languages
English (en)
Other versions
JP2001511302A (ja
Inventor
ディーデリック ファン・デル・マスト,カーレル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FEI Co
Original Assignee
FEI Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FEI Co filed Critical FEI Co
Publication of JP2001511302A publication Critical patent/JP2001511302A/ja
Application granted granted Critical
Publication of JP4084427B2 publication Critical patent/JP4084427B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2448Secondary particle detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/2602Details
    • H01J2237/2605Details operating at elevated pressures, e.g. atmosphere
    • H01J2237/2608Details operating at elevated pressures, e.g. atmosphere with environmental specimen chamber

Description

本発明は、装置の光学軸(4)に沿って進行する荷電粒子の1次ビームを発生する粒子源と、
装置によって照射されるべき試料のための試料ホルダと、
試料ホルダの近傍に1次ビームの焦点を形成するための浸漬レンズ(合焦装置と、
合焦されたビームによって試料を走査するための走査装置と、
1次ビームの入射に応じて試料から発せられる信号を検出し、検出電極と試料ホルダとの間の空間に電界を発生する静電検出電極を有する検出手段とを含む粒子光学装置に関する。
上述の種類の装置は、1993年7月13日公開の日本国特許出願第3−53811号の英抄第5−174768(A)号より既知である。
上述の種類の装置は走査電子顕微鏡(SEM)として知られている。SEMでは、検査されるべき試料の領域は、装置の光学軸に沿って進行する通常は電子である荷電粒子の1次ビームによって走査される。SEMでは、電子ビームのための加速電圧は検査されるべき試料の特性に依存して選択される。この加速電圧は1次電子ビームによる試料の帯電を最小化するよう(1kVのオーダの)比較的低い値を有するべきである。これは、例えば集積電子回路の中の電気的絶縁層、又は所与の生物学的試料の観察の場合に生じうる。更に、いくつかの検査では、1次ビームの電子が試料中に小さな深さだけ侵入し、結果として画像のより良いコントラストが形成されることが望ましい。他の試料は、しかしながら、例えば30kVのオーダのより高い加速電圧を必要とする。
検査されるべき試料を照射することにより、かなり低い、例えば5乃至50eVのオーダのエネルギーを有する荷電粒子(一般的に2次電子)が放出される。これらの2次電子のエネルギー及び/又はエネルギー分布は、試料の特性及び組成に関する情報を提供する。従ってSEMには2次電子用の検出器が設けられることが望ましい。これらの電子は、試料の1次ビームが入射する側において放出され、その後、1次電子の入射方向と反対向きに戻る。そのように戻る2次電子の近傍に(例えば300Vの正電圧を有する電極を設けられた)検出器が配置されるとき、2次電子はこの電極によって捕捉され、検出器はそのように検出された電流に比例する電気信号を出力する。試料の(2次電子)画像はこのように既知の方法で形成される。画像の品質、特に画像が形成される速度及び信号対雑音比のために、検出される電流はできる限り大きいことが望ましい。
いわゆる環境制御型SEM(ESEM)では、試料は0.01Torr(≒1.3N/m2)乃至20Torr(≒2630N/m2)、従って従来のSEMが動作する圧力よりも数倍高い圧力のガスの雰囲気の中に配置される。試料と一次ビームの入射に応じて試料から発せられる信号を検出する検出手段に関連づけられる静電検出電極との間の電圧によって発生される電界は、試料を包囲するガスの原子をイオン化することが可能な速度まで、試料から発せられる2次電子を加速する。これらのイオン化中、ガスの原子から1つ以上の電子が放出され、これらの電子自体が加速され、再び更なるイオン化によって更なる電子を放出することができ、これは繰り返されうる。試料を囲むガスはこのように、2次電子電流を増幅するものとして作用し、それにより検出されるべき電流は原理的に2次電子自体によって生ずる電流よりも大きい。
ガス雰囲気で動作するSEM(以下「環境制御型SEM」又はESEMと称される)の従来のSEMと比較した場合の更なる利点は、ESEMでは、従来のSEMの慣習的な真空条件下では撮像することが非常に困難な湿った又は非導電性の試料(例えば生物学的試料、合成材料、セラミック材料又はガラス繊維)の電子光学画像の形成が可能となることである。ESEMは、試料が高い真空条件下での電子ビームによる観察のために通常要求される乾燥、凍結、又は真空コーティング動作の悪影響を受けることなく、試料がその「自然な」条件に維持されることを可能とする。
更に、ESEMの試料空間の中の比較的高い許容圧力により、形成されたガスイオンは、高解像度の画像の形成を妨げるであろう非導電性試料の帯電を中和する。ESEMはまた液体の移動、化学反応、溶解、結晶化、及び従来のSEMの試料空間で許容可能な圧力をはるかに越える比較的高い蒸気圧で行われる他のプロセスといった現象の直接的なリアルタイムの観察を可能とする。
引用された英抄第5−174768(A)号によれば、1次ビームは浸漬レンズによって試料上に合焦される。既知のように、浸漬レンズは、レンズの磁極片と試料との間の空間に磁界を発生する磁気レンズである。1次ビームによって試料から放出される電子は、次に浸漬レンズの界線を略追従しつつ、試料から検出器の静電検出電極へ戻る。引用された英抄において開示される静電検出電極は、(この電極上の電圧よりも低い電圧を担持する)試料とこの電極との間に電界を発生する環状電極である。ESEMの中でガス雰囲気による十分に高い電流増幅効果を達成するために、しかしながら、検出器電極のために比較的高い電圧が必要とされ、電気降伏の危険性のため、試料と検出器電極との間の距離は比較的大きな最小距離よりも小さくてはならない。従って、連続するイオン化の数、従って電流増幅は制限される。
本発明は、既知のESEMの電流増幅よりも高い電流増幅を有するESEMを提供することを目的とする。このため、本発明による粒子光学装置は、検出手段が、浸漬レンズの磁界と同じ空間の中で光学軸を横切って延在する光学軸回りの多極電界を発生するよう配置されることを特徴とする。
本発明は、所与の界の強さにおいて、多極子の光学軸において、光学軸の外側の電界の強さは実質的により高くなりうるという、電気多極子の特性を利用する。従って、1次電子ビームに対して僅かな影響のみを与える一方でそれでもなお強い検出器界を与えることができ、それにより多数の多極イオン化、従って試料の周辺のガス雰囲気中の高い電流増幅を実現するために、加速されるべき2次電子は適当なエネルギーを受ける。更に、試料が多極電界を発生する電極組立体によって「認識される」空間角度は、非常に大きい。
本発明は、既に知られているように、磁界の中を動く電子は、動きの方向に垂直に、且つ磁界に対して垂直に向いた力を受けるということの認識に基づく。磁界が存在しない場合、試料から検出器電極へ進行する2次電子は、ガス原子との衝突による方向の変化を除き、検出器電極へ略直線の経路を追従する。磁界が存在する場合、従ってかかる電子は検出器電極への動きの方向から逸らされて偏向される。(理論上は、所与の磁界ジオメトリでは、エネルギーの損失が存在しない場合はかかる電子は検出器電極へ到達することすらできない。)従って、この電子は実質的により長い距離を進行し、それによりガス原子との衝突の可能性はかなり増加する。ガス原子との電離衝突により、かかる電子は進行中に毎回エネルギーの所与の量を失い、それにより最終的には検出器電極によって捕捉される。このかなり長い進行の間に、この電子は比例的に多い数の電離衝突を受けており、従ってより多数の電子を放出している。同じことは、かかる衝突によって放出される電子についても成り立つ。従って、放出される電子のカスケードが形成され、それにより検出されるべき信号は追加的な磁界が存在しない場合よりもはるかに大きい。この検出されるべき信号は多様な形状でありえ、その全てが試料から放出される電子の電流の表現を構成する。
本発明の文脈においては、「検出手段と試料ホルダとの間の空間」という語句は、荷電粒子(及びおそらくこれらの粒子によって発生される粒子、例えばイオン化によって発生される電子及びイオン)が、検出器電極によって捕捉される前に横切る空間として理解されるべきである。
本発明の1つの実施例では、検出手段はまた、多極電界と同じ空間の中で光学軸を横切って延在する光学軸回りの多極磁界を発生するよう配置される。この実施例は、浸漬レンズ自体によって試料空間の中に発生される磁界が、電子増倍のために電子の経路の長さの所望の延長を達成するのに十分に強くない場合に特に望ましい。この実施例は、多極子の光学軸における所与の界の強さにおいて、光学軸の外側の磁界強さが実質的により大きくなりうるという、磁気多極子の特性を利用する。従って、1次電子ビーム上にわずかな影響のみを与える一方で、それでもなお2次電子の経路の長さを増加するよう強い磁界が獲得されうる。
本発明による粒子光学装置の望ましい実施例は、浸漬レンズと独立に多極電界及び/又は多極磁界(多極界の強さを調整する調整手段を含む。これは装置の使用の高い柔軟性を与え、変化を受けやすい様々な撮像パラメータ、例えば試料と対物レンズとの間の距離、1次電子当たりの2次電子の数、加速電圧、試料空間中のガス圧、試料を放電するのに必要とされるイオンの数等に対して多極界が適合されることを可能とする。
本発明の実施例における検出されるべき信号の検出は、1次ビームの入射に応じて試料から発せられる信号は、試料から発せられる荷電粒子によって形成されることによって行われる。試料から発せられる荷電粒子のこの電流は、2次電子の電流(即ち、試料から放出される電子及びガス放電において増倍によって発生される電子の総数)でありうる。或いは、試料から発せられる荷電粒子の電流は、ガス放電中に生じ、電界の影響下で試料を移動させ、試料の電流として測定されうるイオンの電流によって形成される。第3の可能性は、試料から発せられる荷電粒子の電流が、ガス放電中に生じ、例えば検出手段によって発生された電界の影響下で、検出手段の電極へ移動し、検出器電流として測定されうることからなる。或いは、このようにして形成された2つ以上の電流を組み合わせ、次に生ずる信号を検出することが可能である。
本発明の更なる実施例では、検出されるべき信号の検出は、1次ビームの入射に応じて試料から発せられる信号が、多極電界の中のガスイオン化によって発生される光信号によって形成されることによって行われる。この効果はまた、より大きな検出器電界及び/又は検出器磁界によって増幅され、それは、より検出器電界及び/又は検出器磁界では、エネルギー及び/又は2次電子の経路の長さ、従ってまたイオン化の数、及びまたそれによって発生される光の量が増加されるためである。
本発明を以下対応する参照番号が対応する要素を示す図を参照して詳述する。図中、
図1は本発明が使用されうる粒子光学装置の図式的な表現を示す図であり、
図2は追加的な磁界による電子増倍の過程を図式的に示す図であり、
図3Aは四極磁界を発生するための電極組立体を示す図であり、
図3Bは多極電界及び/又は多極磁界を発生するための極形態を示す斜視図であり、
図4は検出器の多極電界及び/又は多極磁界と協働する磁界を有す浸漬レンズを有する試料空間を示す図である。
図1は、走査電子顕微鏡(SEM)のコラム2の一部の形状である粒子光学装置を示す図である。従来どおり、この装置の中の電子源(図示せず)は装置の光学軸4に沿って進行する電子のビームを発生する。この電子ビームは、集光レンズ6といった1つ以上の電磁レンズを通過し、その後レンズ8に到達する。いわゆる単極子レンズであるこのレンズは磁気回路の一部を形成し、この磁気回路は更に試料室12の壁10によって形成される。レンズ8は、試料14を走査するための電子ビーム焦点を形成するために使用される。かかる走査は、レンズ8上に設けられた走査コイル16によって電子ビームをx方向及びy方向に移動することによって行われる。試料14は、x変位用のキャリア20及びy変位用のキャリア22を含む試料台18の上に配置される。検査のための試料の望ましい領域は、これらの2つのキャリアによって選択されうる。レンズ8の方向に戻る2次電子は試料から放出される。これらの2次電子は、このレンズのボアの中に設けられる検出器24によって検出される。制御ユニット26は、検出器を作動し、検出された電子の電流を例えば陰極管によって試料の画像を形成するために使用されうる信号へ変換するために、検出器に接続される。
図2は、ガス雰囲気中の追加的な磁界による電子増倍の過程を示す図である。電子の動きの簡単化のため、多極形態ではなく板型検出電極が想定されているが、これは電子の増倍の原理を明瞭化する上で本質的に重要ではないことに注意すべきである。
先行する対物レンズ8によって合焦される1次電子ビーム(図示せず)は、装置の光学軸4に沿って試料ホルダ20の上の試料14に入射する。説明の簡単化のため、検出器電極は対物レンズ8の下に配置された板30として構成されると想定する。この検出器板30の中央には1次ビームが通過するための開口が設けられている。検出器電極30は正電圧を有し、それにより試料の中で放出された2次電子はこの電極の方向に加速される。図2中、図面の簡単化のため、追加的な磁界Bは記号38によって示されるように図の平面に対して垂直に延在すると仮定される。試料14から発せられる2次電子14は、正電極30と接地された試料14との組合せによって発生される電界によって電極30の方向に加速される。電子の速度により、これはサイクロイド経路40を追従するよう磁界Bによって偏向される。進行している間に少しでもエネルギーを失えば、磁界Bの存在により電子は電極30に到達することを防止される。電極30における電圧は、この経路を追従している間に、電子が試料空間中に存在するガス原子41をイオン化し、それにより少なくとも1つの追加的な自由電子が形成されるよう、十分なエネルギーを得ることを確実にするために十分高く(例えば300Vに)される。イオン化電子及び追加的な電子は、電界によって再びサイクロイド経路42の中で加速され、その後、上述の過程自体が繰り返されうる。イオン化電子はイオン化の間にエネルギーの所与の量を失っているため、電極30により近く配置される経路に沿って進行し始める。上述の過程は、試料空間中を移動する全ての電子について繰り返され、当該の電子が電極30に達するまで全ての電子ついて続けられる。図面の簡単化のため、各電離衝突について電子の数は2倍には示されていない。このように試料空間内でなだれ状の放電が達成され、電子のガス原子との衝突の確率は追加的な磁界の存在により実質的に増加されている。イオン化によって放出される電子の量、従って2次電子によって形成される電流信号もまた、このように比例的に増加する。
図3Aは、光学軸を横切って延在する光学軸回りの多極電界を発生するための電極組立体の形状を示す図である。図3Aに示される電極組立体は、相互に電気的に絶縁され、全てが1つの平面上に配置され、図の平面に垂直に延びる光学軸4の回りに対称的に組分けされた4つの板型導体(極)60−a,60−b,60−c,及び60−dからなる。この図はまた相互に直交するx方向及びy方向を示す。光学軸こ面するこれらの極の境界線は、双曲線に対する正接である仮想中央円の回りに配置される双曲線として形成される。製造の簡単化のため、双曲線の形状は既知の方法で円弧によって近似されうる。極60−a乃至60−dの夫々は、電位V1,V2,V3及びV4に調整されうる。最も単純な場合、V1及びV3はV2及びV4と同様に等しくなり、このときV2及びV4はV1及びV3の逆となる。図は電極の1つの層のみを示すが、所望であれば重なり合う(即ち図の平面に平行であるがこの平面の上下に)複数の層を設けることもまた可能である。このように電気四極子の設計及び/又は励起に関してより高い程度の柔軟性が得られる。
また、四極子の効果が失われることなく、極60−a乃至60−dの上記の電位の全てに対して1つの一定の量を加えることが可能である。この一定の量は電極の次の層に対しては異なる値を有してもよく、それにより静電単極子、従ってレンズ効果を有する素子が四極子の上に重ね合わされる。
図3Bは、多極電界及び/又は多極磁界を発生するための極の形態を示す斜視図である。この図の多極形態は、円筒状外囲器66と、円筒内に均等に分布されるよう設けられた多数のnの極64−1乃至64−n(図中nは8)とからなる磁気回路によって形成される。原理的には、本発明を実行するために四極子よりも高次の多極界は必要とされないが、例えば機械的な不完全さのため、例えば図中n=8であるがn=12もまた可能であるような、より高次の界を発生する可能性を有することが望ましい。外囲器66の円筒軸は、図1に示される粒子光学装置の光学軸4と一致する。
様々な多極界、即ち磁界及び静電磁界はnの極によって発生される。これらの極の夫々は、電界及び磁界を発生するよう配置され、これらの多極界を決定する極の面は装置の光学軸に平行に延在する。各極64−iには、磁界を発生する励起コイル68−i及び電界を発生するポールキャップ70−iが設けられている。各励起コイル68−i及び各ポールキャップ70−iは個々に励起され、それにより所望の多極磁界及び多極電界の夫々は8つの極64−1乃至64−8によって発生される。
図4は、検出器の多極電界及び/又は多極磁界と協働する磁界を有する浸漬レンズを有する試料空間の断面図を示す図である。浸漬レンズのための合焦界を発生する磁気回路は、浸漬レンズのファンネル型の極8と、(磁束について)それと接触する試料室12の壁10とからなる。従って、磁界線52は、浸漬レンズのファンネル型の極8の端から試料ホルダ20、即ち壁10を通じて磁気回路と接触する試料14へ延在する。光学軸4と一致する対称軸を有する多極装置46は、浸漬レンズの磁界52と同じ空間の中に収容される。図示される多極装置46は従って、図3Bの多極子の形状、又は図3Aの電気四極子の形状を有する。図3Aの場合、矩形46の高さは、板型導体60−a乃至60−dの厚さを構成し、図3Bの場合、矩形46の高さは、円筒状外囲器66の軸方向の寸法を構成する。
既知であるように、このコラム中の圧力は様々な理由により、ESEMの試料空間の中の圧力の上記の値(≒2500N/m2まで)よりもかなり低くなくてはならない。この圧力差を維持することを可能とするため、既知の方法で試料空間とコラム2との間に分離ダイアフラム28が設けられる。ダイアフラム28には、例えば0.1mmのボアが設けられる。コラムの中の所望の圧力は、このダイアフラムの真上にポンプ開口(図示せず)を設けることによって維持されうる。
多極装置56の様々な極の励起は、図示されるように2つの接触子を通じて多極装置46に接続される制御可能電源50によって実現される。この電源は、静電電極のために様々な独立に制御可能な電圧を与え、磁極のために様々な独立に制御可能な電流を与えうるよう配置される。
図4に示される実施例は、2次電子を捕捉するための比較的広い空間角度と、電子が比較的長い期間に亘って含まれることができそれにより電子が適当な量の電気エネルギー(従って運動エネルギー)を獲得し、従って2次電子の高い電流増幅が行われうるような極の間の放電空間とを有する検出器を適用する。2次電子によって形成される電流信号の更なる処理は、様々な極に接続される処理ユニット(図示せず)の中で行われる。電流信号の更なる処理は本発明では重要でないため、これについては詳述しない。

Claims (5)

  1. 当該装置の光学軸に沿って進行する荷電粒子の1次ビームを発生する粒子源と、当該装置によって照射されるべき試料のための試料ホルダと、
    上記試料ホルダの近傍に1次ビームの焦点を形成するための浸漬レンズであって、該浸漬レンズと上記試料ホルダとの間に磁界を発生させるよう設けられた浸漬レンズと、
    合焦されたビームによって上記試料を走査するための走査装置と、
    1次ビームの入射に応じて上記試料から発せられる信号を検出し、検出電極と上記試料ホルダとの間の空間に電界を発生する静電検出電極を有する検出手段とを含む、粒子光学装置であって、
    上記検出手段は、上記浸漬レンズの磁界と同じ空間の中で光学軸を横切って延在する光学軸回りの多極電界を発生するよう配置されることを特徴とする粒子光学装置。
  2. 上記検出手段はまた、多極電界と同じ空間の中で光学軸を横切って延在する光学軸回りの多極磁界を発生するよう配置される、請求項1記載の粒子光学装置。
  3. 上記浸漬レンズと独立に多極電界及び/又は多極磁界の強さを調整する調整手段を含む、請求項1又は2記載の粒子光学装置。
  4. 1次ビームの入射に応じて上記試料から発せられる信号は、上記試料から発せられる荷電粒子によって形成される、請求項1乃至3のうちいずれか1項記載の粒子光学装置。
  5. 1次ビームの入射に応じて上記試料から発せられる信号は、多極電界の中のガスイオン化によって発生される光信号によって形成される、請求項1乃至3のうちいずれか1項記載の粒子光学装置
JP53040899A 1997-12-08 1998-10-19 改善された2次電子検出のための多極界を用いた環境制御型sem Expired - Fee Related JP4084427B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP97203839 1997-12-08
EP97203839.2 1997-12-08
PCT/IB1998/001643 WO1999030344A1 (en) 1997-12-08 1998-10-19 Environmental sem with multipole fields for improved secondary electron detection

Publications (2)

Publication Number Publication Date
JP2001511302A JP2001511302A (ja) 2001-08-07
JP4084427B2 true JP4084427B2 (ja) 2008-04-30

Family

ID=8229023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53040899A Expired - Fee Related JP4084427B2 (ja) 1997-12-08 1998-10-19 改善された2次電子検出のための多極界を用いた環境制御型sem

Country Status (6)

Country Link
US (1) US6184525B1 (ja)
EP (1) EP0958590B1 (ja)
JP (1) JP4084427B2 (ja)
AU (1) AU748840B2 (ja)
DE (1) DE69815498T2 (ja)
WO (1) WO1999030344A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9623768D0 (en) * 1996-11-15 1997-01-08 Leo Electron Microscopy Limite Scanning electron microscope
EP1236220B8 (de) * 1999-11-29 2013-02-20 Carl Zeiss Microscopy GmbH Detektor für ein rasterelektronenmikroskop mit variablem druck und rasterelektronenmikroskop mit einem solchen detektor
ATE524821T1 (de) * 2002-05-31 2011-09-15 Zeiss Carl Smt Ltd Verbesserungen in einem teilchendetektor
JP4520303B2 (ja) * 2002-09-18 2010-08-04 エフ・イ−・アイ・カンパニー 荷電粒子ビームシステム
US6979822B1 (en) * 2002-09-18 2005-12-27 Fei Company Charged particle beam system
US7504182B2 (en) 2002-09-18 2009-03-17 Fei Company Photolithography mask repair
DE102004037781A1 (de) * 2004-08-03 2006-02-23 Carl Zeiss Nts Gmbh Elektronenstrahlgerät
US20060099519A1 (en) * 2004-11-10 2006-05-11 Moriarty Michael H Method of depositing a material providing a specified attenuation and phase shift
US7541580B2 (en) * 2006-03-31 2009-06-02 Fei Company Detector for charged particle beam instrument
US7791020B2 (en) 2008-03-31 2010-09-07 Fei Company Multistage gas cascade amplifier
US8299432B2 (en) 2008-11-04 2012-10-30 Fei Company Scanning transmission electron microscope using gas amplification
EP2838108A1 (en) 2013-08-12 2015-02-18 Fei Company Method of using an environmental transmission electron microscope
US9478390B2 (en) * 2014-06-30 2016-10-25 Fei Company Integrated light optics and gas delivery in a charged particle lens
TWI506666B (zh) * 2014-08-08 2015-11-01 Nat Univ Tsing Hua 桌上型電子顯微鏡及其複合多極-聚焦可調式磁透鏡

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0275306B1 (en) * 1986-08-01 1990-10-24 Electro-Scan Corporation Multipurpose gaseous detector device for electron microscopes
US4785182A (en) 1987-05-21 1988-11-15 Electroscan Corporation Secondary electron detector for use in a gaseous atmosphere
NL9100294A (nl) * 1991-02-20 1992-09-16 Philips Nv Geladen deeltjesbundelinrichting.
JPH05174768A (ja) * 1991-02-26 1993-07-13 Nikon Corp 環境制御型走査電子顕微鏡
JPH06168695A (ja) * 1992-11-30 1994-06-14 Nikon Corp 荷電粒子顕微鏡
EP0699341B1 (en) * 1994-03-18 1998-01-28 Koninklijke Philips Electronics N.V. Particle-optical instrument comprising a deflection unit for secondary electrons

Also Published As

Publication number Publication date
AU748840B2 (en) 2002-06-13
AU9811698A (en) 1999-06-28
WO1999030344A1 (en) 1999-06-17
EP0958590A1 (en) 1999-11-24
JP2001511302A (ja) 2001-08-07
DE69815498D1 (de) 2003-07-17
US6184525B1 (en) 2001-02-06
EP0958590B1 (en) 2003-06-11
DE69815498T2 (de) 2004-05-19

Similar Documents

Publication Publication Date Title
JP4176159B2 (ja) 改善された2次電子検出のための磁界を用いた環境制御型sem
US6972412B2 (en) Particle-optical device and detection means
JP4236742B2 (ja) 走査形電子顕微鏡
US7541580B2 (en) Detector for charged particle beam instrument
EP0918350B1 (en) Scanning electron microscope
JP4084427B2 (ja) 改善された2次電子検出のための多極界を用いた環境制御型sem
US4714833A (en) Arrangement for detecting secondary and/or backscatter electrons in an electron beam apparatus
US20110220795A1 (en) Twin beam charged particle column and method of operating thereof
JP2005276819A (ja) 帯電粒子ビームデバイスのための対物レンズ
JPH02210749A (ja) 荷電二次粒子の検出装置
US10886101B2 (en) Charged particle beam device
JPH05174768A (ja) 環境制御型走査電子顕微鏡
EP0790634A1 (en) Electrostatic-magnetic lens arrangement
JPH0955181A (ja) 走査電子顕微鏡
JP3494152B2 (ja) 走査形電子顕微鏡
KR100711198B1 (ko) 주사형전자현미경
JP3712559B2 (ja) カソードレンズ
JP3494208B2 (ja) 走査電子顕微鏡
JPH0668832A (ja) 走査電子顕微鏡
JP2004247321A (ja) 走査形電子顕微鏡
JP2000182557A (ja) 荷電粒子線装置
JP2003203595A (ja) 電子顕微鏡

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051018

A72 Notification of change in name of applicant

Free format text: JAPANESE INTERMEDIATE CODE: A721

Effective date: 20051018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees