CN104313571A - 丝粉同步送进激光沉积制备铝基复合材料构件的方法 - Google Patents

丝粉同步送进激光沉积制备铝基复合材料构件的方法 Download PDF

Info

Publication number
CN104313571A
CN104313571A CN201410620695.3A CN201410620695A CN104313571A CN 104313571 A CN104313571 A CN 104313571A CN 201410620695 A CN201410620695 A CN 201410620695A CN 104313571 A CN104313571 A CN 104313571A
Authority
CN
China
Prior art keywords
powder
laser
particle
wire
laser deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410620695.3A
Other languages
English (en)
Other versions
CN104313571B (zh
Inventor
李福泉
张阳
陈彦宾
雷正龙
高振增
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201410620695.3A priority Critical patent/CN104313571B/zh
Publication of CN104313571A publication Critical patent/CN104313571A/zh
Application granted granted Critical
Publication of CN104313571B publication Critical patent/CN104313571B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laser Beam Processing (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

丝粉同步送进激光沉积制备铝基复合材料构件的方法,它涉及制备铝基复合材料构件的方法。本发明要解决现有铝基复合材料难于加工的问题。方法:一、表面预处理;二、增强相颗粒的预处理;三、旁轴送粉沉积;四、旁轴送粉叠层沉积。方法:一、表面预处理;二、增强相颗粒的预处理;三、同轴送粉沉积;四、同轴送粉叠层沉积。本发明可用于丝粉同步送进激光沉积制备铝基复合材料构件。

Description

丝粉同步送进激光沉积制备铝基复合材料构件的方法
技术领域
本发明涉及制备铝基复合材料构件的方法。
背景技术
铝基复合材料由于具有很好的强度模量、塑性以及优异的耐磨性能而在航空航天、军事工业、交通运输等领域得到广泛的应用。现有主要的铝基复合材料制备方法包括搅拌铸造法、液态金属浸渗法、粉末冶金挤压铸造法、原位复合法及共喷沉积法等。单独的复合材料形成构件,需要机械加工、焊接等。由于复合材料的结构特点,复合材料难于焊接及加工,这是制约复合材料应用的主要难点。
近年来,激光技术正逐步用以制备金属基复合材料(MMCs)。但目前的研究主要是在传统金属或合金表面通过复合粉末熔覆的方法合成金属基复合涂层,以改善表面耐磨性、耐蚀性、高温抗氧化性等,其实质为金属表面改性,不涉及块体MMCs零件成形。
发明内容
本发明要解决现有铝基复合材料难于加工的问题,而提供丝粉同步送进激光沉积制备铝基复合材料构件的方法。
丝粉同步送进激光沉积制备铝基复合材料构件的方法是按以下步骤完成的:
一、表面预处理:对表面不平整的铝板用砂纸进行打磨,并用丙酮去除油污,然后用化学试剂清洗,得到预处理后的铝板;
二、增强相颗粒的预处理:将增强相颗粒置于温度为100℃~150℃的烘干炉中,烘干1h~2h,得到预处理后的增强相颗粒;
三、旁轴送粉沉积:利用送丝机进行焊丝的送进,利用颗粒送粉装置进行预处理后的增强相颗粒的送给,结合送丝机、颗粒送粉装置及波长为1.06μm的光纤激光器对预处理后的铝板进行激光沉积,并利用自动化机器人控制光纤激光器的激光头、送丝机及颗粒送粉装置的运动,设置光纤激光器的激光输出功率为W1=1kW~3kW,扫描速度为0.002m/s~0.007m/s,激光采用正离焦,激光束光斑直径为2mm~4mm,采用同轴氩气保护,保护气流量为5L/min~10L/min,设置颗粒送粉装置的送粉率为100mg/s~200mg/s,颗粒送粉装置的粉头与水平面的倾角为45°~60°,送粉载气流量为5L/min~10L/min,送丝方式为光前送丝,设置送丝机的送丝速度为20cm/min~80cm/min,送丝与水平面的角度为5°~20°,即得到激光沉积层;
四、旁轴送粉叠层沉积:①、利用送丝机进行焊丝的送进,利用颗粒送粉装置进行预处理后的增强相颗粒的送给,结合送丝机、颗粒送粉装置及波长为1.06μm的光纤激光器对激光沉积层进行叠层激光沉积,并利用自动化机器人控制光纤激光器的激光头、送丝机及颗粒送粉装置的运动,设置光纤激光器的激光输出功率为W2,所述的W1-W2=100W~300W,扫描速度为0.002m/s~0.007m/s,激光采用正离焦,激光束光斑直径为2mm~4mm,采用同轴氩气保护,保护气流量为5L/min~10L/min,设置颗粒送粉装置的送粉率为100mg/s~200mg/s,颗粒送粉装置的粉头与水平面的倾角为45°~60°,送粉载气流量为5L/min~10L/min,送丝方式为光前送丝,设置送丝机的送丝速度为20cm/min~80cm/min,送丝与水平面的角度为5°~20°;②、进行步骤四①一次或一次以上,即得到丝粉同步送进激光沉积制备的铝基复合材料构件。
丝粉同步送进激光沉积制备铝基复合材料构件的方法是按以下步骤完成的:
一、表面预处理:对表面不平整的铝板用砂纸进行打磨,并用丙酮去除油污,然后用化学试剂清洗,得到预处理后的铝板;
二、增强相颗粒的预处理:将增强相颗粒置于温度为100℃~150℃的烘干炉中,烘干1h~2h,得到预处理后的增强相颗粒;
三、同轴送粉沉积:利用送丝机进行焊丝的送进,利用颗粒送粉装置进行预处理后的增强相颗粒的送给,结合送丝机、颗粒送粉装置及波长为1.06μm的光纤激光器对预处理后的铝板进行激光沉积,并利用自动化机器人控制光纤激光器的激光头、送丝机及颗粒送粉装置的运动,设置光纤激光器的激光输出功率为W1=1kW~3kW,扫描速度为0.002m/s~0.007m/s,激光采用正离焦,激光束光斑直径为2mm~4mm,采用同轴氩气保护,保护气流量为5L/min~10L/min,设置颗粒送粉装置的送粉率为100mg/s~200mg/s,颗粒送粉装置的粉头为激光同轴送粉头,送粉载气流量为5L/min~10L/min,送丝方式为光前送丝,设置送丝机的送丝速度为20cm/min~80cm/min,送丝与水平面的角度为5°~20°,即得到激光沉积层;
四、同轴送粉叠层沉积:①、利用送丝机进行焊丝的送进,利用颗粒送粉装置进行预处理后的增强相颗粒的送给,结合送丝机、颗粒送粉装置及波长为1.06μm的光纤激光器对激光沉积层进行叠层激光沉积,并利用自动化机器人控制光纤激光器的激光头、送丝机及颗粒送粉装置的运动,设置光纤激光器的激光输出功率为W2,所述的W1-W2=100W~300W,扫描速度为0.002m/s~0.007m/s,激光采用正离焦,激光束光斑直径为2mm~4mm,采用同轴氩气保护,保护气流量为5L/min~10L/min,设置颗粒送粉装置的送粉率为100mg/s~200mg/s,颗粒送粉装置的粉头为激光同轴送粉头,送粉载气流量为5L/min~10L/min,送丝方式为光前送丝,设置送丝机的送丝速度为20cm/min~80cm/min,送丝与水平面的角度为5°~20°;②、进行步骤四①一次或一次以上,即得到丝粉同步送进激光沉积制备的铝基复合材料构件。
本发明的有益效果是:1、本发明利用激光熔化沉积技术可制造高性能复杂结构MMCs零件,将激光熔化沉积技术引入新型铝基复合材料及其构件的制备与成形,具有明显的创新性。与现有复合材料制备技术相比,本发明的特点是可以实现复合材料构件的直接制造,实现材料制备成型一体化,解决复合材料难于加工的问题。
2、本发明采用丝粉同步激光沉积法制备铝基复合材料构件。该方法具有灵活性:丝的加入保证实现可以逐层生长;粉的添加提供增强相,送粉量可以灵活提调节,实现对复合材料中增强相体积分数的调节。能够实现梯度成分复合材料构件的制备,满足成分及性能的梯度构件制造要求。
3、送粉式、送丝式是激光沉积制作复合材料层主要的材料添加方式。送粉式激光沉积技术容易实现自动化控制,激光能量吸收率高,加工成形性良好,但对粉的质量要求比较高,沉积层孔隙率比较大,粉的利用率不高,直接带来的结果是成本高,同时造成粉尘污染。送丝式激光沉积技术制备的沉积层致密度好,气孔率几乎为零,采用焊丝能够节省材料,成本低,制备的沉积层具有较高的厚度。本发明综合了两种技术的优势,添加与母材同质的焊丝可以减小基材的稀释率,降低由于内应力过高产生裂纹倾向,丝材的加入有利于增大沉积层的面积,可以制备沉积层相对较厚,提高激光沉积的沉积效率;并保证沉积层的逐层生长。与此同时,同轴或旁轴送粉实现陶瓷增强相(SiC、TiC、WC等)在激光熔池中的分布,通过合理的工艺过程控制获得增强相颗粒在铝基体中可控分布,实现增强相颗粒与铝基体的冶金结合。保证陶瓷颗粒能够有效实现增强铝基体性能的作用。
本发明用于丝粉同步送进激光沉积制备铝基复合材料构件的方法。
附图说明
图1为旁轴送粉旁轴送丝激光沉积示意图;1为颗粒送粉装置,2为预处理后的增强相颗粒,3为送丝机,4为焊丝,5为波长为1.06μm的光纤激光器激光头,6为预处理后的铝板,7为加工方向;
图2为同轴送粉旁轴送丝激光沉积示意图,1为预处理后的增强相颗粒,2为送丝机,3为焊丝,4为波长为1.06μm的光纤激光器激光头,5为预处理后的铝板,6为加工方向;
图3为实施例一步骤三制备的激光沉积层形貌;
图4为实施例一制备的丝粉同步送进激光沉积制备的铝基复合材料构件的沉积层形貌;
图5为实施例一制备的丝粉同步送进激光沉积制备的铝基复合材料构件的表面硬度变化情况;1为沉积层上部,2为沉积层下部,3为基层。
具体实施方式
具体实施方式一:结合图1具体说明本实施方式,本实施方式的丝粉同步送进激光沉积制备铝基复合材料构件的方法,丝粉同步送进激光沉积制备铝基复合材料构件的方法是按以下步骤完成的:
一、表面预处理:对表面不平整的铝板用砂纸进行打磨,并用丙酮去除油污,然后用化学试剂清洗,得到预处理后的铝板;
二、增强相颗粒的预处理:将增强相颗粒置于温度为100℃~150℃的烘干炉中,烘干1h~2h,得到预处理后的增强相颗粒;
三、旁轴送粉沉积:利用送丝机进行焊丝的送进,利用颗粒送粉装置进行预处理后的增强相颗粒的送给,结合送丝机、颗粒送粉装置及波长为1.06μm的光纤激光器对预处理后的铝板进行激光沉积,并利用自动化机器人控制光纤激光器的激光头、送丝机及颗粒送粉装置的运动,设置光纤激光器的激光输出功率为W1=1kW~3kW,扫描速度为0.002m/s~0.007m/s,激光采用正离焦,激光束光斑直径为2mm~4mm,采用同轴氩气保护,保护气流量为5L/min~10L/min,设置颗粒送粉装置的送粉率为100mg/s~200mg/s,颗粒送粉装置的粉头与水平面的倾角为45°~60°,送粉载气流量为5L/min~10L/min,送丝方式为光前送丝,设置送丝机的送丝速度为20cm/min~80cm/min,送丝与水平面的角度为5°~20°,即得到激光沉积层;
四、旁轴送粉叠层沉积:①、利用送丝机进行焊丝的送进,利用颗粒送粉装置进行预处理后的增强相颗粒的送给,结合送丝机、颗粒送粉装置及波长为1.06μm的光纤激光器对激光沉积层进行叠层激光沉积,并利用自动化机器人控制光纤激光器的激光头、送丝机及颗粒送粉装置的运动,设置光纤激光器的激光输出功率为W2,所述的W1-W2=100W~300W,扫描速度为0.002m/s~0.007m/s,激光采用正离焦,激光束光斑直径为2mm~4mm,采用同轴氩气保护,保护气流量为5L/min~10L/min,设置颗粒送粉装置的送粉率为100mg/s~200mg/s,颗粒送粉装置的粉头与水平面的倾角为45°~60°,送粉载气流量为5L/min~10L/min,送丝方式为光前送丝,设置送丝机的送丝速度为20cm/min~80cm/min,送丝与水平面的角度为5°~20°;②、进行步骤四①一次或一次以上,即得到丝粉同步送进激光沉积制备的铝基复合材料构件。
本具体实施方式步骤一中用丙酮去除油污,然后用化学试剂清洗以去除氧化膜。
本具体实施方式步骤三及步骤四中焊接送丝机为普通焊接送丝机即可。
本实施方式的有益效果是:1、本实施方式利用激光熔化沉积技术可制造高性能复杂结构MMCs零件,将激光熔化沉积技术引入新型铝基复合材料及其构件的制备与成形,具有明显的创新性。与现有复合材料制备技术相比,本实施方式的特点是可以实现复合材料构件的直接制造,实现材料制备成型一体化,解决复合材料难于加工的问题。
2、本实施方式采用丝粉同步激光沉积法制备铝基复合材料构件。该方法具有灵活性:丝的加入保证实现可以逐层生长;粉的添加提供增强相,送粉量可以灵活提调节,实现对复合材料中增强相体积分数的调节。能够实现梯度成分复合材料构件的制备,满足成分及性能的梯度构件制造要求。
3、送粉式、送丝式是激光沉积制作复合材料层主要的材料添加方式。送粉式激光沉积技术容易实现自动化控制,激光能量吸收率高,加工成形性良好,但对粉的质量要求比较高,沉积层孔隙率比较大,粉的利用率不高,直接带来的结果是成本高,同时造成粉尘污染。送丝式激光沉积技术制备的沉积层致密度好,气孔率几乎为零,采用焊丝能够节省材料,成本低,制备的沉积层具有较高的厚度。本实施方式综合了两种技术的优势,添加与母材同质的焊丝可以减小基材的稀释率,降低由于内应力过高产生裂纹倾向,丝材的加入有利于增大沉积层的面积,可以制备沉积层相对较厚,提高激光沉积的沉积效率;并保证沉积层的逐层生长。与此同时,同轴或旁轴送粉实现陶瓷增强相(SiC、TiC、WC等)在激光熔池中的分布,通过合理的工艺过程控制获得增强相颗粒在铝基体中可控分布,实现增强相颗粒与铝基体的冶金结合。保证陶瓷颗粒能够有效实现增强铝基体性能的作用。
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一中所述的铝板为铝或铝合金基材;步骤三中所述的焊丝与步骤一中所述的铝板为同材质;步骤四①中所述的焊丝与步骤一中所述的铝板为同材质。其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二之一不同的是:步骤一中所述的化学试剂清洗具体步骤如下:在温度为40℃~60℃下,使用质量分数为6%~10%的NaOH水溶液碱洗5min~20min,然后用清水冲洗干净,再放入质量分数为30%的HNO3溶液中浸渍5min~20min,取出用清水冲洗净吹干表面水痕,最后将化学试剂清洗后的铝板放入温度为80℃~130℃的烘干箱中烘干1h~2h备用。其它与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤二中所述的增强相颗粒为陶瓷粉末材料。其它与具体实施方式一至三相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:步骤二中所述的增强相颗粒的颗粒平均尺寸为50μm~100μm。其它与具体实施方式一至四相同。
具体实施方式六:结合图2具体说明本实施方式,本实施方式的丝粉同步送进激光沉积制备铝基复合材料构件的方法,丝粉同步送进激光沉积制备铝基复合材料构件的方法是按以下步骤完成的:
一、表面预处理:对表面不平整的铝板用砂纸进行打磨,并用丙酮去除油污,然后用化学试剂清洗,得到预处理后的铝板;
二、增强相颗粒的预处理:将增强相颗粒置于温度为100℃~150℃的烘干炉中,烘干1h~2h,得到预处理后的增强相颗粒;
三、同轴送粉沉积:利用送丝机进行焊丝的送进,利用颗粒送粉装置进行预处理后的增强相颗粒的送给,结合送丝机、颗粒送粉装置及波长为1.06μm的光纤激光器对预处理后的铝板进行激光沉积,并利用自动化机器人控制光纤激光器的激光头、送丝机及颗粒送粉装置的运动,设置光纤激光器的激光输出功率为W1=1kW~3kW,扫描速度为0.002m/s~0.007m/s,激光采用正离焦,激光束光斑直径为2mm~4mm,采用同轴氩气保护,保护气流量为5L/min~10L/min,设置颗粒送粉装置的送粉率为100mg/s~200mg/s,颗粒送粉装置的粉头为激光同轴送粉头,送粉载气流量为5L/min~10L/min,送丝方式为光前送丝,设置送丝机的送丝速度为20cm/min~80cm/min,送丝与水平面的角度为5°~20°,即得到激光沉积层;
四、同轴送粉叠层沉积:①、利用送丝机进行焊丝的送进,利用颗粒送粉装置进行预处理后的增强相颗粒的送给,结合送丝机、颗粒送粉装置及波长为1.06μm的光纤激光器对激光沉积层进行叠层激光沉积,并利用自动化机器人控制光纤激光器的激光头、送丝机及颗粒送粉装置的运动,设置光纤激光器的激光输出功率为W2,所述的W1-W2=100W~300W,扫描速度为0.002m/s~0.007m/s,激光采用正离焦,激光束光斑直径为2mm~4mm,采用同轴氩气保护,保护气流量为5L/min~10L/min,设置颗粒送粉装置的送粉率为100mg/s~200mg/s,颗粒送粉装置的粉头为激光同轴送粉头,送粉载气流量为5L/min~10L/min,送丝方式为光前送丝,设置送丝机的送丝速度为20cm/min~80cm/min,送丝与水平面的角度为5°~20°;②、进行步骤四①一次或一次以上,即得到丝粉同步送进激光沉积制备的铝基复合材料构件。
本具体实施方式步骤一中用丙酮去除油污,然后用化学试剂清洗以去除氧化膜。
本具体实施方式步骤三及步骤四中焊接送丝机为普通焊接送丝机即可。
本实施方式的有益效果是:1、本实施方式利用激光熔化沉积技术可制造高性能复杂结构MMCs零件,将激光熔化沉积技术引入新型铝基复合材料及其构件的制备与成形,具有明显的创新性。与现有复合材料制备技术相比,本实施方式的特点是可以实现复合材料构件的直接制造,实现材料制备成型一体化,解决复合材料难于加工的问题。
2、本实施方式采用丝粉同步激光沉积法制备铝基复合材料构件。该方法具有灵活性:丝的加入保证实现可以逐层生长;粉的添加提供增强相,送粉量可以灵活提调节,实现对复合材料中增强相体积分数的调节。能够实现梯度成分复合材料构件的制备,满足成分及性能的梯度构件制造要求。
3、送粉式、送丝式是激光沉积制作复合材料层主要的材料添加方式。送粉式激光沉积技术容易实现自动化控制,激光能量吸收率高,加工成形性良好,但对粉的质量要求比较高,沉积层孔隙率比较大,粉的利用率不高,直接带来的结果是成本高,同时造成粉尘污染。送丝式激光沉积技术制备的沉积层致密度好,气孔率几乎为零,采用焊丝能够节省材料,成本低,制备的沉积层具有较高的厚度。本实施方式综合了两种技术的优势,添加与母材同质的焊丝可以减小基材的稀释率,降低由于内应力过高产生裂纹倾向,丝材的加入有利于增大沉积层的面积,可以制备沉积层相对较厚,提高激光沉积的沉积效率;并保证沉积层的逐层生长。与此同时,同轴或旁轴送粉实现陶瓷增强相(SiC、TiC、WC等)在激光熔池中的分布,通过合理的工艺过程控制获得增强相颗粒在铝基体中可控分布,实现增强相颗粒与铝基体的冶金结合。保证陶瓷颗粒能够有效实现增强铝基体性能的作用。
具体实施方式七:本实施方式与具体实施方式六不同的是:步骤一中所述的铝板为铝或铝合金基材;步骤三中所述的焊丝与步骤一中所述的铝板为同材质;步骤四①中所述的焊丝与步骤一中所述的铝板为同材质。其它与具体实施方式六相同。
具体实施方式八:本实施方式与具体实施方式六或七之一不同的是:步骤一中所述的化学试剂清洗具体步骤如下:在温度为40℃~60℃下,使用质量分数为6%~10%的NaOH水溶液碱洗5min~20min,然后用清水冲洗干净,再放入质量分数为30%的HNO3溶液中浸渍5min~20min,取出用清水冲洗净吹干表面水痕,最后将化学试剂清洗后的铝板放入温度为80℃~130℃的烘干箱中烘干1h~2h备用。其它与具体实施方式六或七相同。
具体实施方式九:本实施方式与具体实施方式六至八之一不同的是:步骤二中所述的增强相颗粒为陶瓷粉末材料。其它与具体实施方式六至八相同。
具体实施方式十:本实施方式与具体实施方式六至九之一不同的是:步骤二中所述的增强相颗粒的颗粒平均尺寸为50μm~100μm。其它与具体实施方式六至九相同。
采用以下实施例验证本发明的有益效果:
实施例一:
一、表面预处理:对表面不平整的铝板用砂纸进行打磨,并用丙酮去除油污,然后用化学试剂清洗,得到预处理后的铝板;
二、增强相颗粒的预处理:将增强相颗粒置于温度为100℃的烘干炉中,烘干2h,得到预处理后的增强相颗粒;
三、同轴送粉沉积:利用送丝机进行焊丝的送进,利用颗粒送粉装置进行预处理后的增强相颗粒的送给,结合送丝机、颗粒送粉装置及波长为1.06μm的光纤激光器对预处理后的铝板进行激光沉积,并利用自动化机器人控制光纤激光器的激光头、送丝机及颗粒送粉装置的运动,设置光纤激光器的激光输出功率为2.2kW,扫描速度为0.005m/s,激光采用正离焦,激光束光斑直径为2.2mm,采用同轴氩气保护,保护气流量为10L/min,设置颗粒送粉装置的送粉率为164mg/s,颗粒送粉装置的粉头为激光同轴送粉头,送粉载气流量为10L/min,送丝方式为光前送丝,设置送丝机的送丝速度为40cm/min,送丝与水平面的角度为10°,即得到激光沉积层;
四、同轴送粉叠层沉积:利用送丝机进行焊丝的送进,利用颗粒送粉装置进行预处理后的增强相颗粒的送给,结合送丝机、颗粒送粉装置及波长为1.06μm的光纤激光器对激光沉积层进行叠层激光沉积,并利用自动化机器人控制光纤激光器的激光头、送丝机及颗粒送粉装置的运动,设置光纤激光器的激光输出功率为2.0kw,扫描速度为0.005m/s,激光采用正离焦,激光束光斑直径为2.2mm,采用同轴氩气保护,保护气流量为10L/min,设置颗粒送粉装置的送粉率为164mg/s,颗粒送粉装置的粉头为激光同轴送粉头,送粉载气流量为10L/min,送丝方式为光前送丝,设置送丝机的送丝速度为40cm/min,送丝与水平面的角度为10°,即得到丝粉同步送进激光沉积制备的铝基复合材料构件。
步骤一中所述的铝板为1060Al;步骤三中所述的焊丝与步骤一中所述的铝板为同材质;步骤四中所述的焊丝与步骤一中所述的铝板为同材质。
步骤一中所述的化学试剂清洗具体步骤如下:在温度为60℃下,使用质量分数为8%的NaOH水溶液碱洗10min,然后用清水冲洗干净,再放入质量分数为30%的HNO3溶液中浸渍5min,取出用清水冲洗净吹干表面水痕,最后将化学试剂清洗后的铝板放入温度为120℃的烘干箱中烘干1.5h备用。
步骤二中所述的增强相颗粒为陶瓷粉末材料,具体为WC;所述的增强相颗粒的颗粒平均尺寸为50μm~100μm。
图3为实施例一步骤三制备的激光沉积层形貌;由图可知,沉积层下部均匀分布着未熔化的陶瓷颗粒,对沉积层起到很好的强化作用。
图4为实施例一制备的丝粉同步送进激光沉积制备的铝基复合材料构件的沉积层形貌;由图可知,沉积层成型良好,与单道沉积相比,沉积层尺寸明显增加,第一层中陶瓷颗粒由于位置处于中下层,所以并没有受到激光重熔的影响。
图5为实施例一制备的丝粉同步送进激光沉积制备的铝基复合材料构件的表面硬度变化情况,1为沉积层上部,2为沉积层下部,3为基层;由图可知,复合材料层的硬度由铝基体的HV400提高到HV1000左右。
实施例二:
一、表面预处理:对表面不平整的铝板用砂纸进行打磨,并用丙酮去除油污,然后用化学试剂清洗,得到预处理后的铝板;
二、增强相颗粒的预处理:将增强相颗粒置于温度为100℃的烘干炉中,烘干2h,得到预处理后的增强相颗粒;
三、旁轴送粉沉积:利用送丝机进行焊丝的送进,利用颗粒送粉装置进行预处理后的增强相颗粒的送给,结合送丝机、颗粒送粉装置及波长为1.06μm的光纤激光器对预处理后的铝板进行激光沉积,并利用自动化机器人控制光纤激光器的激光头、送丝机及颗粒送粉装置的运动,设置光纤激光器的激光输出功率为2.0kW,扫描速度为0.003m/s,激光采用正离焦,激光束光斑直径为2.2mm,采用同轴氩气保护,保护气流量为10L/min,设置颗粒送粉装置的送粉率为200mg/s,颗粒送粉装置的粉头与水平面的倾角为55°,送粉载气流量为10L/min,送丝方式为光前送丝,设置送丝机的送丝速度为50cm/min,送丝与水平面的角度为10°,即得到激光沉积层;
四、旁轴送粉叠层沉积:①、利用送丝机进行焊丝的送进,利用颗粒送粉装置进行预处理后的增强相颗粒的送给,结合送丝机、颗粒送粉装置及波长为1.06μm的光纤激光器对激光沉积层进行叠层激光沉积,并利用自动化机器人控制光纤激光器的激光头、送丝机及颗粒送粉装置的运动,设置光纤激光器的激光输出功率为1.8kW,扫描速度为0.005m/s,激光采用正离焦,激光束光斑直径为2.2mm,采用同轴氩气保护,保护气流量为10L/min,设置颗粒送粉装置的送粉率为200mg/s,颗粒送粉装置的粉头与水平面的倾角为55°,送粉载气流量为10L/min,送丝方式为光前送丝,设置送丝机的送丝速度为50cm/min,送丝与水平面的角度为10°,即得到丝粉同步送进激光沉积制备的铝基复合材料构件。
步骤一中所述的铝板为1060Al;步骤三中所述的焊丝与步骤一中所述的铝板为同材质;步骤四中所述的焊丝与步骤一中所述的铝板为同材质。
步骤一中所述的化学试剂清洗具体步骤如下:在温度为60℃下,使用质量分数为8%的NaOH水溶液碱洗10min,然后用清水冲洗干净,再放入质量分数为30%的HNO3溶液中浸渍5min,取出用清水冲洗净吹干表面水痕,最后将化学试剂清洗后的铝板放入温度为120℃的烘干箱中烘干1.5h备用。
步骤二中所述的增强相颗粒为陶瓷粉末材料,具体为WC;所述的增强相颗粒的颗粒平均尺寸为50μm~100μm。
本实施例步骤三制备的激光沉积层下部均匀分布着未熔化的陶瓷颗粒,对沉积层起到很好的强化作用。
本实施例制备的丝粉同步送进激光沉积制备的铝基复合材料构件的沉积层形貌,沉积层成型良好,与单道沉积相比,沉积层尺寸明显增加,第一层中陶瓷颗粒由于位置处于中下层,所以并没有受到激光重熔的影响。

Claims (10)

1.丝粉同步送进激光沉积制备铝基复合材料构件的方法,其特征在于丝粉同步送进激光沉积制备铝基复合材料构件的方法是按以下步骤完成的:
一、表面预处理:对表面不平整的铝板用砂纸进行打磨,并用丙酮去除油污,然后用化学试剂清洗,得到预处理后的铝板;
二、增强相颗粒的预处理:将增强相颗粒置于温度为100℃~150℃的烘干炉中,烘干1h~2h,得到预处理后的增强相颗粒;
三、旁轴送粉沉积:利用送丝机进行焊丝的送进,利用颗粒送粉装置进行预处理后的增强相颗粒的送给,结合送丝机、颗粒送粉装置及波长为1.06μm的光纤激光器对预处理后的铝板进行激光沉积,并利用自动化机器人控制光纤激光器的激光头、送丝机及颗粒送粉装置的运动,设置光纤激光器的激光输出功率为W1=1kW~3kW,扫描速度为0.002m/s~0.007m/s,激光采用正离焦,激光束光斑直径为2mm~4mm,采用同轴氩气保护,保护气流量为5L/min~10L/min,设置颗粒送粉装置的送粉率为100mg/s~200mg/s,颗粒送粉装置的粉头与水平面的倾角为45°~60°,送粉载气流量为5L/min~10L/min,送丝方式为光前送丝,设置送丝机的送丝速度为20cm/min~80cm/min,送丝与水平面的角度为5°~20°,即得到激光沉积层;
四、旁轴送粉叠层沉积:①、利用送丝机进行焊丝的送进,利用颗粒送粉装置进行预处理后的增强相颗粒的送给,结合送丝机、颗粒送粉装置及波长为1.06μm的光纤激光器对激光沉积层进行叠层激光沉积,并利用自动化机器人控制光纤激光器的激光头、送丝机及颗粒送粉装置的运动,设置光纤激光器的激光输出功率为W2,所述的W1-W2=100W~300W,扫描速度为0.002m/s~0.007m/s,激光采用正离焦,激光束光斑直径为2mm~4mm,采用同轴氩气保护,保护气流量为5L/min~10L/min,设置颗粒送粉装置的送粉率为100mg/s~200mg/s,颗粒送粉装置的粉头与水平面的倾角为45°~60°,送粉载气流量为5L/min~10L/min,送丝方式为光前送丝,设置送丝机的送丝速度为20cm/min~80cm/min,送丝与水平面的角度为5°~20°;②、进行步骤四①一次或一次以上,即得到丝粉同步送进激光沉积制备的铝基复合材料构件。
2.根据权利要求1所述的丝粉同步送进激光沉积制备铝基复合材料构件的方法,其特征在于步骤一中所述的铝板为铝或铝合金基材;步骤三中所述的焊丝与步骤一中所述的铝板为同材质;步骤四①中所述的焊丝与步骤一中所述的铝板为同材质。
3.根据权利要求1所述的丝粉同步送进激光沉积制备铝基复合材料构件的方法,其特征在于步骤一中所述的化学试剂清洗具体步骤如下:在温度为40℃~60℃下,使用质量分数为6%~10%的NaOH水溶液碱洗5min~20min,然后用清水冲洗干净,再放入质量分数为30%的HNO3溶液中浸渍5min~20min,取出用清水冲洗净吹干表面水痕,最后将化学试剂清洗后的铝板放入温度为80℃~150℃的烘干箱中烘干1h~2h备用。
4.根据权利要求1所述的丝粉同步送进激光沉积制备铝基复合材料构件的方法,其特征在于步骤二中所述的增强相颗粒为陶瓷粉末材料。
5.根据权利要求1所述的丝粉同步送进激光沉积制备铝基复合材料构件的方法,其特征在于步骤二中所述的增强相颗粒的颗粒平均尺寸为50μm~100μm。
6.丝粉同步送进激光沉积制备铝基复合材料构件的方法,其特征在于丝粉同步送进激光沉积制备铝基复合材料构件的方法是按以下步骤完成的:
一、表面预处理:对表面不平整的铝板用砂纸进行打磨,并用丙酮去除油污,然后用化学试剂清洗,得到预处理后的铝板;
二、增强相颗粒的预处理:将增强相颗粒置于温度为100℃~150℃的烘干炉中,烘干1h~2h,得到预处理后的增强相颗粒;
三、同轴送粉沉积:利用送丝机进行焊丝的送进,利用颗粒送粉装置进行预处理后的增强相颗粒的送给,结合送丝机、颗粒送粉装置及波长为1.06μm的光纤激光器对预处理后的铝板进行激光沉积,并利用自动化机器人控制光纤激光器的激光头、送丝机及颗粒送粉装置的运动,设置光纤激光器的激光输出功率为W1=1kW~3kW,扫描速度为0.002m/s~0.007m/s,激光采用正离焦,激光束光斑直径为2mm~4mm,采用同轴氩气保护,保护气流量为5L/min~10L/min,设置颗粒送粉装置的送粉率为100mg/s~200mg/s,颗粒送粉装置的粉头为激光同轴送粉头,送粉载气流量为5L/min~10L/min,送丝方式为光前送丝,设置送丝机的送丝速度为20cm/min~80cm/min,送丝与水平面的角度为5°~20°,即得到激光沉积层;
四、同轴送粉叠层沉积:①、利用送丝机进行焊丝的送进,利用颗粒送粉装置进行预处理后的增强相颗粒的送给,结合送丝机、颗粒送粉装置及波长为1.06μm的光纤激光器对激光沉积层进行叠层激光沉积,并利用自动化机器人控制光纤激光器的激光头、送丝机及颗粒送粉装置的运动,设置光纤激光器的激光输出功率为W2,所述的W1-W2=100W~300W,扫描速度为0.002m/s~0.007m/s,激光采用正离焦,激光束光斑直径为2mm~4mm,采用同轴氩气保护,保护气流量为5L/min~10L/min,设置颗粒送粉装置的送粉率为100mg/s~200mg/s,颗粒送粉装置的粉头为激光同轴送粉头,送粉载气流量为5L/min~10L/min,送丝方式为光前送丝,设置送丝机的送丝速度为20cm/min~80cm/min,送丝与水平面的角度为5°~20°;②、进行步骤四①一次或一次以上,即得到丝粉同步送进激光沉积制备的铝基复合材料构件。
7.根据权利要求6所述的丝粉同步送进激光沉积制备铝基复合材料构件的方法,其特征在于步骤一中所述的铝板为铝或铝合金基材;步骤三中所述的焊丝与步骤一中所述的铝板为同材质;步骤四①中所述的焊丝与步骤一中所述的铝板为同材质。
8.根据权利要求6所述的丝粉同步送进激光沉积制备铝基复合材料构件的方法,其特征在于步骤一中所述的化学试剂清洗具体步骤如下:在温度为40℃~60℃下,使用质量分数为6%~10%的NaOH水溶液碱洗5min~20min,然后用清水冲洗干净,再放入质量分数为30%的HNO3溶液中浸渍5min~20min,取出用清水冲洗净吹干表面水痕,最后将化学试剂清洗后的铝板放入温度为80℃~150℃的烘干箱中烘干1h~2h备用。
9.根据权利要求6所述的丝粉同步送进激光沉积制备铝基复合材料构件的方法,其特征在于步骤二中所述的增强相颗粒为陶瓷粉末材料。
10.根据权利要求6所述的丝粉同步送进激光沉积制备铝基复合材料构件的方法,其特征在于步骤二中所述的增强相颗粒的颗粒平均尺寸为50μm~100μm。
CN201410620695.3A 2014-11-06 2014-11-06 丝粉同步送进激光沉积制备铝基复合材料构件的方法 Expired - Fee Related CN104313571B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410620695.3A CN104313571B (zh) 2014-11-06 2014-11-06 丝粉同步送进激光沉积制备铝基复合材料构件的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410620695.3A CN104313571B (zh) 2014-11-06 2014-11-06 丝粉同步送进激光沉积制备铝基复合材料构件的方法

Publications (2)

Publication Number Publication Date
CN104313571A true CN104313571A (zh) 2015-01-28
CN104313571B CN104313571B (zh) 2016-09-07

Family

ID=52368876

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410620695.3A Expired - Fee Related CN104313571B (zh) 2014-11-06 2014-11-06 丝粉同步送进激光沉积制备铝基复合材料构件的方法

Country Status (1)

Country Link
CN (1) CN104313571B (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104668562A (zh) * 2015-01-30 2015-06-03 湖南大学 一种激光光路无遮挡同轴送粉方法及送粉装置
CN105397296A (zh) * 2015-12-30 2016-03-16 哈尔滨工业大学 一种激光沉积-熔注同步复合连接方法
CN107984115A (zh) * 2017-11-08 2018-05-04 蚌埠市华鼎机械科技有限公司 一种激光焊接处理铅酸蓄电池的方法
CN108452372A (zh) * 2018-05-22 2018-08-28 哈尔滨工业大学 丝粉同步激光沉积制备表面生物活性的钛合金骨植入体的方法
CN108788406A (zh) * 2018-07-04 2018-11-13 西南交通大学 一种轻金属基复合材料构件及其制备方法
CN109834436A (zh) * 2019-01-08 2019-06-04 哈尔滨焊接研究院有限公司 铝基复合材料制备方法
CN109929986A (zh) * 2019-03-08 2019-06-25 安徽信息工程学院 一种复合材料及其制备方法
CN110424002A (zh) * 2019-06-25 2019-11-08 阳江市五金刀剪产业技术研究院 一种复合涂层、制备方法及应用
CN110938818A (zh) * 2019-12-20 2020-03-31 西安交通大学 一种旁轴送粉装置
CN110965060A (zh) * 2018-09-30 2020-04-07 天津大学 一种基于管状粉芯丝材的激光熔化沉积陶瓷颗粒增强金属基复合涂层及加工方法
CN112222424A (zh) * 2020-09-09 2021-01-15 武汉数字化设计与制造创新中心有限公司 一种颗粒增强金属复合材料的制备方法
CN115301953A (zh) * 2022-09-01 2022-11-08 华侨大学 一种丝粉同步送料增材制造的耐磨材料
CN115351293A (zh) * 2022-09-01 2022-11-18 华侨大学 一种丝粉同步送料增材制造气体保护方法
CN115415541A (zh) * 2022-07-26 2022-12-02 南京工业大学 基于同步送丝和送粉搅拌摩擦增材制造的硬质相增强金属基复合材料及制备方法
CN115475957A (zh) * 2022-09-01 2022-12-16 华侨大学 一种丝粉同步送料增材制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6936118B2 (en) * 2001-08-07 2005-08-30 Northeastern University Process of forming a composite coating on a substrate
CN101733550A (zh) * 2010-01-09 2010-06-16 苏州大学 一种送丝送粉复合激光熔覆成形方法及装置
CN202297781U (zh) * 2011-10-24 2012-07-04 苏州大学 同轴粉丝复合送料激光熔覆喷嘴结构
CN103710698A (zh) * 2013-09-23 2014-04-09 浙江大学宁波理工学院 一种光内同轴送丝辅助激光熔注模具表面耦合仿生修复方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6936118B2 (en) * 2001-08-07 2005-08-30 Northeastern University Process of forming a composite coating on a substrate
CN101733550A (zh) * 2010-01-09 2010-06-16 苏州大学 一种送丝送粉复合激光熔覆成形方法及装置
CN202297781U (zh) * 2011-10-24 2012-07-04 苏州大学 同轴粉丝复合送料激光熔覆喷嘴结构
CN103710698A (zh) * 2013-09-23 2014-04-09 浙江大学宁波理工学院 一种光内同轴送丝辅助激光熔注模具表面耦合仿生修复方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104668562A (zh) * 2015-01-30 2015-06-03 湖南大学 一种激光光路无遮挡同轴送粉方法及送粉装置
CN105397296A (zh) * 2015-12-30 2016-03-16 哈尔滨工业大学 一种激光沉积-熔注同步复合连接方法
CN105397296B (zh) * 2015-12-30 2017-04-26 哈尔滨工业大学 一种激光沉积‑熔注同步复合连接方法
CN107984115A (zh) * 2017-11-08 2018-05-04 蚌埠市华鼎机械科技有限公司 一种激光焊接处理铅酸蓄电池的方法
CN108452372A (zh) * 2018-05-22 2018-08-28 哈尔滨工业大学 丝粉同步激光沉积制备表面生物活性的钛合金骨植入体的方法
CN108788406A (zh) * 2018-07-04 2018-11-13 西南交通大学 一种轻金属基复合材料构件及其制备方法
CN108788406B (zh) * 2018-07-04 2020-01-07 西南交通大学 一种轻金属基复合材料构件及其制备方法
CN110965060A (zh) * 2018-09-30 2020-04-07 天津大学 一种基于管状粉芯丝材的激光熔化沉积陶瓷颗粒增强金属基复合涂层及加工方法
CN109834436A (zh) * 2019-01-08 2019-06-04 哈尔滨焊接研究院有限公司 铝基复合材料制备方法
CN109834436B (zh) * 2019-01-08 2021-02-23 哈尔滨焊接研究院有限公司 铝基复合材料制备方法
CN109929986A (zh) * 2019-03-08 2019-06-25 安徽信息工程学院 一种复合材料及其制备方法
CN110424002B (zh) * 2019-06-25 2022-03-15 阳江市五金刀剪产业技术研究院 一种复合涂层、制备方法及应用
WO2020258576A1 (zh) * 2019-06-25 2020-12-30 阳江市五金刀剪产业技术研究院 一种复合涂层、制备方法及应用
CN110424002A (zh) * 2019-06-25 2019-11-08 阳江市五金刀剪产业技术研究院 一种复合涂层、制备方法及应用
CN110938818A (zh) * 2019-12-20 2020-03-31 西安交通大学 一种旁轴送粉装置
CN110938818B (zh) * 2019-12-20 2024-06-07 西安交通大学 一种旁轴送粉装置
CN112222424A (zh) * 2020-09-09 2021-01-15 武汉数字化设计与制造创新中心有限公司 一种颗粒增强金属复合材料的制备方法
CN115415541A (zh) * 2022-07-26 2022-12-02 南京工业大学 基于同步送丝和送粉搅拌摩擦增材制造的硬质相增强金属基复合材料及制备方法
CN115415541B (zh) * 2022-07-26 2024-01-05 南京工业大学 基于同步送丝和送粉搅拌摩擦增材制造的硬质相增强金属基复合材料及制备方法
CN115301953A (zh) * 2022-09-01 2022-11-08 华侨大学 一种丝粉同步送料增材制造的耐磨材料
CN115351293A (zh) * 2022-09-01 2022-11-18 华侨大学 一种丝粉同步送料增材制造气体保护方法
CN115475957A (zh) * 2022-09-01 2022-12-16 华侨大学 一种丝粉同步送料增材制造方法
CN115301953B (zh) * 2022-09-01 2023-10-13 华侨大学 一种丝粉同步送料增材制造的耐磨材料

Also Published As

Publication number Publication date
CN104313571B (zh) 2016-09-07

Similar Documents

Publication Publication Date Title
CN104313571A (zh) 丝粉同步送进激光沉积制备铝基复合材料构件的方法
CN104131281B (zh) 简易铁基激光熔覆粉末及熔覆层制备方法
CN107747083A (zh) 一种金属基陶瓷涂层及其制备方法
CN101830731B (zh) 一种碳材料表面陶瓷涂层的制备方法
CN102303981A (zh) 一种激光熔覆制备陶瓷基复合材料环境屏障涂层的方法
CN102962447B (zh) 一种碳化钛金属陶瓷粉末及激光熔覆该粉末的方法
CN103484857B (zh) 在金属基体陶瓷涂层上制备纳米改性非晶陶瓷涂层的方法
CN106544672B (zh) 一种通过激光加工制备准晶化复合材料的方法
CN102011121A (zh) 大面积TiB-TiC增强钛基复合涂层及其制备方法
CN103484814A (zh) 硼化钛基无机复合材料涂层的制备方法
CN103540790A (zh) 一种耐蚀的CuAlCr激光熔覆层材料的制备方法
CN104120424B (zh) 铁基激光熔覆粉末及熔覆层制备方法
CN102400001A (zh) 一种原位金属间化合物颗粒增强铝基复合材料的制备方法
CN107675170A (zh) 一种海洋平台钢表面激光熔覆‑微弧氧化涂层的制备方法
CN103484811A (zh) 金属氧化物基无机复合材料涂层的制备方法
CN102154640A (zh) 铝涂层结合强度的提高方法
CN102391015A (zh) SiC陶瓷表面处理方法及其用途
CN109972004A (zh) 一种稀土Sc改性Al-Si-Mg合金及其制备方法
CN102534467A (zh) 一种铝合金表面制备高硅涂层的方法
CN109440049B (zh) 一种电弧喷涂与激光重熔复合制备非晶铝涂层的方法
CN104630688B (zh) 一种制备梯度热障涂层的方法
CN103060800B (zh) 用于钛合金表面激光熔覆的材料及激光熔覆方法
CN103952695A (zh) 非晶陶瓷涂层的制备方法
CN105671544B (zh) 利用熔覆粉末在激光熔覆中提高42CrMo钢耐磨性能的方法
CN104480463B (zh) 一种激光增材制造非晶‑纳米晶增强叠层复合材料的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160907

Termination date: 20201106

CF01 Termination of patent right due to non-payment of annual fee