CN104307462B - 一步水煮法制备介孔氧化镁的方法 - Google Patents

一步水煮法制备介孔氧化镁的方法 Download PDF

Info

Publication number
CN104307462B
CN104307462B CN201410535213.4A CN201410535213A CN104307462B CN 104307462 B CN104307462 B CN 104307462B CN 201410535213 A CN201410535213 A CN 201410535213A CN 104307462 B CN104307462 B CN 104307462B
Authority
CN
China
Prior art keywords
mass ratio
water
mesoporous magnesia
distilled water
magnesia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410535213.4A
Other languages
English (en)
Other versions
CN104307462A (zh
Inventor
冯静
邹临怡
范壮军
王玉婷
李博文
贺晓峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201410535213.4A priority Critical patent/CN104307462B/zh
Publication of CN104307462A publication Critical patent/CN104307462A/zh
Application granted granted Critical
Publication of CN104307462B publication Critical patent/CN104307462B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明提供的是一种一步水煮法制备介孔氧化镁的方法。将无机氧化镁研磨10~15分钟至适当粒径后,与蒸馏水按质量比1:2混合搅拌,将沉淀过滤,依次用酒精和蒸馏水洗涤数次,在80℃烘干;将得到的粉末,与聚乙二醇按质量比1:1混合,混合物与蒸馏水按质量比1:3混合,煮沸2h后过滤干燥;500~800℃焙烧2~4h后得到介孔氧化镁。传统液相法的缺点在于粒径尺寸不均匀,产品粒度较大,粒度分布较宽。本发明制备的形态为纳米多孔片层结构的MgO,拥有高比表面积,形貌易于控制,不仅成本低廉而且方法简便。合成产物的比表面积大、孔径均匀具有对重金属和染料具有高吸附性,有望应用于重金属污水处理领域。

Description

一步水煮法制备介孔氧化镁的方法
技术领域
本发明涉及的是一种无机多孔氧化镁材料的制备方法,具体地说是一种利用水煮氧化镁的过程来制备介孔氧化镁的制备方法。
背景技术
近几年重金属废水污染是我国最为严重的环境污染问题之一,作为我国最难解决的环境问题之一正在制约着我们的发展和进步。因此,寻找经济高效、绿色环保的处理方法来处理重金属离子废水也变得尤为重要。吸附法是利用具有高比表面积的蓬松结构或者特殊功能基团的物质,通过物理或化学的方法去除废水中的重金属离子。由于具有吸附材料来源广泛,吸附容量大,去除效率高,操作简单,可重复使用等优点而备受人们青睐。作为一种环境友好型的吸附材料,氧化镁逐渐得到人们的关注,在环保领域得到了广泛的应用,主要包括印染废水脱色处理、酸性废水处理、重金属脱除、废水脱磷和烟气脱硫等方面。目前合成MgO的主要方法有水相化学沉淀法、高温分解法、水热法、溶剂热法等等,这些方法对MgO未来发展起到了很大的推动作用,但对特殊形态的氧化镁制备的研究仍然很少,且合成的MgO的方法大多比较复杂,反应条件要求也比较高,限制了其在工业生产中的应用。本发明采用一步水煮法制备的高比表面积的MgO具有操作步骤简单经济,原料易得,反应条件易控,产物吸附性果好,粒径均匀等特点,适合工业化生产。
水煮法是一种制备分子筛的常用方法,提供固体与液体快速流动的环境,从而有利于孔道的形成。受到人们的极大关注。中国知网CNKI安徽大学博士论文题为中多级孔分子筛KIT-1的合成、表征及催化性能研究,利用简单的水热合成法合成了新型介微孔复合分子筛,研究了它们的结构、水热稳定性和酸性等特征,并以多个探针反应评价了其催化性能。其不足之处是合成方法复杂,合成周期长,沸水纯水汽化这里作为检验分子筛水热稳定性使用,并没有参与到合成产物中。
在胶体与表面化学杂志2011年的379期,页码编号102-108,发表的一篇题为制备介孔氧化镁纳米微球及其在水中吸附磷酸盐的性能研究一文中,其采用均匀沉淀的方法制备出比表面积为72.1m2/g的MgO纳米微球,对水溶液中的磷酸盐最大吸附容量为75.13mg/g。其不足之处是合成介孔材料的方法过于复杂,需要将聚萘甲醛磺酸钠盐作为结构模板形式引入,且合成出产物比表面积小,吸附效果不佳。
发明内容
本发明的主要目的是提供一种能够生成六边形介孔氧化镁MgO纳米薄片的一步水煮法制备介孔氧化镁的方法。本发明所采取的技术方案:
1)室温下称量40~80g市售氧化镁,放入研钵中研磨10~15分钟;
2)与蒸馏水按质量比1:2混合,搅拌均匀,超声15min;
3)将沉淀过滤,依次用酒精和蒸馏水洗涤数次,在80℃烘干;
4)称取50g3)中得到的粉末,与聚乙二醇按质量比1:1混合,所形成的混合物与蒸馏
水按质量比1:3混合,煮沸2h,过滤干燥;
5)500~800℃焙烧2~4h,得到介孔氧化镁。
本发明具有的优益之处在于:
本发明最大的区别在于比其他合成介孔氧化镁MgO的方法是工艺简单,条件易控,设备便宜,易于批量生产,可直接得到纯度高、孔径大和比表面积高的纳米微球且易得到合适的化学计量比,适合工业化生产。并且该方法用市售氧化镁为原料,原料易得,方法简单,只需采用一步水煮法,即可获得特殊形貌且高比表面积的氧化镁,大大降低了成本,并且产物吸附效果好。
目前,制备纳米粒子的方法有很多如热分解法、微乳液法、共沉淀法、水热法和溶剂热法等,传统液相法的缺点在于粒径尺寸不均匀,产品粒度较大,粒度分布较宽。本发明与传统液相法相比,制备形态为纳米多孔片层结构的金属氧化物,粒径小、粒度分布窄,拥有高比表面积,形貌易于控制,不仅成本低廉而且方法简便。
与其它采用蒸馏的的方法相比,本方法中水煮作为一种化学反应制备方法,不需要掺加任何其他模板助剂,只需简单一步水煮法即可获得特殊六边形结构的介孔氧化镁MgO。从说明书附图1中可以看出,所得样品的形态为介孔纳米MgO薄片,呈标准六边形结构,并且纯度很高。其XRD衍射峰与MgO的标准卡片JCPDS45-0946中的XRD衍射峰完全对应,未出现任何杂质峰,其对应的d值(2θ值)和Miller指数也完全吻合,如图2所示。与其它制备金属氧化物的方法相比,本方法采用一步水煮法合成的介孔氧化镁比表面积增大,如说明书附图中图3所示产物的比表面积和孔径较大,分别为181.692m2/g和0.875cm3/g。附图4中所示,对重金属污染废水中镍离子的最大吸附容量高达1684.25mg/g。不仅降低成本、而且减少由其他方法引起的诸如能耗大,效率低,粒子易氧化变形等不足,为介孔金属氧化物材料的制备提供了一种价廉而又简易的新方法。合成产物的比表面积大、孔径均匀具有对重金属和染料具有高吸附性,与已报导的其他金属氧化物相比其比表面积大得多,有望应用于重金属污水处理领域。
附图说明
图1A六边形介孔氧化镁MgO纳米片的SEM图;
图1B六边形介孔氧化镁MgO纳米片的TEM图;
图2为介孔氧化镁MgO纳米片的XRD图谱;
图3A介孔氧化镁MgO纳米片的氮气吸脱附等温曲线;
图3B介孔氧化镁MgO纳米片的孔径分布;
图4为介孔氧化镁MgO纳米片对Ni(II)的吸附曲线。
具体实施方式
了更好的理解本发明,下面通过实施例进行说明。
实施例1
步骤1:室温下称量50~60g市售氧化镁,放入研钵中研磨10~15分钟;
步骤2:与蒸馏水按质量比1:2混合,搅拌均匀,超声15min,生成絮状沉淀;
步骤3:将沉淀用循环水式真空泵过滤,依次用酒精和蒸馏水洗涤数次,在80℃烘干;
步骤4:称取50g步骤3)中得到的粉末,与聚乙二醇按质量比1:1混合,所形成的混合物
与蒸馏水按质量比1:3混合,煮沸2h,过滤干燥;
步骤5:550~700℃焙烧2~4h,得到高比表面积的介孔氧化镁。
实施例2
步骤1:室温下称量50g市售纳米氧化镁,放入研钵中研磨10~15分钟;
步骤2:与蒸馏水按质量比1:2混合,搅拌均匀,超声15min,生成絮状沉淀;
步骤3:将沉淀用循环水式真空泵过滤,依次用酒精和蒸馏水洗涤数次,在80℃烘干;
步骤4:称取50g3)中得到的粉末,与聚乙二醇按质量比1:1混合,所形成的混合物与蒸
馏水按质量比1:3混合,煮沸2h,过滤干燥;
步骤5:600℃焙烧3h,得到高比表面积的介孔氧化镁。

Claims (5)

1.一步水煮法制备介孔氧化镁的方法,其特征是:
1)室温下称量40~80g市售氧化镁,放入研钵中研磨10~15分钟;
2)与蒸馏水按质量比1:2混合,搅拌均匀,超声15min;
3)将沉淀过滤,依次用酒精和蒸馏水洗涤,在80℃烘干;
4)称取50g步骤3)中得到的粉末,与聚乙二醇按质量比1:1混合,所形成的混合物与蒸馏水按质量比1:3混合,煮沸2h,过滤干燥;
5)500~800℃焙烧2~4h,得到介孔氧化镁。
2.根据权利要求1所述的一步水煮法制备介孔氧化镁的方法,其特征在于:室温下称量50g氧化镁。
3.根据权利要求1或2所述的一步水煮法制备介孔氧化镁的方法,其特征在于:焙烧温度为600℃。
4.根据权利要求1或2所述的一步水煮法制备介孔氧化镁的方法,其特征在于:焙烧时间为3h。
5.根据权利要求3所述的一步水煮法制备介孔氧化镁的方法,其特征在于:焙烧时间为3h。
CN201410535213.4A 2014-10-11 2014-10-11 一步水煮法制备介孔氧化镁的方法 Active CN104307462B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410535213.4A CN104307462B (zh) 2014-10-11 2014-10-11 一步水煮法制备介孔氧化镁的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410535213.4A CN104307462B (zh) 2014-10-11 2014-10-11 一步水煮法制备介孔氧化镁的方法

Publications (2)

Publication Number Publication Date
CN104307462A CN104307462A (zh) 2015-01-28
CN104307462B true CN104307462B (zh) 2016-06-29

Family

ID=52362854

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410535213.4A Active CN104307462B (zh) 2014-10-11 2014-10-11 一步水煮法制备介孔氧化镁的方法

Country Status (1)

Country Link
CN (1) CN104307462B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105498679B (zh) * 2015-11-24 2018-11-16 常熟理工学院 一种固载化纳米MgO吸附材料的制备方法和应用
JP6726146B2 (ja) * 2017-09-19 2020-07-22 宇部マテリアルズ株式会社 赤潮駆除剤及びこれを用いた赤潮駆除方法
CN111995155A (zh) * 2019-05-27 2020-11-27 宝山钢铁股份有限公司 一种含氨氮酸性废水资源化处理的方法
CN110950421B (zh) * 2019-12-19 2021-07-02 中山大学 一种高比表面积的MgO微米球及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1974881A (zh) * 2006-11-10 2007-06-06 北京工业大学 四方与六方虫孔状介孔单晶立方氧化镁粒子的制备方法
CN101219799A (zh) * 2007-10-11 2008-07-16 北京工业大学 一种利用双重模板剂制备大孔-介孔氧化镁的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1974881A (zh) * 2006-11-10 2007-06-06 北京工业大学 四方与六方虫孔状介孔单晶立方氧化镁粒子的制备方法
CN101219799A (zh) * 2007-10-11 2008-07-16 北京工业大学 一种利用双重模板剂制备大孔-介孔氧化镁的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Facile Synthesis and Unique Physicochemical Properties of Three-Dimensionally Ordered Macroporous Magnesium Oxide,Gamma-Alumina, and Ceria-Zirconia Solid Solutions with Crystalline Mesoporous Walls;Huining Li et al.;《Inorganic Chemistry》;20090406;第48卷(第10期);第4423页第2节 *
软 、硬模板合成多孔氧化镁 、氧化钙和碳酸钙;戴洪光等;《无机盐工业》;20110531;第43卷(第5期);摘要、第19页左栏第2段、表1 *

Also Published As

Publication number Publication date
CN104307462A (zh) 2015-01-28

Similar Documents

Publication Publication Date Title
Dhal et al. MgO nanomaterials with different morphologies and their sorption capacity for removal of toxic dyes
Zheng et al. Hierarchical flower-like nickel (II) oxide microspheres with high adsorption capacity of Congo red in water
Liou et al. Synthesis and surface characteristics of nanosilica produced from alkali-extracted rice husk ash
Yuan et al. Box-Behnken design approach towards optimization of activated carbon synthesized by co-pyrolysis of waste polyester textiles and MgCl2
Wang et al. In-situ synthesis and ultrasound enhanced adsorption properties of MoS2/graphene quantum dot nanocomposite
CN104307462B (zh) 一步水煮法制备介孔氧化镁的方法
Zhang et al. Synthesis and characterization of ferric tannate as a novel porous adsorptive-catalyst for nitrogen removal from wastewater
Guo et al. Synthesis, characterization and visible light photocatalytic properties of Bi2WO6/rectorite composites
CN106279033A (zh) 片状交叉zif‑l及其制备方法
Zhao et al. Preparation, characterization and catalytic application of hierarchically porous LaFeO 3 from a pomelo peel template
Jiang et al. Platanus orientalis leaves based hierarchical porous carbon microspheres as high efficiency adsorbents for organic dyes removal
CN102500337A (zh) 一种以铁盐改性牡蛎壳的除磷吸附剂、其制备方法及应用
Zhang et al. Pb (II) removal from water using Fe-coated bamboo charcoal with the assistance of microwaves
CN107138131A (zh) 一种高效吸附Cr(VI)的碳‑氧化铝复合材料的制备方法
Wang et al. Heavy metal sorption properties of magnesium titanate mesoporous nanorods
CN103626145A (zh) 磷酸钛纳米材料及其制备方法与应用
CN105771936A (zh) 磁性锆/铁复合氧化物纳米材料及其制备方法和应用
CN109336161B (zh) 一种CeO2纳米管的制备方法、CeO2纳米管及应用
Xiao et al. Prussian blue-impregnated waste pomelo peels-derived biochar for enhanced adsorption of NH3
CN110339817A (zh) 一种氮掺杂黄腐酸基多孔炭吸附材料的制备方法
Prabhu et al. Synthesis and characterization of mesoporous carbon by simple one pot method
Wang et al. Cellulose carbon xerogel supported double-perovskite nanoparticles as a versatile and efficient catalyst for the degradation of humic acid under microwave irradiation
CN106430144A (zh) 一种基于片状氧化镁模板制备沥青基多级孔碳片的方法及其应用
Jin et al. Preparation and characterization of merlinoite for potassium extraction from seawater
Jia et al. Facile synthesis of MoO 2/CaSO 4 composites as highly efficient adsorbents for congo red and rhodamine B

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant