CN104248477B - 组织工程支架 - Google Patents

组织工程支架 Download PDF

Info

Publication number
CN104248477B
CN104248477B CN201410457774.7A CN201410457774A CN104248477B CN 104248477 B CN104248477 B CN 104248477B CN 201410457774 A CN201410457774 A CN 201410457774A CN 104248477 B CN104248477 B CN 104248477B
Authority
CN
China
Prior art keywords
tubular element
tissue engineering
modulus
tension
engineering bracket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410457774.7A
Other languages
English (en)
Other versions
CN104248477A (zh
Inventor
H·斯科特·拉波波特
杰弗里·E·菲什
小尼尔·F·罗宾斯
罗杰·M·艾莱甘
凯利·I·格思里
纳姆雷塔·桑加
R·佩恩
D·贾因
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Regenerative medicine (Cayman) Co. Ltd.
Original Assignee
Ruijin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruijin Corp filed Critical Ruijin Corp
Publication of CN104248477A publication Critical patent/CN104248477A/zh
Application granted granted Critical
Publication of CN104248477B publication Critical patent/CN104248477B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0076Electro-spinning characterised by the electro-spinning apparatus characterised by the collecting device, e.g. drum, wheel, endless belt, plate or grid
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D7/00Collecting the newly-spun products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pulmonology (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Chemical & Material Sciences (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明涉及模拟天然血管的生物力学行为的组织工程支架(TE支架)、自TE支架衍生的组织工程血管(TEBV)、及制作和使用TE支架和TEBV的方法。

Description

组织工程支架
本申请是申请日为2009年2月13日、申请号为200980113252.2、发明名称为“组织工程支架”的发明专利申请(PCT/US2009/034137)的分案申请。
发明领域
本发明涉及模拟天然血管的生物力学行为的组织工程支架,及其制作和使用方法。
发明背景
血管组织工程中的一个主要难题是拥有与天然血管相称的合适的、长效的生物力学特性的脉管移植物的构建。动脉置换引起特殊的挑战,原因在于所有血管共同的环状加载,但是还有那些血管所要求的较高运转压力。经由多种合成和有机材料、不同构建模态(例如静电纺织和铸造)及众多综合设计,研究人员已经着手这个难题。例如,已经尝试使用供体移植物、天然成分、和合成成分的各种组合来创建血管移植物(参见例如Zilla etal.,美国已公布的专利申请2005/0131520;Flugelman,美国已公布的专利申请2007/0190037;Shimizu,美国专利6,136,024;Matsuda et al.,美国专利5,718,723;和Rhee etal.,美国专利5,292,802)。已经报告由聚酯型聚氨酯尿素(PEUU)(Courtney et al.(2006)Biomaterials.27:3631-3638)和PEUU/胶原(Guan et al.(2006)CellTransplant.Vol.15.Supp.1;S17-S27)构成的其它支架展现组织样功能特性。然而,虽然合成材料诸如(对苯二酸乙二酯)和PTFE(Teflon)已经成功地用于大直径血管,但是没有哪种合成材料已经成功地用于小直径(例如小于6mm内部直径)血管移植物。已经发现由(对苯二酸乙二酯)和PTFE构成的、具有小于5mm的内部直径的血管移植物是临床上不可接受的,原因是急性血栓形成和慢性吻合和/或内层增生(Walpoth et al.(2005)Expert Rev.Med.Dev.2(6):647-51)。小直径血管移植物难以成功可部分地归因于包括未能恰当地匹配体内力学特性在内的因素。
已经广泛表征了天然血管的生物力学特性。已经清楚它们对应力和应变的响应是一项重要特征(Roach et al.(1957)Can.J.Biochem.Physiol.35:681-690;Gosline&Shadwick(1998)American Scientist.86:535-541)。展现称作“J形”曲线的应力-应变曲线的材料是可能适合于在希望对应力和应变的力学响应类似天然血管的组织工程支架(诸如血管支架)中使用的候选者。已经报告了自弹性蛋白、胶原、和合成聚合物的混合物制造的各种制作支架的力学特性(Lee et al.(2007)J.Biomed.Mater.Res.A.,Dec 15;83(4):999-1008;Smith et al.(2008)Acta Biomater.Jan;4(1):58-66;Lelkes et al.美国已公布的申请No.2006/0263417)。然而,仍然需要能够重演J形曲线行为的组织工程支架,及制作此类支架的方法。
本发明提供展现在天然血管中观察到的相同类型的对应力和应变的响应即J形应力/应变曲线的组织工程支架,及其使用和制作方法。
发明概述
本发明关注组织工程支架(tissue engineering scaffold)及其制作方法。
一方面,本发明提供制作包含两个或更多个不同管状元件(tubular element)的组织工程支架的方法。在一个实施方案中,该方法包括下述步骤:(a)提供第一管状元件,其具有弹性体元件(elastomeric element)、外部表面、内部腔表面、和第一直径;(b)使第一管状元件膨胀至第二直径;(c)在步骤(b)的膨胀后的管状元件的外部表面上提供第二管状元件,其具有抗拉元件(tensile element)、外部表面和内部腔表面;(d)粘合步骤(b)的膨胀后的第一管状元件的外部表面与第二管状元件的内部腔表面;并(e)缩小第一管状元件的第二直径至步骤(a)的第一直径。
在一个实施方案中,步骤(a)的第一管状元件和/或步骤(c)的第二管状元件是通过静电纺织(electrospinning)而形成的。在另一个实施方案中,步骤(a)的第一管状元件是通过在表面上静电纺织材料而形成的。在其它实施方案中,步骤(c)的第二管状元件是通过在膨胀后的第一管状元件的外部表面上静电纺织材料而形成的,或者是通过将成形前的第二管状元件放置在膨胀后的第一管状元件的外部表面上而形成的。在又一个实施方案中,步骤(a)的第一管状元件是通过静电纺织而形成的,而步骤(c)的第二管状元件是通过将成形前的第二管状元件放置在膨胀后的第一管状元件的外部表面上而提供的。
在一个其它实施方案中,粘合(bonding)步骤(d)包括将第二管状元件的内部表面粘附至膨胀后的第一管状元件的外部表面。在另一个实施方案中,粘合步骤(d)是在膨胀后的第一管状元件的外部表面上静电纺织第二管状元件之后实施的,或者是在将成形前的第二管状元件放置在膨胀后的第一管状元件的外部表面上之后实施的,而且包括下述步骤,将另一层材料应用在第二管状元件的外表面上以容许将第二管状元件夹心粘附在第一管状元件和所述另一层材料之间。在另一个实施方案中,所述另一层是或含有用于形成第一管状层相同类型的材料。
在另一个实施方案中,上述步骤(c)的第二管状元件的外层或表面是波纹状(corrugated)。在一个实施方案中,波纹状第二管状元件具有纤维网络,其中纤维方向是周向取向的。在其它实施方案中,第三、第四、第五、等管状元件的外层或表面是波纹状,和/或具有纤维网络,其中纤维方向是周向取向的。
在一些实施方案中,提供步骤(a)和/或提供步骤(c)包括在心轴(mandrel)上静电纺织材料。在另一个实施方案中,提供步骤(c)包括将成形前的第二管状元件放置在步骤(b)的膨胀后的第一管状元件上。在一个其它实施方案中,提供步骤(a)包括在心轴上静电纺织材料一形成第一管状元件,而提供步骤(c)包括将成形前的第二管状元件放置在步骤(b)的膨胀后的第一管状元件上。
在其它实施方案中,别的管状元件的形成包括在心轴上静电纺织,或者将别的成形前的管状元件放置在已有的管状元件层上。
在其它实施方案中,步骤(a)和(c)包括铸造(casting)技术。在一个其它实施方案中,步骤(a)涉及使用与第一直径对应的铸件,而步骤(c)涉及使用与第二直径对应的铸件。在其它实施方案中,别的管状元件的形成包括铸造,诸如经由使用与大于或小于步骤(c)第二直径的直径对应的铸件;和/或经由使用与大于或小于步骤(a)第一直径的直径对应的铸件。
在所有实施方案中,本发明的方法可包括下述步骤,在第二管状元件结构内提供抗拉元件连续体(continuum)或加劲(stiffening)连续体。在一个实施方案中,连续体归于第二管状元件材料内的纤维的不同形态。
在所有实施方案中,提供管状元件的步骤涵盖使用下述一项或多项:铸造,使用成形前的管状元件,和静电纺织技术。
在所有实施方案中,本发明的方法涵盖在第一和第二管状元件上提供别的管状元件,诸如第三管状元件、第四管状元件、第五管状元件、等。在所有实施方案中,每个别的管状元件可包括一个或多个弹性体元件和/或一个或多个抗拉元件。本领域技术人员会了解用于提供别的管状元件的各种技术,包括但不限于本文中所描述的那些。
在本发明的另一个实施方案中,弹性体元件包括具有第一弹性模量的弹性体成分,而抗拉元件包括具有第二弹性模量的抗拉成分,所述第二弹性模量大于第一弹性模量。在一个优选的实施方案中,第二弹性模量大于第一弹性模量至少一个数量级。
在一些实施方案中,弹性体元件包含天然的弹性体成分、合成的弹性体成分、或天然的弹性体成分和合成的弹性体成分。在一个实施方案中,天然的弹性体成分是弹性蛋白。在其它实施方案中,天然的弹性体成分选自下组:弹性蛋白(elastin),节肢弹性蛋白(resilin),外展素(abductin),和蚕丝(silk)。在另一个实施方案中,合成的弹性体成分可选自下组:胶乳(latex),聚氨酯(polyurethane)(PU),聚己酸内酯(polycaprolactone)(PCL),聚-L-乳酸(poly-L-lactide acid)(PLLA),聚二烷酮(polydiaxanone)(PDO),聚(L-丙交酯共己内酯)(poly(L-lactide-co-caprolactone))(PLCL),和聚醚型聚氨酯(poly(etherurethane urea))(PEUU)。
在其它实施方案中,抗拉元件包含天然的抗拉成分、合成的抗拉成分、或天然的抗拉成分和合成的抗拉成分。在一个实施方案中,天然的抗拉成分是胶原。在其它实施方案中,天然的抗拉成分选自下组:胶原(collagen),纤维素(cellulose),蚕丝,和角蛋白(keratin)。在另一个实施方案中,合成的抗拉成分选自下组尼龙(nylon),(聚对苯二酸乙二酯(polyethylene terephthalate)(PET)),(聚四氟乙烯(polytetrafluoroethylene)),聚酯(polyester),聚乙醇酸(polyglycolic acid)(PGA),聚乳酸共乙醇酸(poly-lactic-co-glycolic acid)(PLGA),和聚醚型聚氨酯(PEUU)。
另一方面,本发明提供通过本文中所描述的方法制作的、具有模拟天然血管特性或与天然血管特性实质性相似的特性的组织工程支架。在一个实施方案中,本发明提供具有与天然血管的响应实质性相似的对应力和应变的力学响应的组织工程支架,其具有(a)第一管状元件,其具有弹性体元件、外部表面和内部腔表面;和(b)第二管状元件,其具有抗拉元件、外部表面和内部腔表面,第二管状元件的内部腔表面与第一管状元件的外部表面接触,其中该组织工程支架对应力和应变的力学响应特征在于J形应力/应变曲线。
在所有实施方案中,本发明的支架涵盖第一和第二管状元件之外一个或多个别的管状元件。在一些实施方案中,所述别的管状元件是在第二管状元件的外部表面上形成的。
在另一个实施方案中,具有与天然血管的响应实质性相似对应力和应变的力学响应的组织工程支架具有(a)第一管状元件,其具有弹性体元件、外部表面和内部腔表面;和(b)第二管状元件,其具有抗拉元件、外部表面和内部腔表面,第二管状元件的内部腔表面与第一管状元件的外部表面接触,其中该组织工程支架具有(i)约0.1MPa至约0.5MPa的周向管弹性模量1,(ii)约3.0MPa至约6.0MPa的周向管弹性模量2;和(iii)约0.57至约1.12的周向模量过渡(circumferential modulus transition)。
在其它实施方案中,组织工程支架对应力(stress)和应变(strain)的力学响应特征在于J形应力/应变曲线。
在一些实施方案中,组织工程支架对应力和应变的力学响应归于第一管状元件的弹性体元件和第二管状元件的抗拉元件之间的协同。在又一个实施方案中,协同地,弹性体元件赋予组织工程支架以弹性,而抗拉元件赋予组织工程支架以刚性。
在另一个实施方案中,组织工程支架的第二管状元件是波纹状。在一个实施方案中,波纹状第二管状元件具有纤维网络,其中纤维方向是周向取向的。在一个其它实施方案中,波纹状轴配置成与支架的轴向平行。在一些实施方案中,本发明的支架涵盖一个或多个别的管状元件,诸如第三、第四、第五、等管状元件,其中第三、第四、第五、等管状元件的外层或表面是波纹状,和/或具有纤维网络,其中纤维方向是周向取向的。
本发明的一些实施方案提供组织工程支架,其中弹性体元件包含具有第一弹性模量的弹性体成分,且抗拉元件含有具有第二弹性模量的抗拉成分,所述第二弹性模量大于第一弹性模量。在一个优选的实施方案中,第二弹性模量大于第一弹性模量至少一个数量级。
在又一个实施方案中,本发明提供组织工程支架,其中弹性体元件具有天然的弹性体成分、合成的弹性体成分、或天然的弹性体成分和合成的弹性体成分。在一个实施方案中,天然的弹性体成分是弹性蛋白。在其它实施方案中,天然的弹性体成分选自下组:弹性蛋白,节肢弹性蛋白,外展素,和蚕丝。在其它实施方案中,合成的弹性体成分选自下组:胶乳,聚氨酯(PU),聚己酸内酯(PCL),聚-L-乳酸(PLLA),聚二烷酮(PDO),聚(L-丙交酯共己内酯)(PLCL),和聚醚型聚氨酯(PEUU)。在一些实施方案中,本发明的支架包括(i)两个和更多个不同类型的天然的弹性体成分;和/或(ii)两个或更多个不同类型的合成的弹性体成分。
在其它实施方案中,本发明提供组织工程支架,其中抗拉元件具有天然的抗拉成分、合成的抗拉成分、或天然的抗拉成分和合成的抗拉成分。在一个实施方案中,天然的抗拉成分是胶原。在其它实施方案中,天然的抗拉成分选自下组:胶原,纤维素,蚕丝,和角蛋白。在另一个实施方案中,合成的抗拉成分选自下组:尼龙,(聚对苯二酸乙二酯(PET)),(聚四氟乙烯),聚酯,聚乙醇酸(PGA),聚乳酸共乙醇酸(PLGA),和聚醚型聚氨酯(PEUU)。在一些实施方案中,支架的抗拉元件包括(i)两个或更多个不同类型的天然的抗拉成分;和/或(ii)两个或更多个不同类型的合成的抗拉成分。
在另一个实施方案中,本发明的组织工程支架具有下述至少一项:(i)孔径自第二管状元件的外部表面处的约100微米逐渐缩小至第一管状元件的内部表面处的约5至约15微米的孔梯度;(ii)约0.45MJ/m3至约1.0MJ/m3的周向管韧度;(iii)约0.1MJ/m3至约0.5MJ/m3的轴向管韧度;(iv)约0.05至约0.3的切向增量(tangent delta);和(v)约400MPa至约0.12MPa的储能模量(storage modulus)。在一个实施方案中,孔梯度有助于TE支架细胞接种容量增强。在另一个实施方案中,轴向韧度和/或周向韧度有助于使得支架对断裂或撕裂有抗性。在一个其它实施方案中,TE支架的粘弹性特征在于切向增量和/或储能模量值。
在所有实施方案中,本发明的TE支架可包括第一和第二管状元件以外的管状元件。本领域技术人员会了解所述别的管状元件中可包含的各种成分,包括但不限于本文中所描述的那些。
在别的实施方案中,本发明提供制作组织工程支架的方法。在一个实施方案中,该方法包括下述步骤:(a)提供第一管状元件,其包含弹性体元件、外部表面、内部腔表面、和第一直径;(b)使第一管状元件膨胀至第二直径;(c)在步骤(b)的第一管状元件的外部表面上提供第二管状元件,其包含抗拉元件、外部表面和内部腔表面;(d)在完成提供步骤(c)之前完成提供步骤(a);(e)粘合步骤(b)的膨胀后的管状元件和步骤(c)的第二管状元件;并(e)缩小第一管状元件的第二直径至步骤(a)的第一直径。在另一个实施方案中,组织工程支架在第一管状元件和第二管状元件之间的界面处包含带状渐变。在另一个实施方案中,带状渐变包含异质性的过渡带(transitional zone),其包含第一管状元件的弹性体元件和第二管状元件的抗拉元件。
在一个其它实施方案中,制作组织工程支架的方法包括下述步骤:(a)提供第一管状元件,其包含弹性体元件、外部表面、内部腔表面、和第一直径;(b)使第一管状元件以连续速率膨胀至第二直径;(c)在膨胀步骤(b)期间在步骤(b)的第一管状元件的外部表面上提供第二管状元件,其包含抗拉元件、外部表面和内部腔表面;(e)粘合步骤(b)的膨胀后的管状元件和步骤(c)的第二管状元件;和(e)缩小第一管状元件的第二直径至步骤(a)的第一直径。在另一个实施方案中,第二管状元件包含抗拉元件连续体或加劲连续体。在一个其它实施方案中,抗拉元件连续体以不同应变值啮合(engage)。在另一个实施方案中,粘合步骤(d)包括将第二管状元件的纤维结合至第一管状元件,由此提供连续体。在一个实施方案中,在提供步骤(c)之前连接第二管状元件的纤维。在另一个实施方案中,根据扭折(kinking)程度,纤维在应变下以不同时间间隔啮合。在一个实施方案中,没有较少量扭折的纤维在有较大量扭折的纤维之前伸直和啮合。在另一个实施方案中,纤维啮合导致应力/应变曲线的逐渐成圆,由此提供与天然血管相似的力学特性。
在另一个实施方案中,该进一步包括(f)在第二管状元件的外部表面上提供第三管状元件,该第三管状元件包含外部表面和内部腔表面。在另一个实施方案中,该方法进一步包括(g)在第三管状元件的外部表面上提供第四管状元件,该第四管状元件包含外部表面和内部腔表面。在一个其它实施方案中,该方法进一步包括(h)在第四管状元件的外部表面上提供第五管状元件,该第五管状元件包含外部表面和内部腔表面。在一个实施方案中,该方法进一步包括提供一个或多个别的管状元件,该管状元件包含外部表面和内部腔表面,使得每个别的管状元件的内部腔表面与最外面的管状元件接触。在一个实施方案中,所述别的管状元件包含弹性体元件。在一个实施方案中,所述别的管状元件包含抗拉元件。在另一个实施方案中,粘合步骤(e)包括在第二管状元件的外部表面上提供别的管状元件,其包含弹性体元件、外部表面、和内部腔表面。
在其它实施方案中,本发明提供组织工程支架。在一个实施方案中,组织工程支架具有与天然血管的响应实质性相似的对应力和应变的力学响应,该支架包含(a)第一管状元件,其包含弹性体元件、外部表面和内部腔表面;和(b)第二管状元件,其包含抗拉元件、外部表面和内部腔表面,第二管状元件的内部腔表面与第一管状元件的外部表面接触,其中该组织工程支架包含下述至少一项:(i)约0.1MPa至约0.5MPa的周向管弹性模量1;(ii)约3.0MPa至约6.0MPa的周向管弹性模量2;和(iii)约0.57MPa至约1.12MPa的周向模量过渡;(iv)孔径自第二管状元件的外部表面处的约100微米逐渐缩小至第一管状元件的内部表面处的约5至约15微米的孔梯度;(v)约0.45MJ/m3至约1.0MJ/m3的周向管韧度;(vi)约0.1MJ/m3至约0.5MJ/m3的轴向管韧度;(vii)约0.05至约0.3的切向增量;和(viii)约400MPa至约0.12MPa的储能模量,或上述任何组合。在另一个实施方案中,组织工程支架对应力和应变的力学响应特征在于J形应力/应变曲线。在一个实施方案中,组织工程支架是细胞可接近的。在另一个实施方案中,组织工程支架对断裂有抗性。在又一个实施方案中,组织工程支架是粘弹性的(viscoelastic)。
在一个其它实施方案中,本发明提供组织工程支架,其包含(a)第一管状元件,其包含弹性体元件、外部表面和内部腔表面;和(b)波纹状第二管状元件,其包含抗拉元件、外部表面和内部腔表面,第二管状元件的内部腔表面与第一管状元件的外部表面接触。
在还有一个实施方案中,本发明提供组织工程血管(TEBV)。在一个实施方案中,TEBV包含(a)第一管状元件,其包含(i)弹性体元件、(ii)外部表面、(iii)内部腔表面;(b)第二管状元件,其包含(i)抗拉元件、(ii)外部表面、(iii)内部腔表面,其与第一管状元件的外部表面接触,和(c)第一细胞群,其中该TEBV对应力和应变的力学响应特征在于J形应力/应变曲线。在另一个实施方案中,TEBV包含(a)第一管状元件,其包含(i)弹性体元件、(ii)外部表面、(iii)内部腔表面;(b)第二管状元件,其包含(i)抗拉元件、(ii)外部表面、(iii)内部腔表面,其与第一管状元件的外部表面接触,和(c)第一细胞群,其中该TEBV包含下述至少一项:(i)约0.1MPa至约0.5MPa的周向管弹性模量1,(ii)约3.0MPa至约6.0MPa的周向管弹性模量2;和(iii)约0.57MPa至约1.12MPa的周向模量过渡;(iv)孔径自第二管状元件的外部表面处的约100微米逐渐缩小至第一管状元件的内部表面处的约5至约15微米的孔梯度;(v)约0.45MJ/m3至约1.0MJ/m3的周向管韧度;(vi)约0.1MJ/m3至约0.5MJ/m3的轴向管韧度;(vii)约0.05至约0.3的切向增量;和(viii)约400MPa至约0.12MPa的储能模量。在另一个实施方案中,TEBV特征在于J形应力/应变曲线。在一个实施方案中,TEBV对应力和应变的力学响应归于第一管状元件的弹性体元件和第二管状元件的抗拉元件之间的协同。在另一个实施方案中,协同地,弹性体元件赋予TEBV以弹性,而抗拉元件赋予TEBV以刚性。在其它实施方案中,第二管状元件是波纹状。在另一个实施方案中,波纹状第二管状层包含纤维网络,其中纤维方向是周向取向的。在另一个实施方案中,弹性体元件包含具有第一弹性模量的弹性体成分,且抗拉元件包含具有第二弹性模量的抗拉成分,所述第二弹性模量大于第一弹性模量。在其它实施方案中,第二弹性模量大于第一弹性模量至少一个数量级。在另一个实施方案中,弹性体元件包含天然的弹性体成分。在其它实施方案中,弹性体元件包含合成的弹性体成分。在另一个实施方案中,弹性体元件包含天然的弹性体成分和合成的弹性体成分。在一个实施方案中,天然的弹性体成分选自下组:弹性蛋白,节肢弹性蛋白,外展素,和蚕丝。在另一个实施方案中,合成的弹性体成分选自下组:胶乳,聚氨酯(PU),聚己酸内酯(PCL),聚-L-乳酸(PLLA),聚二烷酮(PDO),聚(L-丙交酯共己内酯)(PLCL),和聚醚型聚氨酯(PEUU)。在一个实施方案中,抗拉元件包含天然的抗拉成分。在一个实施方案中,抗拉元件包含合成的抗拉成分。在一个实施方案中,抗拉元件包含天然的抗拉成分和合成的抗拉成分。在一个实施方案中,天然的抗拉成分选自下组:胶原,纤维素,蚕丝,和角蛋白。在一个实施方案中,合成的抗拉成分选自下组:尼龙,(聚对苯二酸乙二酯(PET)),(聚四氟乙烯),聚酯,聚乙醇酸(PGA),聚乳酸共乙醇酸(PLGA),和聚醚型聚氨酯(PEUU)。在一个实施方案中,第一细胞群在第二管状元件内和/或在第二管状元件的外部表面上。在一个实施方案中,第一细胞群是平滑肌群。在一个实施方案中,管状支架进一步包含第二细胞群。在另一个实施方案中,第二细胞群在第一管状元件的内部腔表面上和/或内部腔表面内。在一个实施方案中,第二细胞群是内皮细胞群。
在另一个实施方案中,本发明提供TEBV,其包含(a)第一管状元件,其包含(i)弹性体元件、(ii)外部表面、(iii)内部腔表面;(b)波纹状第二管状元件,其包含(i)抗拉元件、(ii)外部表面、(iii)内部腔表面,其与第一管状元件的外部表面接触,和(c)第一细胞群。
在还有一个实施方案中,本发明提供制作组织工程血管(TEBV)的方法,包括下述步骤:(a)提供第一管状元件,其包含弹性体元件、外部表面、内部腔表面、和第一直径;(b)使第一管状元件膨胀至第二直径;(c)在步骤(b)的第一管状元件的外部表面上提供第二管状元件,其包含抗拉元件、外部表面、在第二管状元件的外部表面上和/或在第二管状元件内的第一细胞群和内部腔表面;(d)粘合步骤(b)的膨胀后的管状元件和步骤(c)的第二管状元件;(e)缩小第一管状元件的第二直径至步骤(a)的第一直径以提供TEBV;(f)培养TEBV。在一个实施方案中,步骤(c)的第二管状元件是波纹状。在一个实施方案中,波纹状第二管状元件包含纤维网络,其中纤维方向是周向取向的。在一个实施方案中,提供步骤(a)包括在心轴上静电纺织弹性体成分,而提供步骤(c)包括(i)在心轴上静电纺织抗拉成分,和(ii)在心轴上电喷射第一细胞群。在一个实施方案中,静电纺织步骤(i)和电喷射步骤(ii)是同时实施的。在一个实施方案中,该方法进一步包括步骤(f),给步骤(a)的内部腔表面接种第二细胞群。在一个实施方案中,第二细胞群是内皮细胞群。在一个实施方案中,弹性体元件包含具有第一弹性模量的弹性体成分,且抗拉元件包含具有第二弹性模量的抗拉成分,所述第二弹性模量大于第一弹性模量。在一个实施方案中,第二弹性模量大于第一弹性模量至少一个数量级。在一个实施方案中,弹性体元件包含天然的弹性体成分。在一个实施方案中,弹性体元件包含合成的弹性体成分。在一个实施方案中,弹性体元件包含天然的弹性体成分和合成的弹性体成分。在一个实施方案中,天然的弹性体成分是弹性蛋白。在一个实施方案中,合成的弹性体成分选自下组:聚己酸内酯(PCL),聚-L-乳酸(PLLA),聚二烷酮(PDO),聚(L-丙交酯共己内酯)(PLCL),和聚醚型聚氨酯(PEUU)。在一个实施方案中,抗拉元件包含天然的抗拉成分。在一个实施方案中,抗拉元件包含合成的抗拉成分。在一个实施方案中,抗拉元件包含天然的抗拉成分和合成的抗拉成分。在一个实施方案中,天然的抗拉成分是胶原。在一个实施方案中,合成的抗拉成分选自下组:聚乙醇酸(PGA),聚乳酸共乙醇酸(PLGA),和聚醚型聚氨酯(PEUU)。在一个实施方案中,该方法进一步包括在步骤(f)之前或在步骤(f)之后使步骤(e)的TEBV与至少一个别的细胞群接触。在一个实施方案中,培养步骤(f)包括在生物反应器中通过脉动的和/或稳定的流动来调理(conditioning)。
在还有一个实施方案中,本发明致力于通过本文中所公开的方法或任何其它合适方法制作的组织工程支架(TE支架)或组织工程血管(TEBV),其中TE支架或TEBV在第一管状元件和第二管状元件之间的界面处具有带状渐变。在其它实施方案中,带状渐变包含异质性的过渡带,其包含来自第一管状元件弹性体元件的材料和来自第二管状元件抗拉元件的材料。
在某些实施方案中,本发明致力于通过本文中所公开的方法或任何其它合适方法制作的组织工程支架(TE支架)或组织工程血管(TEBV),其中TE支架或TEBV的第二管状元件具有抗拉元件连续体或加劲连续体(continuum of stiffening)。在其它实施方案中,抗拉元件连续体以不同应变值啮合。在一个实施方案中,连续体归于第二管状元件材料的各纤维的不同形态。
在一些实施方案中,组织工程支架(TE支架)或组织工程血管(TEBV)在第一管状元件和第二管状元件之间的界面处具有带状渐变,而第二管状元件具有抗拉元件连续体。在其它实施方案中,带状渐变包含异质性的过渡带,其包含来自第一管状元件弹性体元件的材料和来自第二管状元件抗拉元件的材料和/或抗拉元件连续体以不同应变值啮合。
本申请还涉及以下方面:
项1.一种制作组织工程(TE)支架的方法,包括下述步骤:
(a)提供第一管状元件,其包含弹性体元件、外部表面、内部腔表面、和第一直径;
(b)使第一管状元件膨胀至第二直径;
(c)在步骤(b)的膨胀后的第一管状元件的表面上提供第二管状元件,其包含抗拉元件、外部表面和内部腔表面;
(d)粘合步骤(b)的膨胀后的第一管状元件和第二管状元件;并
(e)缩小第一管状元件的第二直径至步骤(a)的第一直径以形成TE支架。
项2.项1的方法,其中所述第二管状元件是波纹状。
项3.项2的方法,其中所述波纹状第二管状元件包含纤维网络,其中纤维方向是周向取向的。
项4.项1的方法,其中所述提供步骤(a)包括在心轴上静电纺织。
项5.项1的方法,其中所述提供步骤(c)包括在心轴上静电纺织。
项6.项1的方法,其中所述提供步骤(c)包括将成形前的第二管状元件放置在步骤(b)的膨胀后的第一管状元件上。
项7.项1的方法,其中所述弹性体元件包含具有第一弹性模量的弹性体成分且所述抗拉元件包含具有第二弹性模量的抗拉成分,所述第二弹性模量大于第一弹性模量。
项8.项7的方法,其中所述第二弹性模量大于第一弹性模量至少一个数量级。
项9.项1的方法,其中所述弹性体元件包含天然的弹性体成分。
项10.项1的方法,其中所述弹性体元件包含合成的弹性体成分。
项11.项1的方法,其中所述弹性体元件包含天然的弹性体成分和合成的弹性体成分。
项12.项9或11的方法,其中所述天然的弹性体成分选自下组:弹性蛋白,节肢弹性蛋白,外展素,和蚕丝。
项13.项10或11的方法,其中所述合成的弹性体成分选自下组:胶乳,聚氨酯(PU),聚己酸内酯(PCL),聚-L-乳酸(PLLA),聚二烷酮(PDO),聚(L-丙交酯共己内酯)(PLCL),和聚醚型聚氨酯(PEUU)。
项14.项1的方法,其中所述抗拉元件包含天然的抗拉成分。
项15.项1的方法,其中所述抗拉元件包含合成的抗拉成分。
项16.项1的方法,其中所述抗拉元件包含天然的抗拉成分和合成的抗拉成分。
项17.项14或16的方法,其中所述天然的抗拉成分是胶原、纤维素、蚕丝、和角蛋白。
项18.项15或16的方法,其中所述合成的抗拉成分选自下组:尼龙,(聚对苯二酸乙二酯(PET)),(聚四氟乙烯),聚酯,聚乙醇酸(PGA),聚乳酸共乙醇酸(PLGA),和聚醚型聚氨酯(PEUU)。
项19.一种组织工程支架,其具有与天然血管的响应实质性相似的对应力和应变的力学响应,该支架包含(a)第一管状元件,其包含弹性体元件、外部表面和内部腔表面;和(b)第二管状元件,其包含抗拉元件、外部表面和内部腔表面,第二管状元件的内部腔表面与第一管状元件的外部表面接触,其中所述组织工程支架对应力和应变的力学响应特征在于J形应力/应变曲线。
项20.一种组织工程支架,其具有与天然血管的响应实质性相似的对应力和应变的力学响应,该支架包含(a)第一管状元件,其包含弹性体元件、外部表面和内部腔表面;和(b)第二管状元件,其包含抗拉元件、外部表面和内部腔表面,第二管状元件的内部腔表面与第一管状元件的外部表面接触,其中该组织工程支架具有下述至少一项:
(i)约0.1MPa至约0.5MPa的周向管弹性模量1;
(ii)约3.0MPa至约6.0MPa的周向管弹性模量2;和
(iii)约0.57至约1.12的周向模量过渡。
项21.项20的组织工程支架,其中所述支架特征在于J形应力/应变曲线。
项22.项19或20的组织工程支架,其中所述第二管状元件是波纹状。
项23.项22的组织工程支架,其中所述波纹状第二管状元件包含纤维网络,其中纤维方向是周向取向的。
项24.项19或20的组织工程支架,其中所述弹性体元件包含具有第一弹性模量的弹性体成分且所述抗拉元件包含具有第二弹性模量的抗拉成分,所述第二弹性模量大于第一弹性模量。
项25.项24的组织工程支架,其中所述第二弹性模量大于第一弹性模量至少一个数量级。
项26.项19或20的组织工程支架,其中所述弹性体元件包含天然的弹性体成分。
项27.项19或20的组织工程支架,其中所述弹性体元件包含合成的弹性体成分。
项28.项19或20的组织工程支架,其中所述弹性体元件包含天然的弹性体成分和合成的弹性体成分。
项29.项26或28的组织工程支架,其中所述天然的弹性体成分选自下组:弹性蛋白,节肢弹性蛋白,外展素,和蚕丝。
项30.项27或28的组织工程支架,其中所述合成的弹性体成分选自下组:胶乳,聚氨酯(PU),聚己酸内酯(PCL),聚-L-乳酸(PLLA),聚二烷酮(PDO),聚(L-丙交酯共己内酯)(PLCL),和聚醚型聚氨酯(PEUU)。
项31.项19或20的组织工程支架,其中所述抗拉元件包含天然的抗拉成分。
项32.项19或20的组织工程支架,其中所述抗拉元件包含合成的抗拉成分。
项33.项19或20的组织工程支架,其中所述抗拉元件包含天然的抗拉成分和合成的抗拉成分。
项34.项31或33的组织工程支架,其中所述天然的抗拉成分选自下组:胶原、纤维素、蚕丝、和角蛋白。
项35.项32或33的组织工程支架,其中所述合成的抗拉成分选自下组:尼龙,(聚对苯二酸乙二酯(PET)),(聚四氟乙烯),聚酯,聚乙醇酸(PGA),聚乳酸共乙醇酸(PLGA),和聚醚型聚氨酯(PEUU)。
项36.项19或20的组织工程支架,其具有下述至少一项:
(i)孔径自第二管状元件的外部表面处的约100微米逐渐缩小至第一管状元件的内部表面处的约5至约15微米的孔梯度;
(ii)约0.45MJ/m3至约1.0MJ/m3的周向管韧度;
(iii)约0.1MJ/m3至约0.5MJ/m3的轴向管韧度;
(iv)约0.05至约0.3的切向增量;和
(v)约400MPa至约0.12MPa的储能模量。
附图简述
图1显示天然血管、天然血管减胶原(标记为“弹性蛋白”)、和天然血管减弹性蛋白(标记为“胶原”)的应力/应变关系。
图2显示通过区分涉及两种不同模量的两个线性区而模拟的“J”形曲线。
图3A-B图示通过静电纺织和铸造来创建管状结构。
图4图示通过静电纺织来创建管状体系结构。图4A-B图示用于提供组织工程支架的静电纺织技术。图4C图示层之间的突然过渡(顶图)和层的过渡混合(底图)。图4D图示用于在组织工程支架中实现带状渐变的静电纺织技术。图4E描绘膨胀心轴工艺的一个替代实施方案。
图5A-B图示能够在旋转期间实现连续直径变化的膨胀心轴。
图6图示在扩大的弹性层上应用薄抗拉网。
图7图示来自毡材料(felt material)的纤维形态。
图8显示胶乳/PDO体系结构的应力/应变关系。
图9显示胶乳/Vicryl体系结构的应力/应变关系。
图10显示PDO和Vicryl的应力/应变关系。
图11显示胶乳的应力/应变关系。
图12显示含有PGA和/或PU的管的应力/应变关系。
图13显示含有PU和PGA的管和天然猪颈动脉的应力应变关系。
图14A-B显示缝合材料围绕胶乳管的代表性管状支架。
图15A-B显示一种代表性波纹状支架。
图16A-B显示代表性波纹状支架的横切面。
图17显示含有PLCL/PGA和PU/PGA的管的应力/应变关系。
图18显示含有PLCL/PGA和PU/PGA的管的压力/体积关系。
图19A-C描绘管状支架的可调性的概念。A–抗拉元件的失效(failure)和弹性元件的失效相合;B–弹性元件的失效在抗拉元件的失效之前;C–抗拉元件的假设失效在弹性元件的失效之前。
图20显示管状支架的组织化学。
图21A-E显示细胞接种和生物反应器调理后多节管状支架的细胞染色。
图22显示经过细胞接种、生物反应器调理的管状支架的全血凝固测定法的结果。
图23显示调理管状支架的生物反应器的示意图。
优选实施方案的详述
本发明关注组织工程(TE)支架及其制作方法。具体而言,本发明提供具有与天然血管的特性实质性相似的特性的TE支架。例如,本发明的TE支架展现与天然血管实质性相似的对应力和应变的力学响应,即J形应力/应变曲线。
1.定义
除非另有定义,本文中所使用的技术和科学术语具有与本发明所属领域普通技术人员普通理解相同的含义。
本领域技术人员会认识到许多与本文中所描述的那些相似或相当的方法和材料,它们可以在本发明的实践中使用。确实,本发明绝非限于所描述的方法和材料。为本发明目的,下文定义了下述术语。
其它有关信息可见组织工程领域的教科书,诸如例如Palsson,Bernhard O.,Tissue Engineering,Prentice Hall,2004及Principles of Tissue Engineering,第3版(R Lanza,R Langer,和J Vacanti编),2007。
术语“组织工程支架”或“TE支架”如本文中所使用的,指层状或多层的管状结构,其特征在于以与天然血管实质性相似的方式响应应力和应变的能力。例如,支架对应力和应变的力学响应优选特征在于J形应力/应变曲线。本发明支架的特性使它们适合于用作血管支架的框架。
术语“组织工程血管”或“TEBV”或“血管支架”如本文中所使用的,指经过进一步操作以使得它适合于移植入有所需要的哺乳动物受试者的、上文定义和本文描述的组织工程支架。例如,可以如下形成TEBV,即通过本文所述方法,或者通过任何其它合适方法,操作组织工程支架以添加一种或多种细胞群。本领域普通技术人员会领会本发明适合于许多类型的血管,包括但不限于颈动脉、锁骨下动脉、腹腔干、肠系膜动脉、肾动脉、髂动脉、微动脉、毛细管、微静脉、锁骨下静脉、颈静脉、肾静脉、髂静脉、腔静脉。另外,本发明的TEBV也可以是动静脉分流器(shunt)(AV分流器)或位置血管间移植物(inter-positional bloodvessel graft)。
术语“弹性体元件”指一种材料,其特征在于其以完全可恢复和可重复的大尺度变形响应应力的能力。弹性体元件可包含天然成分、合成成分、或天然和合成成分的混合物。
术语“抗拉元件”指一种材料,其特征在于在受到应力时拉伸的能力很小。拉伸元件可包含天然成分、合成成分、或天然和合成成分的混合物。
术语“合成成分”如本文中所使用的,指在自然界中天然不存在的成分。一般而言,合成成分在正常情况中在天然血管中不存在,但是尽管如此却具有在力学和细胞行为方面展现天然血管样特性的潜力。合成成分可以是本文所述可任选包含天然成分(下文定义)的组织工程支架和/或TEBV的一部分。合成成分本质上可以是弹性体的或抗拉的。
术语“天然成分”如本文中所使用的,指在自然界中存在的或自自然界中存在的物质衍生的物质,不管其制备模式。如此,例如,“天然成分”可以是自其天然来源分离和纯化的,或者通过重组和/或合成手段生成的天然多肽。天然成分可以在天然血管中存在,而且因此具有在力学和细胞行为方面展现天然血管样特性的潜力。在某些实施方案中,天然成分本质上可以是弹性体的或抗拉的。
文中所用术语“波纹状”指的是一种结构,这种结构包含以出现在其一个或多个表面上的波纹、起伏和/或扭结所表征的抗拉部件。这种结构一般表现为以纤维网络构成的薄料层或片层形式,在所述纤维网络中,纤维方向一般沿周向取向。此外,波纹轴线配置成平行于该结构的轴向,例如该结构为管状组织工程支架。
文中所用术语“力学响应”或“生物力学响应”指的是天然血管、血管支架或组织工程支架在承受应力和应变时表现出的特性。在承受应力和应变式表现出的特性优选通过以下一种或多种特征来表征:(i)J形应力/应变曲线;(ii)粘弹性;和(iii)耐撕裂性或耐断裂性。
文中所用术语“基本上类似于天然血管”指的是支架具有近似模拟或类似天然血管的力学属性。本领域普通技术人员应该理解,可以表征和测量若干参数来说明这种基本类似性。用来提供本发明具有类似天然血管力学特性包括J形应力/应变曲线的组织工程支架的重要参数是:支架周向管弹性模量1、周向管弹性模量2;和周向管的模量过渡。在优选实施方案中,其他参数也有助于支架对于应力和应变的期望力学特性或响应和/或它们用作血管移植物的能力,包括但不限于:柔顺性、杨氏模量或弹性模量、破裂压力、壁厚、孔隙性、孔直径、孔梯度、纤维直径、断裂应变(轴向和/或周向)、断裂应力(轴向和/或周向)、韧性(轴向和/或周向)、轴向管弹性模量1和2、轴向管弹性模量过渡、粘弹性属性诸如借助特定的切向增量(tanδ)和储能模量值所表示的属性。
文中所用术语“J形曲线”指的是在y轴上绘制应力(材料每单位面积上的力或压力)并在x轴上绘制应变(相对于原始长度的长度变化或位移)的曲线形状。J形曲线是天然动脉固有的、来自胶原和弹性蛋白协同相互作用的对应力和应变的力学响应。
文中所用术语“柔顺性”由压力(x轴)/体积(y轴)曲线上的方程C=Δ(德尔塔)V/Δ(德尔塔)P(斜度)来定义。这是材料“柔软度”的量度,并且是“刚性”的倒数。通常,C的单位是mL/mm-Hg、V的单位是体积(mL)、P的单位是压力(mm-Hg)。
文中所用术语“杨氏模量”或“弹性模量”定义为刚性参数。它是从应力(y轴)/应变(x轴)曲线的斜度推导而来。在非线性J形曲线的情况下,弹性模量以两个单独的相交斜度来近似,其中第一斜度从初始拟线性区段(弹性模量1)得出,而第二斜度从后面的拟线性区段(弹性模量2)得出。图2示出了这一概念。
文中所用术语“弹性模量1到弹性模量2的过渡”或“模量1到模量2的过渡”或“弹性模量过渡”指的是弹性模量1的斜度过渡或转变到弹性模量2的斜度的区间。表示这一参数的单位是出现所述斜度处的应变值。该参数在图2中表示为由模量(斜度)1和模量(斜度)2所代表的直线相交处。在示出天然血管响应的曲线上,所述过渡由表示模量(斜度)1转变到模量(斜度)2)的曲线区段来表示。
文中所用术语“柔顺性错配”指的是柔软度/刚性(即,柔顺性/杨氏模量或弹性模量)量度不同的两种材料的结合体。
文中所用术语“孔隙性”指的是支架中孔体积与支架总体积的比率,并且可以表述为百分比孔隙性。作为替代,孔隙性可以是支架中孔面积与支架总面积的百分比比率。
文中所用术语“破裂应力”定义为支架发生至少部分解体之前支架所能承受的管状支架内部和外部之间的压力差。
文中所用术语“壁厚”定义为从管状支架外表面到其内腔表面的深度或跨度。
文中所用术语“孔直径”定义为本发明的支架中的平均孔直径。
文中所用术语“孔梯度”定义为从一个表面到另一个表面的孔直径尺寸线性变化。孔直径尺寸在管状元件的料层内逐渐减小。例如,尺寸可以从一个表面诸如管状元件的外膜或外表面向另一个表面诸如管状元件内腔或内表面减小。
文中所用术语“纤维直径”指的是本发明的支架的平均纤维直径。
文中所用术语“断裂应变”定义为材料断裂时的应变。
文中所用术语“断裂应力”定义为材料断裂时的应力。
文中所用术语“韧性”定义为断裂材料所需的能量,即应力/应变曲线下直到失效为止的计算面积。
文中所用术语“切向增量”定义为管状支架中储存或损失的能量的相对数量指标,并且通常用来表征分子驰豫并识别流变转化。
文中所用术语“储能模量”定义为材料储存机械能的能力,并且通常用来表征分子驰豫。
文中所用术语“扭结半径”定义为在弯曲的管状结构中形成扭结处的半径。
文中所用术语“带状渐变”定义为具有至少两个不同料层的分层结构中的渐变梯度,其中每个料层包含不同类型的材料,并且料层之间存在梯度且作为不同材料之间异质性的区域带。例如,异质性区域带可以包含自弹性体元件的材料和来自抗拉元件的材料。
术语“平滑肌细胞”如本文中所使用的,指构成见于中空器官(例如膀胱、腹腔、子宫、胃肠道、脉管系统、等)壁的非横纹肌的细胞,其特征在于收缩和舒张的能力。血管平滑肌细胞见于整个中膜(血管最后的层),其含有环状排列的弹性纤维和结缔组织。如下文所描述的,可以自多种来源分离平滑肌细胞群。
术语“内皮细胞”如本文中所使用的,指适合于在本发明的支架上接种(或是在内部腔表面上或是在支架内)的细胞。内皮细胞覆盖天然血管的内或腔表面,而且发挥多种功能,包括但不限于预防血栓形成和预防组织向内生长和不想要的细胞外基质生成。如下文所描述的,可以自多种来源分离用于接种到本发明支架上的内皮细胞群,包括但不限于脉管薄壁组织、正在循环的内皮细胞和内皮细胞前体诸如骨髓祖细胞、外周血干细胞和胚胎干细胞。
术语“细胞群”如本文中所使用的,指通过直接自合适的组织来源(通常是哺乳动物)分离,及随后在体外培养而获得的一定数目的细胞。本领域普通技术人员会领会用于分离和培养与本发明一起使用的细胞群的各种方法和适合于在本发明中使用的细胞群中的多种细胞。
术语“哺乳动物”如本文中所使用的,指任何归类为哺乳类的动物,包括但不限于人,非人灵长类,家畜和牲畜,及和动物园、运动或宠物动物诸如马、猪、牛、犬、猫和雪貂等。在本发明的一个优选实施方案中,哺乳动物是人。
术语“非人动物”如本文中所使用的包括但不限于哺乳动物,诸如例如非人灵长类、啮齿类(例如小鼠和大鼠)、和非啮齿类动物诸如例如家兔、猪、绵羊、山羊、牛、猪、马和驴。还包括鸟类(例如鸡、火鸡、鸭、鹅等等)。术语“非灵长类动物”如本文中所使用的,指除灵长类以外的哺乳动物,包括但不限于上文具体所列的哺乳动物。
“心血管疾病”或“心血管病症”在本文中以广义、一般意义用于指哺乳动物中特征在于心脏或血管(动脉和静脉)功能异常且侵袭心血管系统的病症或状况,特别是那些与动脉粥样硬化有关的疾病。此类疾病或病症特别适合于使用本文所述TEBV作为旁路血管移植物来治疗。此类移植物包括但不限于冠状动脉旁路移植物(CABG)、外周旁路移植物、或动静脉分流器。心血管病症的例子包括但不限于由心肌缺血、心脏病发作、中风、透壁性或非透壁性心肌梗死、急性心肌梗死、外周血管病、冠状动脉病、冠心病、心率失调、心脏性猝死、脑血管意外诸如中风、充血性心力衰竭、危及生命的节律障碍、心肌病、短暂性(脑)缺血发作、急性缺血综合征、或咽峡炎、急性冠状支架失效、或其组合引起的那些状况。此类病症的其它例子包括但不限于血栓性状况,诸如肺栓塞、冠状动脉急性血栓形成、心肌梗死、(大)脑动脉(中风)或其它器官的急性血栓形成。
2.J形曲线应力/应变响应
图1描绘了J形曲线,这是天然动脉所固有的来源于两种主要结构蛋白即胶原和弹性蛋白之间的协同相互作用的应力和/应变力学响应(Roach et al.(1957)Can.J.Biochem.Physiol.35:681-690)。天然血管力学特性是非线性的,并由来自胶原和弹性蛋白的协同相互作用的力(应力)/位移(应变)示意图(图2)上的“J”形曲线来表征。动脉中存在胶原和弹性蛋白两者,赋予它们强烈的非线性特性。如果从天然动脉分离弹性蛋白,留下胶原作为剩下的主要结构蛋白,则力学响应变得更加剧烈。相反,如果天然动脉经过处理,去掉胶原,则主要的结构蛋白为弹性蛋白,并且力学特性反映出线性弹性特征。天然动脉的“J”形曲线是来自存在于动脉中的主要结构蛋白即胶原和弹性蛋白两者联合影响的非线性特性(Gosline&Shadwick(1998)American Scientist.86:535-541)。
在这种生物复合物中,胶原表现为高刚性低弹性成分,而弹性蛋白表现为高弹性低刚性成分。胶原是承受应力时延展能力非常小的抗拉成分,因此特别适合在组织诸如筋腱和韧带中扮演角色。然而,弹性蛋白的特征在于能以可完全恢复并重复的大尺度变形对应力作出响应。弹性蛋白的这种特性使其适合要求一些回跳或回复力的组织诸如皮肤、动脉和肺。
与血管移植物中的通畅性损失相关的一种重要的失效模式是内膜增生(IH),内膜增生由缝合线处的组织生长来表征。已经知道IH是由力学特性差异明显的两个血管区段之间形成的结合部的柔顺性错配所导致(O’Donnell et al.(1984)J.Vasc.Surg.1:136-148;Sayers et al.(1998)Br.J.Surg.85:934-938;Stephen et al.(1977)Surgery.81:314-318;Teebken et al.(2002)Eur.J.Vasc.Endovasc.Surg.23(6):475-85;Kannan et al.(2005)J.Biomed.Mater.Res Part B–Appl Biomater 74B(1):570-81;Walpoth et al.(2005)Expert Rev.Med.Dev.2(6):647-51)。所述结合区域发展出非天然的流体动力学状况,这种流体动力学状况确定移植物病变和最终闭合(通畅性损失)的阶段。
虽然已经认识到柔顺性匹配的重要性,但是由于天然动脉的非线性特性,仅指定一个斜度(力学响应曲线的一部分)不可能实现明显的匹配。确定柔顺性(和刚性)的一般趋势似乎是仅考虑各曲线的初始拟线性区段((Sanders et al.U.S.Published PatentApplication 2003/0211130(Figure 16);Lee et al.(2007)J Biomed Mater Res A.[Epub ahead of print PMID:17584890];Smith et al.(2007)Acta Biomater.[Epubahead of print,PMID:17897890])。但是,由于忽略了初始拟线性区段之后发生的情况,所以损失了重要的信息。如图1所示,“J”形曲线为非线性曲线,因此可以近似为两个单独的斜度相交。图2示出了这一概念,通过区分与两个不同模量(刚性)相关的线性区间大致示出了一条“J”形曲线。相同的方法可以用在表示柔顺性的压力/体积曲线图上。因此,对于柔顺性,本发明不仅考虑从应力/应变曲线图上的初始拟线性区段中获取的度量值,而且考虑在初始区段之后获取的度量值。
曲线的“J”形不仅仅代表构造天然血管所用材料的特定选择所导致的偶然力学特性。相反,该形状本身表明了对形成动脉瘤的特定抗性(Shadwick(1998)AmericanScientist.86:535-541)。此外,模拟天然血管力学特性带来了宏观的好处,即调节柔顺性错配。其他研究表明,许多不同类型的细胞对于它们根植于其中的微观力学环境敏感。这些微观力学环境包括其上接种细胞的基片的力学属性以及借助影响组织的因素诸如压缩(例如,膝关节中的软骨)、循环应变(例如血管经受搏动血流)等输入细胞的应力,等等(Georges et al.(2006)Biophys.J.90(8):3012-18;Engler et al.(2004)J.CellBiol.13;166(6):877-87;Rehfeldt et al.(2007)Adv.Drug.Deliv.Rev.Nov10;59(13):1329-39;Peyton et al.(2007)Cell Biochem.Biophys.47(2):300-20)。例如,血管平滑肌细胞对于血管组织中的特定应变状态敏感(Richard et al.(2007)J.Biol.Chem.282(32):23081-8)。此外,筋腱、骨骼以及身体中基本上每一种组织中的细胞都精确地适配它们栖居的微观力学环境,这也为贴切地模拟天然组织的属性提供了另一个令人信服的理由。背离预期的力学属性可能将细胞送入不同的发展道路,或者送往最终引起坏疽或凋亡的死路。
3.组织工程支架
天然血管具有多层或分层结构。例如,动脉具有三层:称为内膜的最内层,该最内层包括内衬于内腔表面的大血管内皮细胞;称为中膜的中间层,该中间层包括多片平滑肌细胞;和称为外膜的外层,该外层包含松散连接组织、较小的血管和神经。内腔和中膜被基底膜分开。
天然血管中特定的结构特征(起伏、波纹、扭结)有利于平行布置以不同的应变不同程度地机械接合的胶原和弹性蛋白薄层。天然动脉拥有沿着周向方向同心布置的弹性薄层。这些薄层为波纹状薄层。理论上,弹性薄层的波纹可以牵拉周围的胶原层并赋予它们类似的几何形状,但这并不是通常观察到的情形。此外,组织学研究表明弹性薄层通常被氨基多糖浓聚物(GAG)包围。例如,Dahl的一份2007报告给出了组织工程支架与天然动脉的对比,其中通过使用典型莫娃(Movat)染剂和范吉逊氏(Verheoff-Van Gieson)染剂,波纹状弹性蛋白薄层在每一种情况下清晰可见(Annals of Biomedical Engineering 2007Mar;35(3):348-55)。因此,天然血管中通常观察到弹性薄层中存在波纹,而周围胶原层中不存在波纹。这种情况的例外是长须鲸中存在的不寻常结构,其中存在新颖的连接组织布局,在这种布局中,恰好为抗拉元件的成胶成分生成显著的波纹(Gosline 1998supra)。
正如文中所述,本发明涉及组织工程支架及其制作方法,采用与天然血管中常见方式相反的方法,就是说,支架的抗拉层具有波纹,而弹性层不存在波纹。这种方法具有优势,原因在于较之弹性层而言,更容易在抗拉层中形成波纹。
本发明的组织工程支架具有多层或分层结构。在一种实施方案中,所述支架包括:(a)第一管状元件,所述第一管状元件包括弹性体元件、外表面和内腔表面;和(b)第二管状元件,所述第二管状元件包含抗拉元件、外表面和与所述第一管状元件的外表面接触的内腔表面。
在另一种实施方案中,第二管状元件为波纹状。存在于文中所述组织工程支架中的波纹借助图15A-B来例述,图15A-B示出了它们在支架外表面上的外观。
在另一种实施方案中,波纹状第二管状元件具有纤维网络,该纤维网络中的纤维方向为周向取向。图16A-B示出了具有周向均匀性质的波纹截面图。
额外的管状元件可以添加在第一和第二管状元件上。
第一管状元件的内腔表面和第二管状元件的外表面都可以访问,用于进一步的操作,诸如例如在形成TEBV时。如下所述,通过向支架中包含一个或多个细胞群,本发明的组织工程支架可以用来制作组织工程血管(TEBV)。所述支架的分层构造提供了更为自然的血管形态,这种血管形态可能有利于对细胞群进行预期分化,诸如平滑肌细胞、内皮细胞和成纤维细胞。
文中所述支架的弹性体元件使得所述支架有能力以可以完全恢复并重复的大尺度变形对应力作出响应。所述弹性体元件具有弹性体成分,所述弹性体成分可以是天然成分、合成成分、一种以上的天然成分的混合物、一种以上的合成成分的混合物、天然成分和合成成分的混合物,或者它们的任意组合。一般来说,有机或天然成分为通常存在于天然组织结构中的蛋白质,或者可以从天然组织结构中获取的蛋白质,或者可以根据编码蛋白质和/或其氨基酸序列的已知核酸序列重组或合成制造的蛋白质。例如,弹性蛋白天然存在于动脉中,并且可以用作本发明血管支架中的天然成分。天然成分可以是TE支架和/或TEBV的一部分,如文中所述,TE支架和/或TEBV也可以包括或不包括合成成分。
在一些实施方案中,第一管状元件的弹性体元件包括有机或天然成分,诸如弹性蛋白质,弹性蛋白质包括但不限于:弹性蛋白、谷蛋白、麦醇溶蛋白、外展素、蜘蛛丝和节肢弹性蛋白或前身节肢弹性蛋白(Elvin et al.(2005)Nature.Oct 12:437(7061):999-1002)本领域普通技术人员应该理解其他可以适用于本发明的支架中的弹性蛋白质。
在完整血管支架为构造组织工程血管而接受进一步操作时,使用天然材料带来了优势。例如,在该支架上培养或接种特定细胞群时,存在于支架中的天然弹性蛋白质鼓励正确的细胞与支架相互作用。
在另一些实施方案中,弹性体元件包括合成成分。合成的弹性体成分的例子包括但不限于:乳胶、聚氨酯(PU)、聚己酸内酯(PCL)、聚-L-乳酸(PLLA)、聚二烷酮(PDO)、聚(L-丙交酯共己内酯)(PLCL)和聚醚型聚氨酯(PEUU)。
在一种实施方案中,本发明考虑了第一管状元件中的弹性体元件包括天然弹性成分和合成弹性成分。
文中所述支架中的抗拉元件赋予所述支架刚性或抗拉性,允许所述支架抵抗应力造成的延展。抗拉元件具有抗拉成分,抗拉成分可以是天然成分、合成成分、一种以上的天然成分的混合物、一种以上的合成成分的混合物、天然成分和合成成分的混合物,或者它们的任意组合。
在另一种实施方案中,第二管状元件的抗拉元件包括有机或天然成分,诸如纤维蛋白质,纤维蛋白质包括但不限于胶原、纤维素、蚕丝和角蛋白。本领域普通技术人员应该理解可以适用于本发明的支架中的其他天然纤维蛋白质。在另一些实施方案中,抗拉元件是合成成分。合成的抗拉成分的例子包括但不限于:尼龙、(聚对苯二酸乙二酯(PET))、(聚四氟乙烯)、聚酯、聚乙醇酸(PGA)、聚乳酸共乙醇酸(PLGA)和聚醚型聚氨酯(PEUU)。在一种实施方案中,本发明考虑了第二管状元件中的抗拉元件包括天然的抗拉成分和合成的抗拉成分。
支架中的弹性体元件和抗拉元件可以包含天然成分和合成成分的不同组合。例如,支架可以包含天然弹性成分和/或天然的抗拉成分;和合成弹性成分和/或合成的抗拉成分。
在本发明的一个方面,TE支架并不限于如上所述的第二管状元件位于第一管状元件之上的两层结构。在一些实施方案中,所述支架包括额外的管状元件,诸如位于第二管状元件之上的第三管状元件、位于第三管状元件之上的第四管状元件、位于第四管状元件之上的第五管状元件。此外,如文中所述,额外的管状元件可以包含弹性体元件(例如,天然和/或合成)或抗拉元件(例如,天然和/或合成)。额外的管状元件可以利用文中所述的技术粘合。
在一方面,包含在弹性体元件中的弹性体成分和包含在抗拉元件中的抗拉成分分别具有不同的弹性模量。在一种实施方案中,弹性体元件的弹性体成分的弹性模量具有第一弹性模量,而抗拉元件的抗拉成分具有第二弹性模量。在优选实施方案中,第二弹性模量比第一弹性模量大至少大约一个数量级。在一种实施方案中,第二弹性模量比第一弹性模量大大约一个数量级、大约两个数量级、大约三个数量级、大约四个数量级或者其他的数量级。例如,示例1显示出抗拉成分PDO和Vicryl的弹性模量分别为3GPa和9-18GPa,与弹性体成分乳胶的弹性模量0.3MPa到0.5MPa相对(另见图10和11)。
在另一方面,本发明的TE支架展现出基本上类似于天然血管中发现的结构和功能属性。在天然血管中,两种主要蛋白质成分即胶原和弹性蛋白的协同相互作用,产生以J形应力/应变曲线表征的应力和应变力学响应(Roach et al.(1957)Can.J.Biochem.Physiol.35:681-690)。本领域普通技术人员应该理解,可以用来表示本发明的支架模拟或贴切地类似天然血管的众多参数包括但不限于:应力应变响应、柔顺性、杨氏模量、孔隙性、强度等。在一种实施方案中,本发明支架的特征在于,能以各向异性方式对应力和应变作出力学响应。
本领域众所周知的许多参数能用于表征组织工程支架的特性。表1提供了这些参数的报告值(及其对应公开出处)示例。
表1
1)Burton AC:Physiol Rev 34:619,1954
2)Buttafoco L et al.,Biomaterials 27:2380,2006
3)Smith MJ et al.,Acta Biomat.4:58,2007
4)Boland ED et al.,Frontiers in Biosci.9:1422,2004
5)Sell SA et al.,Biomed Mater 1:72,2006
6)Jeong SI et al.,J.Biomater Sci Polym Ed.15:645,2004
7)Lim SH et al.,J.Biomed.Mat.Res.B Epub ahead of print 2007
8)Stankus JJ et al.,J Biomed Mat Res,70A:63,2004
9)Barnes CP et al.,Tiss Eng 13:1593,2007
10)Kim SH et al.,J Biomater Sci Polym Ed.17:1359,2006
11)Nam J et al.,Tiss Eng 13:2249,2007
12)Watanabe M et al.,Tiss Eng 7:429,2001
13)Jeong SI et al.,Biomaterials 28:1115,2007
14)Engbers-Nuijtenhuijs P et al.,Biomaterials 27:2390,2007
15)Amiel GE et al.,Tiss Eng 12:2355,2006
16)Boland ED et al.,Acta Biomat 1:115,2005
17)Buttafoco L et al.,Biomaterials 27:724,2006
18)Cummings CL et al.,Biomaterials 25:3699,2004
19)Heydarkhan-Hagvall S et al.,Tiss Eng 4:831,2006
20)Hoerstrup et al.,Eur J CardioThorac Surg 20:164,2001
21)Ishii Y et al.,Ann Thorac Surg 83:517,2007
22)Lee SJ et al.,J Biomed Mater Res A 83:999,2007
23)Lepidi,S et al.,FASEB J 20:103,2006
24)L'Heureux N et al.,Nature Med 12:361,2006
25)Lu Q et al.,Biomaterials 25:5227,2004
26)Mooney DJ et al.,Biomaterials 17:115,1996
27)Nieponice A et al.,Biomaterials Epub ahead of print 2007
28)Niklason LE et al.,Science 284:489,1999
29)Shinoka T et al.,J.Thorac Card Surg 129:1330,2005
30)Weinberg CB et al.,Science 399,1986
31)Wu H et al.,Biomaterials 28:1385,2007
32)Xu C et al.,Tiss Eng 10:1160,2004
33)Aper T et al.,Eur J Vasc Endovasc Surg 1,2006
34)Matthews JA et al.,Biomacromolecules 3:232,2002
35)Guan J et al.,Cell Transplantation 15:S17,2006
36)Mithieux SM et al.,Biomaterials 25:4921,2004
37)Zhang Z et al.,Biomaterials 25:177,2004
38)Solan A et al.,Tiss Eng 9:579,2003
39)Jeong SI et al.,Biomaterials 26:1405,2005
40)Hahn MS et al.,Ann Biomed Eng 35:190,2007
41)Boland et al.,J Biomed Mater Res B:Appl Biomater 71B:144,2004
42)Dahl SLM et al.,Cell Transplant 12:659,2003
43)Dahl SLM et al.,Ann Biomed Eng 35:348,2007
44)Stitzel J et al.,Biomaterials 27:1088,2006
表2根据表1中引用的文献提供了计划为TE支架或TEBV提供基本上类似于天然血管的力学特性的特征规格。
表2
这些参数可用于表征本发明组织工程支架的力学特性,特别是判断该支架是否展现出基本上类似于天然血管的属性。本发明指导由表2中的取值所表征并展现出基本上类似于天然血管力学特性的组织工程支架,所述力学特性优选为(i)以J形应力/应变曲线表征的应力和应变的力学响应;(ii)耐断裂性;(iii)粘弹性;或(iv)以上(i)到(iii)项的任意组合。此外,所述支架的特征在于各种类型的细胞可以访问,从而实施细胞接种,以形成TEBV。
在一种实施方式中,由本发明组织工程支架表现出的J形应力/应变曲线的特征归因于:(i)周向管弹性模量1为大约0.1MPa到大约0.5MPa;(ii)周向管弹性模量2为大约3.0MPa到大约6.0MPa;和(iii)周向模量过渡为大约0.57到大约1.12;以及上述特征的任意组合。在另一种实施方式中,周向管弹性模量1为大约0.1MPa、0.13MPa、大约0.15MPa、大约0.17MPa、大约0.2MPa、大约0.22MPa、大约0.25MPa、大约0.27MPa、大约0.3MPa、大约0.32MPa、大约0.35MPa、大约0.37MPa、大约0.4MPa、大约0.42MPa、大约0.45MPa、大约0.47MPa或大约0.5MPa。在另一种实施方案中,周向管弹性模量2为大约3.0MPa、大约3.2MPa、大约3.5MPa、大约3.7MPa、大约4.0MPa、大约4.2MPa、大约4.5MPa、大约4.7MPa、大约5.0MPa、大约5.2MPa、大约5.5MPa、大约5.7MPa或大约6.0MPa。在另一种实施方案中,周向模量过渡为大约0.57、大约0.59、大约0.61、大约0.63、大约0.65、大约0.67、大约0.69、大约0.71、大约0.73、大约0.75、大约0.77、大约0.79、大约0.81、大约0.83、大约0.85、大约0.87、大约0.89、大约0.91、大约0.93、大约0.95、大约0.97、大约0.99、大约1.01、大约1.03、大约1.05、大约1.07、大约1.09、大约1.11或大约1.12。
在另一种实施方案中,有利于耐断裂性的属性为:(i)周向管韧性为大约0.45MJ/m3到大约1.0MJ/m3;(ii)轴向管韧性为大约0.1MJ/m3到大约0.5MJ/m3;或(iii)以上(i)和(ii)项的组合。生物材料的韧性是帮助确定其耐断裂性的一个参数。显然,耐断裂性或耐撕裂性是TE支架的期望特征,因为该特征帮助保证任何TEBV或由其获得的血管移植物的通畅性。天然血管根据流体周期加载的应力和应变发生变形。因此,它们存在以纵向或轴向方式和/或周向方式裂开或断裂的风险。类似于天然血管,由本发明的TE支架获得的血管移植物和TEBV也存在断裂风险。本发明关注下述发现,即特定的轴向韧性和/或特定的周向韧性有助于TE支架抵抗断裂或撕裂。在一种实施方式中,周向管韧性为大约0.45MJ/m3、大约0.50MJ/m3、大约0.55MJ/m3、大约0.60MJ/m3、大约0.65MJ/m3、大约0.70MJ/m3、大约0.75MJ/m3、大约0.80MJ/m3、大约0.85MJ/m3、大约0.90MJ/m3、大约0.95MJ/m3、大约1.0MJ/m3。在另一种实施方案中,轴向管韧性为大约0.1MJ/m3、大约0.15MJ/m3、大约0.20MJ/m3、大约0.25MJ/m3、大约0.30MJ/m3、大约0.35MJ/m3、大约0.40MJ/m3、大约0.45MJ/m3或大约0.50MJ/m3。在另一种实施方案中,本发明的TE支架的特征在于以下一项或多项:(i)具有以J形应力/应变曲线表征的应力和应变力学响应的支架;(ii)耐断裂支架;(iii)粘弹性支架。
在另一种实施方案中,TE支架的粘弹性属性以下述特征表征:(i)切向增量为大约0.05到大约0.3;(ii)储能模量为大约400MPa到大约0.12MPa;或(iii)上述(i)和(ii)项的组合。粘弹性材料根据变形展现粘性和弹性特征两者。虽然粘性材料在被施加应力时随着时间而线性地抵抗应变,但是弹性材料响应应力而立即发生应变,并且在应力消失后迅速返回其原始状态。响应应力,粘弹性材料展现出依存时间的应变,这种应变通常涉及原子或分子在非结晶材料中的扩散。虽然在施加载荷和去除载荷时,弹性材料并不消耗能量,但是粘弹性材料实际上在施加载荷然后去除载荷时,损失能量。由于天然血管显示出粘弹性来应对流体的循环加载,所以这一特征对于将要用来制造TEBV或血管移植物的本发明TE支架来说是有利的。本发明关注下述发现,即本发明TE支架的粘弹性由特定的切向增量值和/或特定的储能模量值来表征。在一种实施方式中,切向增量为大约0.05、大约0.06、大约0.07、大约0.08、大约0.09、大约0.10、大约0.11、大约0.12、大约0.13、大约0.14、大约0.15、大约0.16、大约0.17、大约0.18、大约0.19、大约0.20、大约0.21、大约0.22、大约0.23、大约0.24、大约0.25、大约0.26、大约0.27、大约0.28、大约0.29或大约0.30。在另一些实施方式中,储能模量为大约400MPa、大约350MPa、大约300MPa、大约250MPa、大约200MPa、大约150MPa、大约100MPa、大约90MPa、大约80MPa、大约70MPa、大约60MPa、大约50MPa、大约40MPa、大约30MPa、大约20MPa、大约10MPa、大约9MPa、大约8MPa、大约7MPa、大约6MPa、大约5MPa、大约4MPa、大约3MPa、大约2MPa、大约1MPa、大约0.9MPa、大约0.8MPa、大约0.7MPa、大约0.6MPa、大约0.5MPa、大约0.4MPa、大约0.3MPa、大约0.2MPa、大约0.19MPa、大约0.18MPa、大约0.17MPa、大约0.16MPa、大约0.15MPa、大约0.14MPa、大约0.13MPa或大约0.12MPa。
存在本领域普通技术人员熟知的若干技术适合确认并表征本发明支架的期望属性。这些技术包括但不限于:破裂压力试验;周向方向的准静态力学试验(a.k.a拉伸试验)(结果提供在应力/应变示意图上);判断孔隙性和孔尺寸(例如,借助汞侵入式孔隙性测定法);细胞粘连分析;和降解速率;用于度量移植物柔顺性的压力/体积曲线。
4.制作TE支架的方法
本发明的方法涉及构造具有适当的、与天然血管相当的长效生物力学属性的TE支架。在一个方面,本发明的方法提供制作具有分层结构的血管支架的方法,就是说,该分层结构具有:第一管状元件,所述第一管状元件包括弹性体元件、外表面和内腔表面;和第二管状元件,所述第二管状元件包括抗拉元件、外表面和与所述第一管状元件的外表面接触的内腔表面。如图3所示,第一管状元件4可以利用本领域已知技术在心轴上1形成,所述已知技术包括但不限于静电纺织(electrospin)2(图3A)和铸造3(图3B)以及它们的组合。弹性体元件诸如弹性蛋白和/或弹性体聚合物,可以用于形成具有第一直径的第一管状元件,该第一直径至少为活体应用所需的标称尺寸。静电纺织可以通过应用下述溶液来实施:(i)包含一种或多种弹性体显然成分和/或一种或多种弹性体合成成分;和/或(ii)包含一种或多种抗拉天然成分和/或一种或多种抗拉合成成分。静电纺织带来的好处是周向布置弹性体元件的纤维,因此提高了血管的强度。
形成之后,包含弹性体元件的第一管状元件利用本领域已知技术膨胀到第二直径,已知技术包括但不限于:利用直径可变的心轴;或取下第一管状元件并将其置于较大的心轴上。使用直径可变的心轴的优势在于,避免从心轴上取下第一管状元件,这可能因摩擦而导致问题。将第一管状元件膨胀到第二直径的目的是适应动脉正常工作过程中出现的生理应变程度,即大约5%到大约35%。
在一种实施方案中,第一管状元件通过文中所述的技术形成,具有大约1mm、大约2mm、大约3mm、大约4mm、大约5mm、大约6mm、大约7mm、大约8mm、大约9mm或大约10mm的第一直径。在优选实施方案中,第一直径从大约3mm到大约8mm,更优选从大约4mm到大约7mm,最优选从大约5mm到大约6mm。
在另一种实施方案中,利用文中所述技术将第一管状元件膨胀所达到的第二直径为大约4mm、大约5mm、大约6mm、大约7mm、大约8mm、大约9mm、大约10mm、大约11mm、大约12mm、大约13mm、大约14mm、大约15mm或大约16mm。在优选实施方案中,第二直径从大约5mm到大约10mm,更优选从大约6mm到大约9mm,最优选从大约7mm到大约8mm。
膨胀到第二直径之后,第二管状元件利用本领域已知技术形成或层叠在第一管状元件的外表面上,所述已知技术包括但不限于铸造或静电纺织。抗拉元件诸如胶原和/或抗拉聚合物,可以用来形成第二管状元件。作为提供或形成第二管状元件的方法,静电纺织因其有能力形成长度可变的抗拉纤维而具有优势。
在第一管状元件上形成第二管状元件之后,这些料层可以利用本领域普通技术人员已知的技术粘结。这些技术包括但不限于:使用外科手术粘结剂诸如基于血纤维蛋白的粘结剂;或者利用与存在的特定比例的任何合成聚合物的溶解相互作用。
在一种实施方案中,粘结步骤在第二管状元件形成或放置于第一管状元件上以后进行,并且包括步骤:在第二管状元件的外表面上涂覆额外的材料层,以允许将第二管状元件粘性夹持在第一管状元件和额外的材料层之间。在另一种实施方案中,所述额外的层包含与用来形成第一管状元件的材料类型相同的材料。在另一种实施方案中,借助静电纺织涂覆包含弹性体元件的额外层(例如,包含例如下述天然/合成弹性体材料混合物的溶液1)来实现粘结。
本领域普通技术人员应该理解,其他技术也可以用来在料层内或料层之间交联两者。例如,热处理已经显示出根据缩合反应在抗拉元件(例如,胶原)中形成交联体。在这种情况下,其他生物相容性的化学交联处理也显示出了效果。
图4A例述了形成文中所述新颖支架结构的静电纺织方法。包含例如天然/合成弹性体材料混合物的溶液1在旋转心轴2上纺织1,以形成具有第一直径Do的第一管状元件3。然后,将心轴直径增大(作为替代,将支架置于直径较大的心轴上)到第二直径Df4,与天然血管中的生理应变相当的值;并且包含例如天然/合成抗拉材料混合物的溶液2静电纺织5在由溶液1形成的第一管状元件上,从而在第一管状元件上形成具有第二直径Df的第二管状元件6。这样导致形成预应力分层结构。在图4B中显示的最终步骤涉及将心轴返回第一直径Do3,并取下现在包括第一和第二管状元件的支架7。以溶液2构成的外层的结构分析将揭示出纤维结构中沿着周向方向存在的波纹8,在图4B的放大部分中显示。
图4E描绘了膨胀心轴处理的替代实施方式。第一管状元件如上所述以溶液1形成1,以形成具有第一直径Do3(A)的第一管状元件。心轴直径增大到第二直径Df(B),在这一点,在第一管状元件位于膨胀心轴4(C)上的同时,包含天然/合成抗拉材料的第二管状元件6置于第一管状元件3上。在放置完第二管状元件6之后,以溶液1形成的额外薄层7可以静电纺织在第二管状元件6的顶部上,以允许将第二管状元件6粘性夹持在溶液1(D)形成的各料层之间。在涂覆溶液1形成的薄层7之后,膨胀心轴直径返回第一直径Do2(E)。第一管状元件收缩将牵引第二管状元件,导致波纹状的或扭结的均匀表面特征。在一种实施方案中,第二管状元件成丝网形式。
如上所述,已经熟知血管移植物接合到天然血管的结合部处的柔顺性错配可能导致内膜增生,这是与血管移植物通畅性损失相关的重要失效模式。已经知道这种内膜增生可能导致形成动脉瘤和移植物膨胀。在各薄层拥有不同柔顺性的多薄层结构中产生的问题是脱层。在薄层之间存在突然过渡并因此可能存在相应的强烈应力集中的结构中,这可能是一个特殊问题。为了消除这个问题,通过确保每个连续料层拥有异质性区域带并且在该异质性区域带内冲击下一个连续区域带,则可以缓解薄层之间的突然过渡。
图4C例述了这一构思。随着接近料层之间的过渡区,在两种材料之间混合时出现包含相邻料层的渐变梯度。这种带状渐变可以利用众多方式实现,但是最简单的是利用多个注射器和溶液梯度。
图4D例示了用来实现带状渐变的静电纺织法。该方法采用两个喷丝头,两种材料溶液以及顺序涂覆(有重叠)以便在两种材料构造的薄层之间产生渐变过渡。包含例如天然/合成弹性体材料混合物的溶液1纺织1在旋转心轴上,形成具有第一直径Do2的第一管状元件3(A),但是在溶液1涂覆完成之前,心轴膨胀到第二直径Df4,并且涂覆(B)包含例如天然/合成抗拉材料混合物的溶液25,从而在第一管状元件上形成第二管状元件6(C)。优选,在接近溶液1涂覆1完成时开始涂覆溶液25。溶液1和溶液2涂覆操作同时持续下去,直到完成溶液1涂覆(B)。因此,在第一和第二管状元件之间的区域带中形成溶液1中的材料与溶液2中的材料逐渐混合。这样导致形成具有带状渐变的预应力分层结构。
在一种实施方案中,包括带状渐变的本发明的组织工程支架由包含弹性体元件的第一管状元件、包含与第一管状元件的外部接触的抗拉元件的第二管状元件、以及第一管状元件的弹性体元件与第二管状元件的抗拉元件的渐变过渡区域带或梯度混合物构成。在另一种实施方案中,组织工程支架的带状渐变区包含具有分别来自第一和第二管状元件的材料的异质性过渡区域带。
如上所述,本发明提供的方法中,心轴直径从第一直径(Do)增大到离散的第二直径(Df),然后随后返回第一直径(Do)。在另一种实施方式中,本发明提供的方法中,心轴直径在静电纺织过程中经过连续的直径增大从第一直径(Do)增大到第二直径(Df)。为了实现连续的直径增大,可以将心轴编程,以便在溶液2的静电纺织过程中直径以连续速率从第一直径(Do)增大到第二直径(Df),从而在第一管状元件上形成第二管状元件。这种方式会保证在两层的分层结构沿着周向方向拉伸过程中,外部抗拉层会以不同的应变值发挥发挥作用,并保证与更自然的“J”形曲线相关的更平缓的曲度。
图5例示了能在旋转过程中连续改变直径的膨胀心轴设备。图5A示出了接近最小直径,此时通过收缩心轴直径,容易取下静电纺织的管件。图5B示出了处于最大直径配置的心轴。心轴截面处于丝杠驱动的轨道中,以允许纺织过程中以预先编程的速率连续移动。
在一种实施方案中,增大和减小新颖支架结构直径的步骤与静电纺织步骤并行实施。在优选实施方式中,以包含例如天然/合成弹性体材料混合物的溶液1形成的第一管状元件的第一直径Do以稳定的连续速率增大到第二直径Df,同时将包含例如天然/合成抗拉材料混合物的溶液2静电纺织在第一管状元件上。最终结果是将包含抗拉元件的第二管状元件沉积在包含弹性元件的第一管状元件上,以使抗拉元件作为抗拉纤维连续体存在于新颖的支架结构中。在通过所述新颖支架结构循环的流体体积逐渐增大时,由于弹性元件包含在第一管状元件中,所以第一管状元件的第一直径Do将相应逐渐增大,并且因此,随着第一直径Do因流体循环而增大到第二直径Df,存在于第二管状元件中的抗拉纤维连续体将在该连续过程中发挥作用。因此,随着流经的流体体积增大,利用本发明的方法形成的抗拉纤维连续体在新颖的支架结构中引入抗拉纤维逐渐发挥作用的属性。这种属性进一步有助于本发明的组织工程支架展现出基本上类似于天然血管的类似性。
如上所述,本发明的方法可以利用静电纺织在第一管状元件上形成第二管状元件。在一种实施方案中,第二管状元件不是利用静电纺织形成,而是可以放置于第一管状元件上的单丝(径向方向厚度为一条丝线)编结、编织或丝网结构。在这种实施方案中,在操纵编结/编织/丝网第二管状元件到达包围第一管状元件的位置之前,形成第一管状元件并以选定的应变值将其膨胀到期望直径。编结/编织/丝网第二管状元件的尺寸可以预先选定,以便与处于如图6所示期望膨胀尺寸的第一管状元件紧密配合。放置好之后,可以通过上述粘结技术将第二管状元件紧固到第一管状元件。
如文中所述,血管支架包括第一管状元件,该第一管状元件包括外表面和内腔表面;和第二管状元件,该第二管状元件包括外表面和内腔表面。粘结之后,第一管状元件的外表面与第二管状元件的内腔表面接触。这时,第一管状元件的内腔表面和第二管状元件的外表面两者都可以访问,用于进一步的操控。
粘结完成之后,第一管状元件的第二直径减小到其初始第一直径。直径减小可以通过将可变心轴减小到第一直径来实现,或者在铸造的情况下,简单地从较大心轴上取下该支架来实现。将第一管状元件约束回第一直径,将向包含抗拉元件的第二管状元件的纤维引入一系列波纹。
在另一种实施方案中,本发明的方法包括以程度可变的扭结向第一管状元件(包含弹性体元件)涂覆纤维,特别是具有固有扭结程度的抗拉纤丝。所述纤维例如可以从非纺织毛毡中分离,诸如用于形成膀胱替换支架的毛毡。所述纤维的直径为12-18μm(长度:~2cm)并且根据非纺织毛毡成形过程中的针织过程对于这种几何结构的必要需求而具有扭结形态。
图7例示了可以从毛毡材料实现的纤维形态。在第一管状元件(包含弹性体元件)膨胀时,变化的形态有助于连续强化。在一种实施方案中,所述非连续纤维粘结到处于期望膨胀尺寸的第一管状元件,并且任选一般沿着周向方向取向。涂覆之后,可以通过应用上述粘结技术其中一种将纤维密封或束缚到第一管状元件。在另一种实施方案中,纤维到纤维的连结形成在材料本身内,以便根据各种不同扭结程度的个别纤维形态,引入连续强化。可以在粘结之前实施纤维到纤维的连结。从力学方面说,应用这些纤维(一旦连结和/或粘结到第一管状元件)的优势效果在于发生应变时,扭结量最少的纤维将首先拉直,并发挥作用。由于应用的纤维的扭结程度连续,所以随着应变增大,纤维将以不同的间隔发挥作用,导致应力/应变示意图逐渐圆整,因此提供更为类似天然材料的响应。
在优选实施方案中,制作组织工程血管支架的方法包括步骤:(a)提供或形成包含外表面、内腔表面和第一直径的弹性体管状元件;(b)将所述弹性体管状元件膨胀到第二直径;(c)在步骤(b)中形成的弹性体管状元件的外表面上提供或形成包括外表面和第二直径的抗拉管状元件;(d)将所述抗拉管状元件粘结到所述弹性体管状元件的外表面;和(e)将所述弹性体管状元件的第二直径缩小到所述第一直径。
在一个方面,文中提供的方法允许本领域普通技术人员练习制作TE支架的高度调节能力。通过改变所述方法的不同方面,文中所述力学属性按照技术人员期望的方式接受调节。在一种实施方案中,调节力学属性包括改变以下一项或多项:选择用来提供管状支架的材料;管状元件的膨胀直径;静电纺织过程中纺针和心轴之间的距离;和所用管状元件的厚度。在另一种实施方案中,所述调节包括改变上述表2中列出的一个或多个参数。本领域技术人员应该理解可以改变其他参数来调节TE支架的力学属性。
5.组织工程血管(TEBV)
另一方面,本发明提供自本发明的TE支架衍生的组织工程血管(TEBV)。鉴于它们与天然血管的实质性相似性,这些支架特别适合于修饰以创建TEBV,继而能作为血管旁路移植物用于治疗心血管病症。血管旁路移植物包括动脉静脉(AV)分流器。在一个优选的实施方案中,本发明的支架可用于创建具有小直径(通常小于6mm)的TEBV,用于治疗心血管病症。
如本文中所讨论的,TE支架的某些实施方案显示出展现特征为J形应力/应变曲线的对应力和应变的力学响应,这可归于一定范围的弹性模量和模量过渡及其任何组合。在模量参数之外,有TE支架展现的其它特性使它们在制作血管移植物中使用是有吸引力的。一方面,本发明的TE支架展现某些特性首先使得它们特别适合于制作TEBV或血管移植物,而且确保血管移植物会在植入后保持开放。此类特性包括但不限于那些容许在支架上接种细胞的,那些给支架提供对断裂的抗性的,和那些给支架提供粘弹性的。
在一个实施方案中,有利于在TE支架上接种细胞的特性归于孔梯度,其中孔径自管状元件外膜侧或外侧处的约100微米逐渐缩小至腔侧或内侧处的约5至约15微米。本领域公知孔径是在TE支架上和在TE支架内成功接种细胞的一项重要因素。例如,孔径必须大到足以让各种细胞类型迁移至支架的表面和穿过支架,使得它们能以与在体内所观察到的相似的方式与其它正在迁移的细胞相互作用。本发明关注特定孔梯度有助于成功接种细胞的发现。在一个实施方案中,孔梯度使得细胞可到达TE支架,并由此增强TE支架的细胞接种能力(capacity)。在另一个实施方案中,孔梯度为约100微米(外侧)至约5微米(内侧)、约100微米(外侧)至约6微米(内侧)、约100微米(外侧)至约7微米(内侧)、约100微米(外侧)至约8微米(内侧)、约100微米(外侧)至约9微米(内侧)、或约100微米(外侧)至约10微米(内侧)。
一方面,孔梯度提供如下的体系结构(architecture),其有利于在TE支架的腔、内侧上接种细胞及在TE支架的外部、外膜侧上接种细胞。在一个实施方案中,腔、内部表面上较小的孔尺寸适合于在内部表面上和内接种内皮细胞,而外部、外膜侧上较大的孔尺寸适合于在外部表面上和内接种平滑肌细胞。在另一个实施方案中,在TE支架的内部、腔表面上和内接种内皮细胞以形成单层或扁平薄片样结构,和/或在TE支架的外部、外膜表面上和/或内接种平滑肌细胞。
在一些实施方案中,在TE支架的内、腔表面上和贯穿TE支架的内、腔表面接种的内皮细胞没有能力越过某些孔尺寸朝向外、外膜表面迁移。在一个优选的实施方案中,孔尺寸是约15至约20微米。在另一个优选的实施方案中,孔尺寸是约15微米、约16微米、约17微米、约18微米、约19微米、或约20微米。
在另一个实施方案中,有利于对断裂的抗性的特性是(i)约0.45MJ/m3至约1.0MJ/m3的周向管韧度;(ii)约0.1MJ/m3至约0.5MJ/m3的轴向管韧度;或(iii)(i)和(ii)的组合。生物材料的韧度是有助于确定它对断裂的抗性的一项参数。
在另一个实施方案中,有利于TE支架的粘弹性的特性是(i)约0.05至约0.3的切向增量;(ii)约400MPa至约0.12MPa的储能模量;或(iii)(i)和(ii)的组合。
另一方面,本发明提供自本文所述TE支架衍生的组织工程血管(TEBV)。结果是,TEBV展现与在天然血管中见到的那些实质性相似的结构和功能特性。如上文所讨论的,血管中两种主要蛋白质成分(即胶原和弹性蛋白)的协同互作产生特征为J形应力/应变曲线的对应力和应变的力学响应(Roach et al.(1957)Can.J.Biochem.Physiol.35:681-690)。在一个实施方案中,本发明的TEBV特征在于具有以各向异性的方式在力学上响应应力和应变的能力。在另一个实施方案中,TEBV具有(i)有利于支架对断裂的抗性的特性;和/或(ii)有利于支架的粘弹性的特性。
另一方面,本发明的组织工程血管(TEBV)能调控某些在植入后观察到的与血管移植物有关的并发症。在一个实施方案中,TEBV调控植入后的顺应性错配(compliancemismatch)。在另一个实施方案中,调控包括下述一项或多项:对动脉瘤形成的抗性,对膨胀的抗性,对断裂的抗性,对血栓形成的抗性,对吻合性增生的抗性,和对内层增生的抗性。本领域技术人员会领会提交给TEBV调控的别的因素。
在一个实施方案中,本发明的TEBV包含本文所述TE支架。可以进一步操作本发明的TE支架以形成适合于移植入有所需要的哺乳动物的TEBV。例如,可以如下操作TE支架,即通过本文所述方法来添加一种或多种细胞群。本领域普通技术人员会领会本发明适合于许多类型的血管,包括但不限于颈动脉、锁骨下动脉、腹腔干、肠系膜动脉、肾动脉、髂动脉、微动脉、毛细管、微静脉、锁骨下静脉、颈静脉、肾静脉、髂静脉、腔静脉。
在一个实施方案中,TEBV在TEBV的第二管状元件内和/或在第二管状元件的外部表面上进一步包含第一细胞群。在一个优选的实施方案中,第一细胞群是平滑肌细胞群。本领域技术人员会领会多种类型的平滑肌细胞(SMC)可适合于在本发明中使用(参见Bertram等人的美国已公布的申请20070190037,通过述及完整收入本文),包括但不限于人主动脉平滑肌细胞、人脐动脉平滑肌细胞、人肺动脉平滑肌细胞、人冠状动脉平滑肌细胞、人支气管平滑肌细胞、人桡动脉平滑肌细胞、和人隐静脉或颈静脉平滑肌细胞。如Bertram等人的美国已公布的申请20070190037中所记载的,可以自多种来源分离SMC,包括例如来自活受试者的活检和自尸体获得的整个器官。分离的细胞优选是通过来自意图作为接受者的受试者的活检获得的自体的细胞。
在另一个实施方案中,TEBV在TEBV的内或腔表面上包含第二细胞群。在一个优选的实施方案中,第二细胞群是内皮细胞群。本领域技术人员会领会多种类型的内皮细胞(EC)可适合于在本发明中使用(参见美国已公布的申请20070190037,通过述及完整收入本文),包括但不限于动脉和静脉EC,诸如人冠状动脉内皮细胞、人主动脉内皮细胞、人肺动脉内皮细胞、真皮微血管内皮细胞、人脐静脉内皮细胞、人脐动脉内皮细胞、人隐静脉内皮细胞、人颈静脉内皮细胞、人桡动脉内皮细胞、和人内乳动脉内皮细胞。可以自各种来源分离EC,包括但不限于血管薄壁组织、正在循环的内皮细胞和内皮细胞前体诸如骨髓祖细胞、外周血干细胞和胚胎干细胞(参见Bischoff等人的美国已公布的申请20040044403和Raffi等人的美国专利6,852,533,通过述及完整收录每一篇)。
本领域技术人员会领会可以通过本领域已知的多种方法来实现本文所述一种或多种细胞群的接种或沉积。例如,可以使用生物反应器温育和培养(Bertram等人的美国已公布的申请20070276507;McAllister等人的美国专利7,112,218;Auger等人的美国专利5,618,718;Niklason等人的美国专利6,537,567);压力诱导的接种(Torigoe et al.(2007)Cell Transplant.,16(7):729-39;Wang et al.(2006)Biomaterials.May;27(13):2738-46);和静电接种(Bowlin等人的美国专利No.5,723,324)。另外,用细胞的气溶胶同时包被静电纺织纤维的一种最新技术可能适合于接种或沉积(Stankus et al.(2007)Biomaterials,28:2738-2746)。
在一个实施方案中,细胞沉积包括使管状支架与细胞贴附增强蛋白质接触的步骤。在另一个实施方案中,增强蛋白质是下述一种或多种:纤连蛋白,胶原,和MATRIGELTM。在一个其它实施方案中,管状支架不含细胞贴附增强蛋白质。在另一个实施方案中,细胞沉积包括在使管状支架与一种或多种细胞群接触后培养的步骤。在又一个实施方案中,培养可包括在生物反应器中通过脉动的和/或稳定的流来调理。
一方面,本发明治疗有所需要的受试者中的心血管疾病或病症的方法。在一个实施方案中,该方法包括鉴定有所需要的受试者的步骤。在另一个实施方案中,该方法包括自受试者获得一份或多份活检样品的步骤。在一个其它实施方案中,该方法包括下述步骤,即自样品分离一种或多种细胞群及在TE支架上培养一种或多种细胞群以提供TEBV。在另一个实施方案中,培养包括在生物反应器中调理经过细胞接种的TEBV支架。在一个实施方案中,调理包括生物反应器中稳定的和/或脉动的流。在另一个实施方案中,该方法包括将经过细胞接种、经过调理的TEBV植入有所需要的受试者以治疗心血管疾病或病症。
本领域普通技术人员会了解适合于通过本发明方法来治疗的各种心血管病症。
在另一个实施方案中,本发明提供本文所述TE支架和/或TEBV用于制备在治疗有所需要的受试者中心血管病症中有用的药物的用途。
仅仅出于例示目的而提供下述实施例,并非意图以任何方式限制本发明的范围。
通过述及将本说明书中所引用的所有专利、专利申请、和参考文献完整收入本文。
实施例
实施例1–胶乳管道上的缝合线包裹
双成分管状体系结构中“J”形力学响应的产生。
有数种方式有可能在双成分系统中产生“J”形力学特性。下文呈现了弹性内层和刚性外层(抗拉元件)耦接的组合产生的结果。在这种情况中,内层是胶乳,而外层是缝合线,或是缠绕的聚二口恶烷酮(PDO)或是缝制的VICRYLTM(90:10PLGA)。图14A-B显示以VICRYLTM围绕胶乳管的外圆周缝合制作的支架。当胶乳管膨胀至更大直径时应用缝合线。以其休止直径对胶乳管拍照,这就是为什么以更大直径应用的缝合线围绕胶乳管的圆周形成环。比例尺是0.5cm。A)轴向视图,B),侧向视图。
方法
将内径3.175mm(D1)的薄壁胶乳管(Primeline Industries)拉伸到外径8.0mm(D2)的心轴上,导致周长增加151%。以新的、更大的圆周,沿着胶乳管的长度以螺旋方式手工缠绕PDO缝合线(1.0metric,Ethicon)。通过在缝合线的顶部应用薄层液体胶乳(Environmental Technologies,Inc.)适当固定PDO缝合线。
于室温和标准压力(大气压)固化后,自心轴取下复合物,此时直径回到初始直径(D1)。然后在MTS Bionix拉伸测试系统(MTS,Inc.)上依照标准程序来测试复合物。简言之,将管安放在特别约束中并以5mm/sec速率施加应变直至发生失效。
将相同的薄壁胶乳管道(D1)拉伸到更大直径(D2)的心轴上,导致周长增加151%。以新的圆周,以螺旋方式围绕管的圆周手工缠绕Vicryl缝合材料(1.5metric,Ethicon),压入不超过管壁厚度的一半。不需要粘合剂涂层。如上所述实施测试至失效。
结果
这些测试样本各自的拉伸加载导致如下的“J”形曲线,其特征在于最初是低模量(刚性)区,接着是急剧上涨至自最初模量增加不少于一个数量级的模量。图8显示胶乳/PDO体系结构的所得特性。最初和最终模量的计算分别为0.3MPa和2MPa。图9显示胶乳/Vicryl体系结构的所得特性。此样本的模量计算出曲线的最初和最终区分别为2MPa和20MPa。图10图示PDO和Vicryl各自的应力/应变特性,它们分别具有3GPa和9GPa-18GPa的弹性模量。图11图示胶乳的应力/应变关系,其具有0.3MPa-0.5MPa的弹性模量。
这些结果例证使用双成分系统来生成“J”形力学特性的可行性,其中关键因素涉及在沉积抗拉成分之前拉伸弹性成分。层沉积的其它变化形式也是可能的。例如,通过缠绕、铸造、静电纺织、或其任何组合来创建一层或多层。
根据可得的材料,材料选择可考虑广泛的组合,只要一种材料是高弹性及低模量且另一种材料是高模量(最少比另一种材料大一个数量级)和低弹性。本文中描述了可能的材料选择。
凭借不同的材料、不同的预应变值、和不同的层厚度的选择,支架设计中的“J”形力学特性可获得高度的维持性(tenability)。
实施例2
耦接到刚性外层(抗拉元件)的弹性内层的组合也进行检验。所述内层为静电纺织的聚氨酯(PU)并且所述外层为静电纺织的聚乙醇酸(PGA)。
方法
处于1,1,1,3,3,3-六氟代-2-丙醇(HFIP)中的10%PU和处于HFIP中的10%PGA是用于静电纺织的基体溶液。大约2毫升10%PU利用标准静电纺织程序静电纺织到5mmOD心轴上。完成之后,PU管从5mmOD心轴上滚脱并辊轧到8mmOD心轴上。采用5mmOD和8mmOD心轴等于周向长度增加60%。
然后将10%PGA静电纺织到膨胀的PU管表面上,直到完全涂布,这等于大约1mlPGA溶液的总体体积。涂布之后,取下混合管件,同时小心操作,以使脱层最少。
在MTS Bionix抗拉试验系统(MTS,Inc.)上根据标准工艺,从纯PU和PGA管件获取子样本并且连同分层混合件进行试验。简单地说,管件安装在特定的约束器中,并且以5mm/sec的速率施加应变,直到发生失效。
结果
图12例示了以纯PGA和纯PU构造的管件的应力/应变特性,以及如上所述两种材料构造的混合件的合成应力/应变特性。混合件的拉伸载荷导致“J”形曲线,该曲线由初始较低模量(刚性)区域接着陡然升高到大约为初始模量值两倍的模量(0.5MPa对0.24MPa)来表征。
图13显示出与天然猪颈动脉相比,PU/PGA混合件的合成应力/应变特性。
上述结果支持利用至少双成分系统产生“J”形力学特性的可行性,并且重要因素涉及在沉积抗拉成分之前拉伸弹性成分。双成分系统的其他循环将涵盖材料选择以及沉积额外层方面的变化。例如,两个料层可以设置为预成形料层,或者通过缠绕、铸造、静电纺织而形成,或者这些方式的任意组合。
实施例3——利用膨胀心轴形成支架
这里描述通过多成分结构改型方案成功重现天然血管复杂应力/应变特性的新颖方法。此外,所述方法描述了通过材料选择组合和成形过程中的变化,有机会“调节”所述复杂的生物力学属性。利用Tecothane1074或丙交酯/己内酯共聚物和聚乙醇酸编结丝网管件制成的管状支架产生模量为0.5MPa-3.97MPa且破裂压力平均为1676mm-Hg的天然血管特征应力/应变特性。
10%聚氨酯(PU:Tecothane 1074,Lubrizol,Inc.)和12%丙交酯/己内酯共聚物(PLCL:Lakeshore Biomaterials)作为贮备溶液保持在1,1,1,3,3,3-六氟代-2-丙醇(HFIP:Sigma)中。通过文中其他部分所述的静电纺织法形成这种材料(4mm-6mm内径,~4-5ml贮备溶液)的12cm长的管件(Dahl 2007supra)。PU和PLCL静电纺织参数在表3中示出。
表3
静电纺织之后,将定制心轴插入所述管件。所述定制心轴由多个区段构成,所述区段被楔形物分开同时保持圆形截面(在图5中例示)。通过这种方式,可以在短暂的时间周期内将聚合物管件驱动到较大的内径/外径。例如,所述心轴允许内径6mm的管件内径(ID)增大至多160%,或者内径4mm的管件内径增大至多250%。在增大ID之后,所述心轴可以返回其原始设置,以允许管件弹性回复到其原始直径。
PU或PLCL制成的6mmID的管件膨胀到其原始直径的140%(新直径),随后插入8mmID的聚乙醇酸(PGA)编结丝网管件(Concordia)中。在所述新直径时,所述PU或PLCL管件被编结丝网PGA管件紧紧约束。此时,PU或PLCL制成的额外薄层(~1ml聚合物溶液)静电纺织到丝网和管件的顶部,以使丝网粘结夹持在各合成物(PU或PLCL)层之间。允许PU或PLCL管件/PGA丝网复合物返回到初始所用PU或PLCL管件的初始直径。收缩下层管件将牵拉丝网管件,导致波纹状(扭结状)的均匀表面特征。这种“膨胀心轴”过程的例示在图4E中表述。
支架成形
图15A-B例示了采用膨胀心轴技术构造的支架的典型粗略外观。沿着PU/PGA支架长度的波纹可见于较低倍率A)和较高倍率B)。支架的规模为~12cm。
图16A-B示出了PU/PGA支架的5x横截面视图,并进一步例示了以膨胀心轴技术形成的周向均匀的波纹。图15A中所示的基准尺为700μm。在图16A中,不存在PGA,但是成形过程与图16B一样,图16B中存在PGA丝网。在两幅图像中,可以看到成形过程导致的波纹,并且在图16B中因存在丝网而增强了波纹。图16A中的波纹程度较浅是因为在PU管件膨胀之后涂覆了额外的PU层。支架的壁厚和长度通常分别处于700μm和12cm的等级。
实施例4——力学试验
破裂压力试验
内部制造的破裂试验装置由高压注射器泵(Cole-Parmer)、不锈钢20ml注射器(Cole-Parmer)和校准的最大100psi液体/气体压力计(Omega)构成。所述系统利用Labviewv8.5和小型现场点(National Instruments)进行控制。为了确保在试验过程中不发生泄漏,管状支架的内腔以柱状5mmID标准乳胶球胆(Unique Industries,Inc.)贴衬。液体体积以1ml/min的稳定速率输送到支架,直到发生失效。力学失效前的最近最大值为报告破裂压力值。
周向试验(环形试验):然后在MTS Bionix拉伸试验系统(MTS,Inc.)上根据标准程序对支架进行试验。简单地说,支架安装在专用约束器中,并且以5mm/sec的速率施加位移,直到发生失效。通过对试验支架的尺度(厚度、起始长度、宽度)进行仔细的千分尺测量,将产生的原始力/位移数据转化成应力/应变曲线。
结果
接受试验的管状支架一致地产生与双成分系统(图17)相当的应力/应变特性。所有支架表明的力学特性包括初始较低刚性特性(E=0.5±0.24MPa),在力学失效前,该力学特性在374±229%的过渡应变处产生较高刚性区域(E=3.97±1.6MPa)。图18例示了来自管状支架破裂压力试验的结果。总体破裂压力为1676±676mm-Hg。总结数据在表4中表述。
表4
支架调节能力:管状支架是多成分系统,具有与成形参数有关的各种自由度,诸如所用膨胀心轴的最终直径、PGA丝网拉伸量和静电纺织层厚度。图19说明了在总体力学特性中作为这种支架构造可能的可变元素的变化性。这表示管状支架的力学属性可以调节。图19A描绘了有利的力学特性,其中PGA丝网管件失效与合成静电纺织管件失效重合。
图19B描绘了静电纺织弹性管件失效先于加强PGA丝网管件发挥作用。在这种情况下,涂覆在第二管状元件上的PU或PLCL薄层在配合到膨胀心轴上的第一管状元件上之前,以大约正常距离大约一半的心轴/纺针距离进行静电纺织,即对于PU而言,大约5cm到大约7cm,对于PLCL而言,大约6cm到大约8cm。纺针更接近意味着PU/PLCL溶液在从纺针行进到第二管状元件表面时暴露于空气的时间减少,这导致较之以正常距离进行静电纺织而言,更大量的溶剂与第二管状元件和下层第一管状元件接触。与溶剂接触增加,导致第一管状元件熔化,这使得第一管状元件更具脆性。
图19C描绘了在内部静电纺织管件失效之前,PGA丝网管件假定发挥作用和失效。
实施例5–细胞与静电纺织的PLCL或PU的相互作用
用一薄层静电纺织的PLCL或PU包被玻璃盖玻片,接着用细胞外基质蛋白质包被。为了包被纤连蛋白,将支架在PBS中的5ug/ml人纤连蛋白I(Chemicon FC010)中于4℃浸泡过夜。为了包被低浓度胶原,将支架在0.1%乙酸中的50ug/ml大鼠尾胶原I(BD 354236)中于RT浸泡1小时,接着用PBS简短清洗。将低浓度胶原支架在接种前风干。如下制作高浓度胶原支架,即应用以薄层3mg/ml大鼠尾胶原I(BD 354236),然后在密闭槽中将支架暴露于氨气3分钟。然后将高浓度胶原支架用水简短清洗,接着在PBS中清洗过夜。最后,为了包被MATRIGELTM,用一薄层MATRIGELTM溶液(BD 356234)覆盖支架,并于37℃温育30分钟以容许蛋白质聚合。
在接种前,用纤维蛋白胶水(Quixil)将所有支架附着于6孔细胞培养盘的底部。在250uL生长培养基中重悬浮人主动脉内皮细胞(Cascade Biologicis,C-006),并以40,000个细胞每cm2的密度直接接种到支架表面上。将接种后的支架于37℃,5%CO2温育3小时以容许充分的细胞附着。然后给孔注满3ml补充有LSGS试剂盒成分(Cascade Biologics,S-003)的培养基200(Cascade Biologics,M-200)。将接种后的支架培养14天,每三天更换培养基。
将接种后的支架在PBS中的4%低聚甲醛中于4℃固定过夜。将细胞用2ug/ml CD31(Dako M0823)一抗染色,接着是2ug/ml Alexa488山羊抗小鼠IgG1二抗。最后,将核用3uMDAPI(Invitrogen)染色。
图20图示在静置培养中用作管状支架中内部结构的两种合成物(PU/PLCL)上的细胞贴附和细胞散布。显示了用细胞贴附增强蛋白质:纤连蛋白、胶原、和MATRIGELTM处理后此项研究中所使用的静电纺织合成聚合物的组织化学。在没有任何涂层的情况中,PLCL比PU保留更多的细胞。在三种涂层(纤连蛋白、胶原1、和MATRIGELTM)中,MATRIGELTM和胶原1(剂量依赖性响应)表现出保留最高数目的细胞。此外,在胶原1和MATRIGELTM涂层的情况中,有强CD31染色,此时汇合(confluency)是明显的。
实施例6–细胞接种和生物反应器调理
如上所述自PLCL和PGA网构建了两种管状支架,其长度分别为6cm和10cm,分别称作短和长。
细胞接种:在补充有2%胎牛血清、1ug/ml氢化可的松、10ng/ml hEGF、3ng/mlbFGF、10ug/ml肝素、和1X浓度庆大霉素/两性霉素B溶液(Cascade Biologics,S-003)的培养基200(Cascade Biologics,M-200)中维持原代人主动脉内皮细胞(HAEC;CascadeBiologics,C-006)。为了接种支架,将第5-10代细胞用0.05%胰蛋白酶-EDTA(Gibco,25300)处理并以12x106每ml在补充后的M-200中重悬浮。经由远端端口将细胞悬浮液注射入血管生物反应器,体积足以覆盖所有腔表面。接种所有管道后,将生物反应器转移至滚子摇瓶装置并于37℃以0.2rpm旋转2小时。这个步骤后,将生物反应器槽无菌连接至下文所述流动回路。
生物反应器调理:如图23中所图示的,内部制作生物反应器系统,其带有能够给出脉动流的用户定制设计的控制系统。流动自储液罐(reservoir)(A)经过蠕动泵(peristaltic pump)(B)并进入具有单向止回阀(one-way check valve)(D)以限制倒流的脉冲阻尼器(pulse dampener)(C)。支架装在生物反应器槽中(F),前面有压强传感器(pressure transducer)(E),后面有后压强传感器(G),并向前进入挤压阀(pinch valve)(H),之后回到储液罐。(未描绘的:经由紧凑场点的计算机控制)
基于设计成接种后的构建物小心接受(ease into)生理学脉动和剪切的方案(表5)在8天过程里发生的调理,如此使细胞贴附和整合的机会最大化。
表5
8天调理方案后,利用一系列细胞测定法来评估所述细胞与所述构建物的相互作用。
实施例7–调理后的支架细胞测定法
活/死染色(Invitrogen,L3224):为荧光染色保留来自每根脉管远端和近端的一张代表性切片。将构建物切片用过量DPBS清洗。除去DPBS,并更换成2.5ml准备好的染色剂(10ml DPBS、20μl钙黄绿素AM(绿色)、5μl乙啡啶同二聚体-1(红色))。温育10分钟后,使用倒置荧光显微镜显现支架切片。碎片维持显著程度的曲率,使得显现相当困难。将圆形盖玻片放置在孔中构建物切片的顶部以帮助整平碎片。
图21图示在实验中所利用的接种密度,细胞大多汇合,有活跃的细胞死亡的极少数迹象(A-短的近端;B-短的近端;C-长的近端;D-长的远端;E-短的近端)。在长段样品中,细胞是圆形的,没有清楚地形成完整内皮。短段样品显示细胞在支架上散布开,而且清楚地形成细胞-细胞连接,提示初步的内皮。
显示了在接种细胞和在生物反应器中调理后来自长和短PLCL/PGA网血管管状支架的近端和远端区段(关于流入口和出口)的活/死染色。任何没有存活的细胞以红色突出显示。
全血凝固测定法:通过添加425μl氯化钙(0.1M)来活化4.25ml ACD全血。将充分混匀的活化后的血液的10μl等分试样放置在对照或支架表面上,并温育不同时间长度。在所决定的时间点,添加300μl蒸馏水,这使未掺入凝块的RBS裂解。读取所得水/血红蛋白溶液的吸光度,其与凝固量成反比。玻璃盖玻片充当凝固的阳性对照表面,而CoStar低结合6孔板充当阴性对照表面。
图22显示与对照相比,经过接种的移植物支架的凝固形成(作为时间的函数)。显示了经过接种、经过调理的支架区段,阳性和阴性对照,以及未经接种/未经调理的支架材料上的全血凝固。阳性对照在35分钟时形成近最大凝固(85%),而在45分钟时没有多少增加。未接种的对照在35和45分钟时间点之间看到自40%凝固到最大凝固(~75%)的上升。阴性对照在实验时间点开始时显示痕量凝固,但是所有剩余时间点始终不展现凝固。最后,接种的移植物在15分钟时间点时显示最大凝固(~30%),但是到45分钟下降至~10%凝固。
eNOS检测:eNOS生成指示健康的、完整的内皮。使用R&D Systems eNOS ELISA系统依照制造商的方案来定量细胞相关eNOS。将支架片放置在装有150μl细胞裂解缓冲液的微量离心管中,每种构建物4片(2片远端,2片近端)。然后将这些溶胞物冷冻于-80℃直至测定。融化后,将溶胞物离心以除去细胞碎片,而且来自每份样品的100μl可供测定使用。
表6显示来自经过接种且经过调理的移植物管状支架的eNOS生成结果。显示了自长的和短的经过接种、经过调理的管状支架分离的区段中eNOS生成的检测。将eNOS相对于移植物表面积标准化。短移植物在两份样品中都检测到大量的eNOS(~500pg eNOS/0.25cm2)。短支架在每份样品中检测到少于62.5pg eNOS/0.25cm2,将短图置于阳性eNOS报告的阈值之下。
表6
代谢分析:每个支架具有900ml培养基用于其8天温育/调理。在短的和长的支架的葡萄糖和乳酸(lactate)中检测到的总体变化是相当的,尽管长支架的葡萄糖使用略低于短支架(分别为0.07g/L和.008g/L),每种移植物的乳酸生成为0.053g/L。长移植物的氨生成略高于短移植物(分别为0.880mmol/L和0.783mmol/L)。
表7显示用过的生物反应器培养基的代谢分析。在Nova BioProfile 400上分析自每个生物反应器保留的培养基,并将结果与新鲜培养基对照比较。
表7
实施例1-7例示使用多成分系统来生成重演天然血管的“J”形力学行为的可行性,其中在沉积抗拉成分(PGA网管)之前伸展弹性成分(PU或PLCL)。此技术提供会以在血管中所看到的相似方式发挥功能的波纹状/扭折结构(虽然是在更大的范围上)。
管状支架力学试验说明了通常在天然血管中看到的模量1和模量2之间存在一个数量级的差异(见图1)。此外,选择PGA作为抗拉材料和PLCL或PU作为弹性材料是为了精确匹配天然血管(表1)中观察到的值。实际上,用来提供或形成管状支架的技术可以适用于许多不同的材料选择方案,合成材料或天然材料,只要一种材料弹性较高而模量较低,而另一种材料模量较高(最少比另一种材料大一个数量级)且弹性较低即可。
平均拐点位置(即,从模量1到模量2发生过渡的应变位置)是~374%应变单位。通常,天然血管中观测到的这种过渡接近~100%应变单位(表1)。对于这一值的解释涉及实验中所用编结PGA丝网管件的休止直径和属性以及相应地增大膨胀心轴直径的能力。例如,为了在管状支架中向着较低值偏移拐点,必须理解在纤维开始承受加载之前,在编结管件休止直径之后,编结管件将膨胀多大。利用在加载前调节编结丝网膨胀属性及其内部休止直径的能力,可以选择所述丝网在什么应变条件下开始发挥作用,因此在该值时粘结内部弹性管件。
PGA网能承受显著量的加载。事实上,下述观察结果证明了这一点,即能观察到1676mm-Hg的平均生理学相关破裂压力。然而,该方法不限于网。如上所述,可以利用不同材料,但是也可以采用不同技术来应用抗拉外层(以及弹性内层)。例如,未来的迭代可涵盖缠绕、铸造、静电纺织、或其任何组合的各层。
细胞接种和生物反应器调理实验洞察了管状支架如何在体内运转。如图20所示,用于增强细胞贴附的标准处理诸如用胶原1、MATRIGELTM、或纤连蛋白预包被支架显示细胞:细胞和细胞:生物材料与合成材料的相互作用二者的显著改善。其它用于增强细胞贴附的方法包括但不限于此项研究中所利用的填充(bulk)合成聚合物的化学修饰。
经过调理的支架的活/死测定法显示存在很少的没有存活的细胞。事实上,长移植物和短移植物都表现出在细胞密度方面具有相同的覆盖度。然而,在长移植物上有细胞形态的清楚差异。虽然图22中汇总的凝固结果清楚地显示移植物上细胞存在的受益,但是长支架中缺少eNOS(表6)。已知eNOS生成指示健康的、完整的内皮,而且,虽然长移植物上清楚地存在细胞,但是它们没有以与短支架中所看到的相同方式散布及与邻近细胞形成连接。鉴于这两种支架是相同材料的且是以相同方式生成的,这提示这些支架的调理有所不同。事实上,两种移植物都接受相同的调理方案,但是一种可能的解释是几何考虑事项导致不同支架内流的差异。鉴于细胞对水力因素的敏感性,可能是湍流条件导致在长支架中看到的圆形细胞形体及因此eNOS表达的缺乏。此外,在eNOS表达中看到的差异在代谢数据(表7)中也有指示,其显示8天调理方案期间短的和长的支架之间葡萄糖消耗的轻微变异(长的消耗略少些)。这项发现与长移植物缺乏eNOS生成一起可能指示长移植物中较不活跃的细胞表型。
本文中描述了一种新的结构技术,用于形成有能力模拟天然血管复杂力学的多成分管状支架。技术和材料选择二者的灵活性容许相当精确地调整及因此精确地匹配血管特性。未来可实施体内动物实验来评估将血管移植物环境中的顺应性错配(compliancemismatch)最小化或清除的长期益处。
实施例8–接种的细胞在支架上的保留
可以在Flugelman的美国已公布的专利申请No.20070190037实施例26的改良形式中评估体内植入后接种的细胞在TEBV上的保留。
通过给组织工程支架接种来制作本发明的组织工程血管(TEBV),腔侧用内皮细胞,外膜侧用平滑肌细胞。
麻醉家兔,然后插管。实验期间的监测系统包括血压测量、脉搏血氧定量、和ECG。为了移植物植入,暴露和制作TEBV后,为了系统抗凝,静脉内注射肝素。规程期间定期采集血样(例如每30分钟)以通过测量部分促凝血酶原激酶时间(PTT)来评估肝素化的功效。
然后植入TEBV,两侧末端至颈动脉和股动脉的侧面。在植入的TEBV暴露于血流后30分钟且在收获之前通过直接触诊、使用多普勒流量计(Transonic Animal ResearchFlowmeter,NY,USA)的流量测量和通过实施限制性血管造影术来评估TEBV的开放性。
在植入后2小时收获股动脉和颈动脉植入的TEBV。通过荧光显微术分析收获的TEBV的内表面上的细胞保留。
实施例9–体内动脉-静脉分流器(A-V分流器)
可以在如Corte等人的美国专利No.7,459,564中所记载的“体内家兔动脉-静脉分流血栓形成模型”的改良形式中测试本发明TEBV的体内效力。
麻醉适宜重量的家兔。在股动脉和股静脉管之间连接装满盐水的本发明TEBV。血液会经TEBV(其起动脉-静脉分流器(AV-分流器)的作用)自股动脉流入股静脉。可以使用本领域已知的各种技术使用这种模型在体内评估TEBV的开放性。例如,评估穿过移植物,没有显著狭窄的血流的存在及是否没有堵塞。可以使用超声技术来观察植入的TEBV。还使用TEBV自针穿刺恢复的能力来测试开放性。在研究结束时,处死动物并取出植入的TEBV供进一步检查,例如所述TEBV上的细胞数和接种的细胞在体内时已开始再生过程的程度。另外,评估所述TEBV的力学特性,并与天然血管移植物和/或植入前的TEBV的力学特性比较。
可以使用相同类型的AV分流模型来测试TEBV用于位置血管间移植物的开放性。

Claims (15)

1.组织工程支架,其具有与天然血管的响应实质性相似的对应力和应变的力学响应,该支架包含(a)弹性体管状元件,其包含外部表面和内部腔表面;和(b)抗拉波纹状管状元件,其包含外部表面和内部腔表面,抗拉波纹状管状元件的内部腔表面与弹性体管状元件的外部表面接触,其中所述弹性体管状元件包含具有第一弹性模量的弹性体成分且所述抗拉波纹状管状元件包含具有第二弹性模量的抗拉成分,所述第二弹性模量大于第一弹性模量,并且其中:
(1)所述组织工程支架对应力和应变的力学响应特征在于J形应力/应变曲线;和/或
(2)所述组织工程支架具有以下中的至少一项:
(i)3.0MPa至6.0MPa的周向管弹性模量2;
(ii)0.57MPa至1.12MPa的周向模量过渡;和
(iii)0.1MPa至0.5MPa的周向管弹性模量1,
其中在所述抗拉波纹状管状元件中的波纹的轴线平行于支架的轴向,
并且其中所述支架包含在第一弹性体管状元件和第二抗拉波纹状管状元件之间的界面处的带状渐变。
2.权利要求1的组织工程支架,其中所述抗拉波纹状管状元件包含纤维网络,其中纤维方向是周向取向的。
3.权利要求1的组织工程支架,其中所述带状渐变包含异质性的过渡带,其包括来自第一弹性体管状元件的材料和来自第二抗拉波纹状管状元件的材料。
4.权利要求1的组织工程支架,其中所述第二弹性模量大于第一弹性模量至少一个数量级。
5.权利要求1的组织工程支架,其中所述弹性体管状元件包含天然的弹性体成分。
6.权利要求1的组织工程支架,其中所述弹性体管状元件包含合成的弹性体成分。
7.权利要求1的组织工程支架,其中所述弹性体管状元件包含天然的弹性体成分和合成的弹性体成分。
8.权利要求5或7的组织工程支架,其中所述天然的弹性体成分选自下组:弹性蛋白,节肢弹性蛋白,外展素,和蚕丝。
9.权利要求6或7的组织工程支架,其中所述合成的弹性体成分选自下组:胶乳,聚氨酯(PU),聚己酸内酯(PCL),聚-L-乳酸(PLLA),聚(L-丙交酯共己内酯)(PLCL),和聚醚型聚氨酯(PEUU)。
10.权利要求1的组织工程支架,其中所述抗拉波纹状管状元件包含天然的抗拉成分。
11.权利要求1的组织工程支架,其中所述抗拉波纹状管状元件包含合成的抗拉成分。
12.权利要求1的组织工程支架,其中所述抗拉波纹状管状元件包含天然的抗拉成分和合成的抗拉成分。
13.权利要求10或12的组织工程支架,其中所述天然的抗拉成分选自下组:胶原、纤维素、蚕丝、和角蛋白。
14.权利要求11或12的组织工程支架,其中所述合成的抗拉成分选自下组:尼龙,聚二烷酮(PDO),聚对苯二酸乙二酯(PET),聚四氟乙烯,聚酯,聚乙醇酸(PGA),聚乳酸共乙醇酸(PLGA),和聚醚型聚氨酯(PEUU)。
15.权利要求1的组织工程支架,其具有选自下述的至少一项:
(i)孔径自抗拉波纹状管状元件的外部表面处的100微米逐渐缩小至弹性体管状元件的内部表面处的5至15微米的孔梯度;
(ii)0.45MJ/m3至1.0MJ/m3的周向管韧度;
(iii)0.1MJ/m3至0.5MJ/m3的轴向管韧度;
(iv)0.05至0.3的切向增量;和
(v)400MPa至0.12MPa的储能模量。
CN201410457774.7A 2008-02-14 2009-02-13 组织工程支架 Expired - Fee Related CN104248477B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US2886008P 2008-02-14 2008-02-14
US61/028,860 2008-02-14
CN200980113252.2A CN102006837B (zh) 2008-02-14 2009-02-13 组织工程支架

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN200980113252.2A Division CN102006837B (zh) 2008-02-14 2009-02-13 组织工程支架

Publications (2)

Publication Number Publication Date
CN104248477A CN104248477A (zh) 2014-12-31
CN104248477B true CN104248477B (zh) 2018-02-13

Family

ID=40957289

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201410457774.7A Expired - Fee Related CN104248477B (zh) 2008-02-14 2009-02-13 组织工程支架
CN200980113252.2A Expired - Fee Related CN102006837B (zh) 2008-02-14 2009-02-13 组织工程支架

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN200980113252.2A Expired - Fee Related CN102006837B (zh) 2008-02-14 2009-02-13 组织工程支架

Country Status (9)

Country Link
US (1) US20090227026A1 (zh)
EP (1) EP2249742B1 (zh)
JP (4) JP5632749B2 (zh)
KR (1) KR101669292B1 (zh)
CN (2) CN104248477B (zh)
AU (1) AU2009214508B2 (zh)
CA (1) CA2715642C (zh)
HK (2) HK1206579A1 (zh)
WO (1) WO2009103012A1 (zh)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100070020A1 (en) 2008-06-11 2010-03-18 Nanovasc, Inc. Implantable Medical Device
US8795577B2 (en) 2007-11-30 2014-08-05 Cook Medical Technologies Llc Needle-to-needle electrospinning
EP2493418B1 (en) * 2009-10-28 2017-03-15 University of Pittsburgh - Of the Commonwealth System of Higher Education Bioerodible wraps and uses therefor
US8637109B2 (en) * 2009-12-03 2014-01-28 Cook Medical Technologies Llc Manufacturing methods for covering endoluminal prostheses
CA2785989A1 (en) 2009-12-31 2011-07-07 Neograft Technologies, Inc. Graft devices and methods of fabrication
US8613880B2 (en) 2010-04-21 2013-12-24 Abbott Cardiovascular Systems Inc. Post electron beam conditioning of polymeric medical devices
EP2566529B1 (en) 2010-05-03 2016-08-31 RegenMed (Cayman) Ltd. Smooth muscle cell constructs
CN101850600B (zh) * 2010-05-14 2012-05-23 中山大学 具有多级孔结构的组织工程管状支架的制作方法及模具
US20110297735A1 (en) * 2010-06-02 2011-12-08 Medinol, Ltd. Method and apparatus for stent manufacturing assembly
EP2595695B1 (en) 2010-07-19 2019-02-06 Neograft Technologies, Inc. Graft devices and methods of use
US9539360B2 (en) * 2011-10-07 2017-01-10 W. L. Gore & Associaes, Inc. Puncturable and resealable graft
CN102512707A (zh) * 2011-11-04 2012-06-27 无锡中科光远生物材料有限公司 一种用于制备肌肉肌腱复合组织的支架及其制备方法
US9175427B2 (en) 2011-11-14 2015-11-03 Cook Medical Technologies Llc Electrospun patterned stent graft covering
US10154918B2 (en) 2012-12-28 2018-12-18 Cook Medical Technologies Llc Endoluminal prosthesis with fiber matrix
EP2943231A4 (en) * 2013-01-09 2016-12-07 Harvard Apparatus Regenerative Tech Inc SYNTHETIC SCAFFOLD
CN103173931B (zh) * 2013-03-07 2016-04-06 苏州睿研纳米医学科技有限公司 生物相容的纤维复合无纺网毡及其制备方法和应用
SG10201404111VA (en) 2013-07-16 2015-02-27 Univ Nanyang Tech Method for preparing a patterned substrate and use thereof in implants for tissue engineering
JP5747098B2 (ja) * 2014-03-27 2015-07-08 京セラメディカル株式会社 人工関節置換術用手術装置
CN104018245B (zh) * 2014-06-13 2016-11-02 东华大学 一种丝素蛋白/角蛋白复合纳米纤维管状材料的制备方法
CN104005179A (zh) * 2014-06-13 2014-08-27 东华大学 一种聚己内酯-角蛋白复合纳米纤维管的制备方法
BR112017017886B1 (pt) 2015-02-20 2024-02-06 Wisconsin Alumni Research Foundation Método para obter células endoteliais arteriais humanas, populações isoladas puras de células endoteliais arteriais, método de rastreio de um agente in vitro, método in vitro para vascularizar um construto de tecido engenheirado, uso das referidas células e composição farmacêutica compreendendo as referidas células
CN105031735B (zh) * 2015-06-24 2018-01-19 东华大学 一种三层复合结构小口径人工血管及其制备方法
CN105343936B (zh) * 2015-11-05 2019-01-01 深圳市第二人民医院 一种plcl三维多孔支架、plcl-col复合支架及其制备方法
WO2017184595A1 (en) * 2016-04-18 2017-10-26 Saint Louis University Integration of three-dimensional cell culture scaffolds in microfluidic devices by direct fiber spinning
CN107510862B (zh) * 2016-06-15 2020-05-19 中国科学院苏州纳米技术与纳米仿生研究所 担载梯度浓度生物活性分子的有序纤维支架、制法及应用
CN106178120B (zh) * 2016-08-05 2019-05-03 东华大学 一种仿生天然血管三层结构的复合材料血管支架及其制备方法
CN106691646B (zh) * 2016-12-30 2019-03-12 山东中保康医疗器具有限公司 可降解镁合金输尿管支架
CN106726036B (zh) * 2016-12-30 2019-02-05 山东中保康医疗器具有限公司 可降解镁合金尿道支架
EP3589243A1 (en) * 2017-02-28 2020-01-08 University College Cork - National University of Ireland, Cork An intravascular cell therapy device
JP6967265B2 (ja) * 2017-04-28 2021-11-17 株式会社彩 医療用基材の評価方法及び製造方法
EP3709930A4 (en) * 2017-11-17 2021-09-01 Arizona Board of Regents on behalf of the University of Arizona SCAFFOLDING WITH MATERIAL PROPERTIES OPTIMIZED FOR CARDIAC APPLICATIONS AND THEIR USES
CN107715179B (zh) * 2017-11-24 2022-08-26 江南大学附属医院 复合型人工小血管支架及其制备方法
GB201813461D0 (en) * 2018-08-17 2018-10-03 Raft Enterprises Ltd Tissue scaffold
JP7466532B2 (ja) 2018-10-01 2024-04-12 ジ・エレクトロスピニング・カンパニー・リミテッド
WO2022081644A1 (en) * 2020-10-13 2022-04-21 Nanofiber Solutions, Llc Kink-resistant electrospun fiber assemblies and methods of making the same
CN112915255B (zh) * 2021-01-20 2021-12-03 浙江大学 一种多尺度生物支架及其制造方法与应用

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3566498D1 (en) * 1984-03-01 1989-01-05 Kanegafuchi Chemical Ind Artificial vessel and process for preparing the same
CN85101355A (zh) * 1985-01-29 1987-01-21 钟渊化学工业株式会社 人造血管及其制做工艺
US5162430A (en) * 1988-11-21 1992-11-10 Collagen Corporation Collagen-polymer conjugates
US5282847A (en) * 1991-02-28 1994-02-01 Medtronic, Inc. Prosthetic vascular grafts with a pleated structure
JPH07250887A (ja) * 1994-03-15 1995-10-03 Seikagaku Kogyo Co Ltd 人工血管およびその製造方法
JPH10506021A (ja) * 1994-06-27 1998-06-16 エンドーム・インコーポレーテッド 半径方向に膨張可能なポリテトラフルオロエチレンおよびそれで成形した膨張可能な血管内ステント
US5618718A (en) * 1994-12-30 1997-04-08 Universite Laval Production of a contractile smooth muscle
US5714359A (en) * 1995-10-12 1998-02-03 The University Of Akron Apparatus and method for electrostatic endothelial cell seeding in a vascular prosthesis
US6136024A (en) * 1996-12-06 2000-10-24 Yasuhiko Shimizu Artificial blood vessel
EP1019492A1 (en) * 1997-07-03 2000-07-19 Massachusetts Institute Of Technology Tissue-engineered constructs
WO1999037751A1 (en) * 1998-01-23 1999-07-29 Imclone Systems Incorporated Purified populations of stem cells
US6197043B1 (en) * 1999-08-18 2001-03-06 James A. Davidson Isoelastic suture material and device
US6503273B1 (en) * 1999-11-22 2003-01-07 Cyograft Tissue Engineering, Inc. Tissue engineered blood vessels and methods and apparatus for their manufacture
US7175658B1 (en) * 2000-07-20 2007-02-13 Multi-Gene Vascular Systems Ltd. Artificial vascular grafts, their construction and use
CN1389271A (zh) * 2001-05-31 2003-01-08 东华大学 针织医用金属内支架及其制造方法
EP1414369A2 (en) * 2001-07-27 2004-05-06 Medtronic, Inc. Adventitial fabric reinforced porous prosthetic graft
US20040044403A1 (en) * 2001-10-30 2004-03-04 Joyce Bischoff Tissue-engineered vascular structures
US7575759B2 (en) * 2002-01-02 2009-08-18 The Regents Of The University Of Michigan Tissue engineering scaffolds
US7622299B2 (en) * 2002-02-22 2009-11-24 University Of Washington Bioengineered tissue substitutes
US7976936B2 (en) * 2002-10-11 2011-07-12 University Of Connecticut Endoprostheses
US20050131520A1 (en) * 2003-04-28 2005-06-16 Zilla Peter P. Compliant blood vessel graft
CA2523812C (en) * 2003-04-28 2011-06-21 Medtronic, Inc. Compliant venous graft
WO2005003317A2 (en) * 2003-07-01 2005-01-13 Regents Of The University Of Minnesota Engineered blood vessels
US7377939B2 (en) * 2003-11-19 2008-05-27 Synecor, Llc Highly convertible endolumenal prostheses and methods of manufacture
JP2005152181A (ja) * 2003-11-25 2005-06-16 Terumo Corp 埋込み可能な管状体治療具
US20070298072A1 (en) * 2004-11-19 2007-12-27 Teijin Limited Cylindrical Body and Manufacturing Method Thereof
US8048446B2 (en) * 2005-05-10 2011-11-01 Drexel University Electrospun blends of natural and synthetic polymer fibers as tissue engineering scaffolds
WO2007095193A2 (en) * 2006-02-10 2007-08-23 Tengion, Inc. Scaffolds for organ reconstruction and augmentation

Also Published As

Publication number Publication date
CN102006837B (zh) 2014-12-24
AU2009214508A2 (en) 2010-09-23
CA2715642C (en) 2017-03-28
JP2016187640A (ja) 2016-11-04
JP2015006400A (ja) 2015-01-15
JP2011512201A (ja) 2011-04-21
KR101669292B1 (ko) 2016-10-25
AU2009214508A1 (en) 2009-08-20
EP2249742A4 (en) 2015-03-25
EP2249742B1 (en) 2017-06-21
CA2715642A1 (en) 2009-08-20
HK1206579A1 (zh) 2016-01-15
JP2014094315A (ja) 2014-05-22
JP5632749B2 (ja) 2014-11-26
JP5978425B2 (ja) 2016-08-24
CN104248477A (zh) 2014-12-31
AU2009214508B2 (en) 2014-11-20
CN102006837A (zh) 2011-04-06
US20090227026A1 (en) 2009-09-10
WO2009103012A1 (en) 2009-08-20
HK1155936A1 (zh) 2012-06-01
EP2249742A1 (en) 2010-11-17
KR20100120686A (ko) 2010-11-16

Similar Documents

Publication Publication Date Title
CN104248477B (zh) 组织工程支架
Pashneh-Tala et al. The tissue-engineered vascular graft—past, present, and future
Boland et al. Electrospinning collagen and elastin: preliminary vascular tissue engineering
McMahon et al. Hydrogel–electrospun mesh composites for coronary artery bypass grafts
Yokota et al. In situ tissue regeneration using a novel tissue-engineered, small-caliber vascular graft without cell seeding
US10751447B2 (en) Laminous vascular constructs combining cell sheet engineering and electrospinning technologies
Hajiali et al. Electrospun PGA/gelatin nanofibrous scaffolds and their potential application in vascular tissue engineering
Ju et al. Bilayered scaffold for engineering cellularized blood vessels
Stekelenburg et al. Dynamic straining combined with fibrin gel cell seeding improves strength of tissue-engineered small-diameter vascular grafts
Torikai et al. A self-renewing, tissue-engineered vascular graft for arterial reconstruction
Zhang et al. A hybrid vascular graft harnessing the superior mechanical properties of synthetic fibers and the biological performance of collagen filaments
Woods et al. Electrospinning of biomimetic scaffolds for tissue-engineered vascular grafts: threading the path
Elliott et al. Three-dimensional culture of small-diameter vascular grafts
Mun et al. Three-dimensional electrospun poly (lactide-co-ɛ-caprolactone) for small-diameter vascular grafts
Yin et al. Fabrication of cell penetration enhanced poly (l-lactic acid-co-ɛ-caprolactone)/silk vascular scaffolds utilizing air-impedance electrospinning
Liberski et al. Knitting for heart valve tissue engineering
Łos et al. Successful biomaterial-based artificial organ—updates on artificial blood vessels
CZ308556B6 (cs) Kompozitní cévní náhrada a způsob její výroby
Zhao et al. Bioscaffolds development for small-diameter vascular grafts
Zhang Studies of Tissue-Engineered Vascular Graft fabricated from Electrochemically Aligned Collagen Yarns and Electrospun Collagen Nanofibers
Fernández-Colino et al. Textile-reinforced scaffolds for vascular tissue engineering
AU2014265032A1 (en) Tissue engineering scaffolds
Doshi Direct cell seeding on collagen-coated silicone mandrels to generate cell-derived tissue tubes
Thomas et al. Functionally-Graded Biomimetic Vascular Grafts for Enhanced Tissue Regeneration and Bio-integration
Soffer Design of silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20151030

Address after: North Carolina

Applicant after: TENGION INC

Address before: American Pennsylvania

Applicant before: Tengion, Inc.

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1206579

Country of ref document: HK

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20160901

Address after: Grand Cayman, Cayman Islands

Applicant after: Regenerative medicine (Cayman) Co. Ltd.

Address before: North Carolina

Applicant before: TENGION INC

CB03 Change of inventor or designer information

Inventor after: Rapoport H. Scott

Inventor after: Fish Jeffrey E.

Inventor after: Robbins Jr. Neil F.

Inventor after: Ilagan Roger M.

Inventor after: Guthrie Kelly I.

Inventor after: Namrata Sangha

Inventor after: Payne Roy

Inventor after: Jain Deepti

Inventor before: RAPOPORT H SCOTT

Inventor before: FISH JEFFREY E

Inventor before: Robins Neil F Jr

Inventor before: ILAGAN ROGER M

Inventor before: Guthrie Kelly I

Inventor before: NAMRATA SANGHA

CB03 Change of inventor or designer information
CB02 Change of applicant information

Address after: Grand Cayman, Cayman Islands

Applicant after: Ruijin Corporation

Address before: Grand Cayman, Cayman Islands

Applicant before: Regenerative medicine (Cayman) Co. Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180213

Termination date: 20200213