CN104247022A - 固体摄像装置以及其制造方法 - Google Patents

固体摄像装置以及其制造方法 Download PDF

Info

Publication number
CN104247022A
CN104247022A CN201380019790.1A CN201380019790A CN104247022A CN 104247022 A CN104247022 A CN 104247022A CN 201380019790 A CN201380019790 A CN 201380019790A CN 104247022 A CN104247022 A CN 104247022A
Authority
CN
China
Prior art keywords
semiconductor
upper electrode
layer
light
solid camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201380019790.1A
Other languages
English (en)
Inventor
矢泽庆祐
广濑裕
加藤刚久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of CN104247022A publication Critical patent/CN104247022A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14687Wafer level processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biophysics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

提供高灵敏度下暗电流少的固体摄像装置以及其制造方法。本发明的固体摄像装置具有:具有摄像区域和周边电路区域的半导体基板;形成在半导体基板上的布线层;矩阵状地配置在摄像区域的上方的布线层之上的多个像素电极;形成在摄像区域的上方的布线层以及多个像素电极之上的光电变换膜;和形成在光电变换膜上的上部电极。光电变换膜包含交替层叠由在长于近红外的波段有基础吸收端的第1半导体构成的多个阱层、和由带隙宽于第1半导体的带隙的第2半导体或绝缘体构成的多个势垒层的层叠结构。

Description

固体摄像装置以及其制造方法
技术领域
本发明在固体摄像装置以及其制造方法中特别涉及层叠型的固体摄像装置中的光电变换部。
背景技术
当前,固体摄像装置不断推进多像素化,与此相伴,使像素尺寸较小的开发盛行。并且,若像素尺寸变小,入射到1个像素的光子数就会减少从而灵敏度降低,但监视摄像机等中需要在暗处也能进行摄影的固体摄像元件。根据这些背景,固体摄像元件的灵敏度提升一直就是研究对象。
在专利文献1中,作为灵敏度高的固体摄像装置,记载了将光电变换膜配置在半导体基板的上方的光电变换膜层叠型固体摄像元件。
另外,在专利文献2中,记载了为了提高灵敏度而在光电二极管使用Ge的固体摄像装置。
先行技术文献
专利文献
专利文献1:JP特开2011-19854号公报
专利文献2:JP特许第2959460号公报
发明的概要
但是,就算在光电变换膜层叠型的固体摄像元件的光电变换膜使用Ge,在长于近红外光波长的波段具有基础吸收端的半导体的带隙狭窄。为此,由于本征载流子浓度ni变大且势垒高度Φ变小,因此暗电流变大。因此,在将Ge用作光电变换膜层叠型的固体摄像元件的光电变换膜时,暗电流较大而难以在室温下使用。
发明内容
在本发明中,目的在于在光电变换膜中使用了在长于吸收系数高的近红外光波长的波段有基础吸收端的半导体的固体摄像元件中,抑制暗电流。
本发明的固体摄像装置具有:具备摄像区域和周边电路区域的半导体基板;和形成在半导体基板上的布线层。进而,本发明的固体摄像装置具有:矩阵状地配置在摄像区域的上方的布线层上的多个像素电极;形成在摄像区域的上方的布线层以及多个像素电极上的光电变换膜;和形成在光电变换膜上的上部电极。光电变换膜包含交替层叠由在长于近红外的波段有基础吸收端的第1半导体构成的多个阱层、和由带隙宽于第1半导体的带隙的2半导体或绝缘体构成的多个势垒层的层叠结构。
另外,本发明的固体摄像装置的制造方法具有:在具备摄像区域和周边电路区域的半导体基板上形成布线层的工序;和在摄像区域的上方的布线层上形成矩阵状地配置的多个像素电极的工序。进而,本发明的固体摄像装置的制造方法具有:在摄像区域的上方的布线层以及多个像素电极上形成光电变换膜的工序;和在光电变换膜上形成上部电极的工序。形成光电变换膜的工序交替层叠由在长于近红外的波段有基础吸收端的第1半导体构成的多个阱层;和由带隙宽于第1半导体的带隙的第2半导体或绝缘体构成的多个势垒层。
根据本发明的固体摄像装置以及其制造方法,能实现高灵敏度且减少了暗电流的固体摄像装置。
附图说明
图1是实施方式1所涉及的固体摄像装置的框图。
图2是实施方式1所涉及的固体摄像装置的摄像区域的截面图。
图3是实施方式1所涉及的固体摄像装置的光电变换部的放大图。
图4是实施方式1所涉及的固体摄像装置的上部电极、光电变换部、像素电极的能量图。
图5是实施方式1的变形例1所涉及的固体摄像装置的上部电极、光电变换部、像素电极的能量图。
图6是实施方式1的变形例2所涉及的固体摄像装置的上部电极、光电变换部、像素电极的能量图。
图7是实施方式1的变形例3所涉及的固体摄像装置的上部电极、光电变换部、像素电极的能量图。
图8是实施方式1的变形例4所涉及的固体摄像装置的上部电极、光电变换部、像素电极的能量图。
图9是实施方式1的变形例5所涉及的固体摄像装置的上部电极、光电变换部、像素电极的能量图。
图10是实施方式1所涉及的固体摄像装置的光电变换部中的暗电流的Ge膜厚依赖的图表。
图11是实施方式2所涉及的固体摄像装置的光电变换部的放大图。
图12是实施方式2所涉及的固体摄像装置的上部电极、光电变换部、像素电极的能量图。
图13是实施方式2所涉及的固体摄像装置的上部电极、光电变换部、像素电极的能量图。
图14是实施方式3所涉及的固体摄像装置的制造方法的截面图。
图15足实施方式3所涉及的固体摄像装置的制造方法的截而图。
图16是实施方式3所涉及的固体摄像装置的制造方法的截面图。
具体实施方式
(实施方式1)
使用图1~图10来说明本发明所涉及的第1实施方式。
图1是表示本实施方式的固体摄像装置的构成的框图。本实施方式的固体摄像装置101具有:矩阵状地排列多个像素的摄像区域102、将行信号送往摄像区域102的垂直驱动电路103a、103b。
另外,固体摄像装置101具有对应于摄像区域102每列而配置具有多个放大功能和反馈功能的电路的水平反馈放大电路104。另外,固体摄像装置101具有:减少来自水平反馈放大电路104的信号的噪声的噪声消除器电路105、将来自噪声消除器电路105的信号送往水平方向的水平驱动电路106。并且,固体摄像装置101介由放大来自水平驱动电路106的信号的输出级放大器107,通过输出108将信号输出到固体摄像装置101的外部。
在此,水平反馈放大电路104,由于接受且反馈来自摄像区域102的输出信号,因此信号流动的方向如109所示那样成为相对于摄像区域102双向。
图2是摄像区域102的3像素份的区域的截面图。实际的固体摄像装置101矩阵状地排列了1000万像素份的像素。为了效率良好地汇聚入射光,在最表面形成微透镜201。
为了拍摄彩色图像,在各微透镜的正下方,在保护膜205内形成红色滤色器202、绿色滤色器203、蓝色滤色器204。为了遍布1000万像素份形成没有聚光不均匀以及颜色不均匀的微透镜201和滤色器群,将这些光学元件形成在由氮化硅膜构成的平坦化膜206上。在平坦化膜206下,遍布摄像区域102整面形成由透射可见光的ITO(Indium Tin Oxide,氧化铟锡)构成的上部电极207。
在上部电极207下形成分别交替层叠Ge和SiO2而得到的光电变换膜208。该光电变换膜208也被特别称作Ge/SiO2超晶格光电变换膜。Ge/SiO2光电变换膜吸收99%的波长650nm的红色光。在光电变换膜208下,在平坦化的厚度100nm的扩散防止膜212上形成由Al构成的像素电极211。各个像素电极211以0.2μm的间隔分离。在像素电极211间形成绝缘膜210。
在像素电极211下形成由布线213、通孔214、层间绝缘膜221、和扩散防止膜212构成的布线层。布线213和通孔214由铜构成,扩散防止膜212防止铜扩散到层间绝缘膜221。
各个像素电极211介由布线层的布线213以及通孔214与形成在硅基板218的P型的阱219的浮动扩散部215、以及放大晶体管216的输入栅极连接。
进而,浮动扩散部215与复位晶体管217的源极部共有区域,并电连接。放大晶体管216、复位晶体管217、选择晶体管(未图示)、浮动扩散部215形成在P型的阱219内。各晶体管通过由氧化硅膜构成的STI区域220(Shallow Trench Isolation,浅槽隔离)而电分离。
图3是上部电极207、光电变换膜208和像素电极211的放大图。
如图3所示,光电变换膜208是超晶格光电变换膜,分别交替层叠76层的厚度2nm的氧化硅膜层、和75层的厚度1.2nm的Ge层。在本实施方式中例示了厚度和层数,但并不限于此。超晶格光电变化膜通过交替层叠带隙不同的氧化硅膜层的薄膜和Ge层的薄膜,虚拟地形成两者间的带隙的光电变换膜。关于此,以下进一步具体说明。
另外,如图3所示,上部电极207被施加负的电压,在光电变换膜208产生的电子成为载流子并移动到像素电极211,成为信号。
图4是表示图3的从上部电极207到像素电极211的截面方向(A-B)上的能带结构的能量图。纵轴取能量,横轴取从上部电极207到像素电极211的距离。
如图4所示,交替层叠氧化硅膜层41和Ge层42的超晶格光电变换膜的末端,都是氧化硅膜层41。上部电极207的ITO和像素电极211的Al都介由氧化硅膜层41而接触。
即,在光电变换膜208中,与像素电极211相接的层以及与上部电极207相接的层分别是多个势垒层中的1个。
确认到由氧化硅膜层41和Ge层42的由价电子带的上端和传导带的下端构成的矩形周期势能。若氧化硅膜层41的膜厚薄到在相邻的阱彼此产生相互作用程度(约5nm以下),则出现相邻阱间的共鸣,在价电子带和传导带形成微带43。并且,关于由价电子带的上端和传导带的下端构成的带隙,虽然锗的带隙为0.66eV,但通过插入氧化硅膜的薄膜,使超晶格光电变换膜的带隙扩展到1.7eV。
通过光电变换产生的电荷(本实施方式中为电子)介由超晶格的微带43被施加在上部电极207与像素电极211间的电场而加速到像素电极211,从像素电极211传输到浮动扩散部215。另外,通过使Ge层42为无掺杂(本征)的半导体而成为图4那样的能量形状。
(实施方式1的变形例1)
图5是说明本实施方式1的变形例1的能量图。具体地,图5是将Ge层51设为N型的半导体的、从上部电极207到像素电极211的截面方向(A-B)上的能带结构的能量图。纵轴取能量,横轴取从上部电极207到像素电极211的距离。
如图5所示,在阱层使用N型的Ge层51来形成上部电极207和肖特基接触,由此耗尽接合部附近的Ge,形成肖特基二极管,从而能将反向饱和电流值作为暗电流。
即,多个阱层中的至少靠近上部电极207的阱层是第一导电型,光电变换膜208介由与上部电极207相接的势垒层和上部电极207形成肖特基接触。另外,也可以阱层整体是第一导电型。
N型的Ge层51能通过将磷或砷等的杂质导入Ge而得到。
(实施方式1的变形例2)
图6是说明本实施方式1的变形例2的能量图。图6是将Ge层51设为N型的半导体、将Ge层61设为P型的半导体、表示从上部电极207到像素电极211的截面方向(A-B)上的能带结构的能量图。
另外,如图6的能带结构所示那样,若在靠近上部电极207的阱层使用P型的Ge层61,在靠近像素电极211的阱层使用N型的Ge层51,则以无掺杂的Ge层42为中心来耗尽,能形成P-I-N二极管从而将反向饱和电流值作为暗电流。
即,多个阱层中的靠近像素电极211的阱层为第一导电型,光电变换膜208介由与像素电极211相接的势垒层和像素电极211形成欧姆接触。多个阱层中的靠近上部电极207的阱层是与第一导电型相反的第二导电型,光电变换膜208介由与上部电极207相接的势垒层和上部电极207形成欧姆接触。
P型的Ge层61能将硼等的杂质导入Ge而得到,N型的Ge层51能通过将磷或砷等的杂质导入Ge而得到。
(实施方式1的变形例3)
图7是说明本实施方式1的变形例3的能量图。图7是进一步将超晶格光电变换膜的末端设为Ge层71、表示从上部电极207到像素电极211的截面方向(A-B)上的能带结构的能量图。
使上部电极207以及像素电极211与阱层的Ge层42直接接触也能得到相同的效果。进而,能改变与电极接触的层的半导体材料,特别是若使用具有大于Ge层71的带隙的带隙的Si窗口层,则表现出窗口效应,能防止表面再耦合引起的信号电荷的损耗。
即,在光电变换膜208中,与像素电极211相接的层以及与上部电极207相接的层分别由带隙窄于势垒层的第3半导体构成。
此外,由于在超晶格层的看上去的能带结构和Si的能带结构中成为没有能带不连续的界面,因此能容易地取出由光激发的信号电荷。
(实施方式1的变形例4)
图8是说明本实施方式1的变形例4的能量图。图8是表示从上部电极207到像素电极211的截面方向(A-B)的能带结构的能量图。如变形例1那样,Ge层51是N型的半导体,如变形例3那样,超晶格光电变换膜的末端是N型Si窗口层81。
在图8中,为了暗电流的减少,上部电极207和末端的N型Si窗口层81形成肖特基结,形成肖特基二极管。
即,与上部电极207相接的第3半导体是第一导电型,和上部电极207形成肖特基接触。
由此,能将反向饱和电流作为暗电流。
(实施方式1的变形例5)
图9是说明本实施方式1的变形例5的能量图。图9使Ge层42为无掺杂,进而使超晶格光电变换膜的末端的2个半导体即Si窗口层81、91通过杂质掺杂而成为不同的传导型,从而形成P-I-N二极管。
即,与像素电极211相接的第3半导体为第一导电型,和像素电极211形成欧姆接触,与上部电极207相接的第3半导体是与第一导电型相反的第二导电型,和上部电极207形成欧姆接触。
由此,还能将反向饱和电流作为暗电流。
图10是本实施方式1的结构的暗电流的Ge膜厚依赖的图表。可知,在Ge膜厚a=2nm的超晶格结构下,即使不形成二极管也能减少到10- 6A/cm2。若如上述那样形成二极管,则有进一步的暗电流减少效果,作为固体摄像装置的光电变换膜,能在室温下使用可能。进一步可知,在硅光电二极管中暗电流为10-10A/cm2,但对此也是,若形成Ge膜厚a=1.2nm的超晶格结构,则有硅光电二极管以上的暗电流减少效果。并且,由于Ge的吸收系数较大,因此Ge的光电变换效率高于硅的光电变换效率,作为提升固体摄像装置的灵敏度也能得到提升。
另外,能在第3半导体的窗口层中使用包含Ge、SiGe、Si、InSb、InAs、GaSb、HgTe、HgSe、PbSe、PbS、PbTe、HgCdTe、InGaAs、AsSex、AsSx、SiCx、SiNx、GeNx、Se、GaAs、InP、AlAs、BP、InN、AlAs、GaP、AlP、GaN、BN、AlN、CdTe、CdSe、HgS、ZnTe、CdS、ZnSe、MnSe、MnTe、MgTe、MnS、MgSe、ZnS、MgS、HgI2、PbI2、TlBr的任意者的材料。
另外,能在第1半导体的阱层中使用包含Ge、SiGe、InSb、InAs、GaSb、HgTe、HgSe、PbSe、PbS、PbTe、HgCdTe、InGaAs的任意者的材料。
另外,能在势垒层中使用包含Si、C、AsSex、AsSx、SiOx、GeOx、MgOx、AlOx、ZrOx、HfOx、YOx、LaOx、SiCx、SiOxNy、SiNx、GeNx、Se、GaAs、InP、AlAs、BP、InN、AlAs、GaP、AlP、GaN、BN、AlN、CdTe、CdSe、HgS、ZnTe、CdS、ZnSe、MnSe、MnTe、MgTe、MnS、MgSe、ZnS、MgS、HgI2、PbI2、TlBr的任意者的材料。
进而,更优选在势垒层中使用包含SiOx、GeOx、MgOx、AlOx、ZrOx、HfOx、YOx、LaOx、SiOxNy、SiNx、BN、AlN、C的任意者的材料。
(实施方式2)
接下来,使用图11以及图12来说明本发明所涉及的第2实施方式。
本实施方式2仅说明与实施方式1的差异点,关于共通的点则省略其说明。
图11是本实施方式2的光电变换膜308的放大图。图3所示的与实施方式1的差异在于,被上部电极207和像素电极211所夹的光电变换膜308的阱层的膜厚在中央部变厚这一点。
即,层叠结构的阱层中的至少11个的膜厚,厚于其它阱层的膜厚。
由此,本实施方式2光电变换膜308对波长1300nm的红外光也达成了约55%的吸收率。
即,膜厚厚于其他阱层的膜厚的阱层的带隙处于近红外到红外光的波段。
由此,在暗处也能高灵敏度地进行摄影。在监视摄像机等中有用。关于这点,进一步详细说明。
如图11所示那样,由上部电极207、光电变换膜308、和形成于其下的像素电极211构成。超晶格光电变换膜从像素电极211起如下地进行层叠:SiO22nm/(Ge2nm/SiO22nm)×5/(Ge3nm/SiO22nm)×2/(Ge4nm/SiO22nm)×2/(Ge5nm/SiO22nm)×2/(Ge6nm/SiO22nm)×2/(Ge7nm/SiO22nm)×2/(Ge8nm/SiO22nm)×2/(Ge9nm/SiO22nm)×2/(Ge 10nm/SiO22nm)×30/(Ge9nm/SiO22nm)×2/(Ge8nm/SiO22nm)×2/(Ge7nm/SiO22nm)×2/(Ge6nm/SiO22nm)×2/(Ge5nm/SiO22nm)×2/(Ge4nm/SiO22nm)×2/(Ge3nm/SiO22nm)×2/(Ge2nm/SiO22nm)×5/。
图12是图11中的从上部电极207到像素电极211的截面方向(A-B)上的能带结构的示意图。因光电变换而产生的电荷介由超晶格的微带43通过施加在上部电极207与像素电极211间的电场被加速到像素电极211,从像素电极211向浮动扩散部215传输。超晶格光电变换膜的末端都是氧化硅膜层41,上部电极207的ITO和像素电极211的Al都介由SiO2而接触。
如图12所示,确认了由氧化硅膜层41和Ge层42的价电子带的上端和传导带的下端构成的矩形势能,但阱层即Ge层42的膜厚发生变化,由于在阱层薄的区域势垒层的影响变大,基于微带的看上去的带隙变得更宽。与此相对,由于在阱层厚的区域势垒层的影响变小,因此带隙变小。因此,通过使靠近上部电极207以及像素电极211的阱层的膜厚更薄,使带隙较宽,从而实现了暗电流抑制效果。并且,在上部电极207和像素电极211的中间部能提升灵敏度,并能检测红外光。
进而,如图13所示,在本实施方式2中,也能通过形成基于实施方式1的变形例2所示的杂质掺杂的P-I-N二极管来实现暗电流减少。并且,还能如实施方式1的其它变形例那样,通过形成肖特基二极管或P-I-N二极管,或者使超晶格的末端为Si等的半导体,还能实现基于窗口效应的信号电荷的损耗减少。
在以上的实施方式1、2中,虽然举出Ge/SiO2超晶格为例,但若制作带隙狭窄的半导体、和带隙比较大的半导体或绝缘体的超晶格,则会形成微带,能得到同样的暗电流抑制效果。
(实施方式3)
接下来,使用图14~图16来说明本发明的固体摄像装置的制造方法。图14~16是表示本实施方式3的固体摄像装置的制造工序的截面图。另外,关于与实施方式1共通的标号,省略说明。
如图14所示,通过现有的方法在硅基板218上制造布线层和由Al构成的像素电极211。
接下来,如图15所示,在像素电极211以及布线层上成膜光电变换膜208。首先,通过溅射法在室温下一边分别对氧化硅膜层以及Ge层进行膜厚控制一边交替层叠。此时,在如实施方式1的变形例那样在Ge层导入杂质的情况下,能通过在Ge层的成膜时向腔室导入B2H6、PH3、H2的气体来实现。另外,还能在光电变换膜208的两端形成实施方式1的变形例所示那样的第3半导体。进而,还能如实施方式2那样,将Ge层的膜厚形成得在光电变换膜208的中央附近较厚。另外,在制造使用窗口层的固体摄像装置的情况下,在成膜超晶格光电变换膜前、和成膜上部电极207前,以溅射法成膜Si。杂质掺杂的方法相同。
接下来,如图16所示,通过用现有的方法形成从由ITO构成的上部电极207到微透镜201,能制造本发明的固体摄像装置。
产业上的利用可能性
本发明的固体摄像装置即使使像素尺寸微细化,也能改善灵敏度特性、混色特性,能实现高画质,特别能利用在谋求小型、高像素化的数字静态照相机等的摄像装置中,特别是能实现夜间的画质提升。
标号的说明
41  氧化硅膜层
42、51、61、71 Ge层
43  微带
81  窗口层
101 固体摄像装置
102 摄像区域
103a、103b 垂直驱动电路
104 水平反馈放大电路
105 噪声消除器电路
106  水平驱动电路
107  输出级放大器
108  输出
201  微透镜
202  红色滤色器
203  绿色滤色器
204  蓝色滤色器
205  保护膜
206  平坦化膜
207  上部电极
208  光电变换膜
210  绝缘膜
211  像素电极
212  扩散防止膜
213  布线
214  通孔
215  浮动扩散部
216  放大晶体管
217  复位晶体管
218  硅基板
219  阱
221  层间绝缘膜
308  光电变换膜

Claims (14)

1.一种固体摄像装置,具备:
具备摄像区域和周边电路区域的半导体基板;
形成在所述半导体基板上的布线层;
在所述摄像区域的上方,矩阵状地配置在所述布线层之上的多个像素电极;
在所述摄像区域的上方,形成在所述布线层以及所述多个像素电极之上的光电变换膜;和
形成在所述光电变换膜之上的上部电极,
所述光电变换膜包含交替层叠由在长于近红外的波段有基础吸收端的第1半导体构成的多个阱层、和由带隙宽于所述第1半导体的带隙的第2半导体或绝缘体构成的多个势垒层的层叠结构。
2.根据权利要求1所述的固体摄像装置,其中,
在所述光电变换膜中,与所述像素电极相接的层以及与所述上部电极相接的层分别是所述多个势垒层中的1个。
3.根据权利要求2所述的固体摄像装置,其中,
所述多个阱层中的靠近所述像素电极的阱层是第一导电型,
所述光电变换膜介由与所述像素电极相接的势垒层而和所述像素电极形成欧姆接触,
所述多个阱层中的靠近所述上部电极的阱层,是与第一导电型相反的第二导电型,
所述光电变换膜介由与所述上部电极相接的势垒层而和所述上部电极形成欧姆接触。
4.根据权利要求2所述的固体摄像装置,其中,
所述多个阱层中的靠近所述上部电极的阱层是所述第一导电型,
所述光电变换膜介由与所述上部电极相接的势垒层而和所述上部电极形成肖特基接触。
5.根据权利要求1所述的固体摄像装置,其中,
在所述光电变换膜中,与所述像素电极相接的层以及与所述上部电极相接的层分别由带隙窄于所述势垒层的第3半导体构成。
6.根据权利要求5所述的固体摄像装置,其中,
与所述像素电极相接的第3半导体是第一导电型,和所述像素电极形成欧姆接触,
与所述上部电极相接的第3半导体是与所述第一导电型相反的第二导电型,和所述上部电极形成欧姆接触。
7.根据权利要求5所述的固体摄像装置,其中,
与所述上部电极相接的第3半导体是所述第一导电型,和所述上部电极形成肖特基接触。
8.根据权利要求5~7中任一项所述的固体摄像装置,其中,
所述第3半导体包含Ge、SiGe、Si、InSb、InAs、GaSb、HgTe、HgSe、PbSe、PbS、PbTe、HgCdTe、InGaAs、AsSex、AsSx、SiCx、SiNx、GeNx、Se、GaAs、InP、AlAs、BP、InN、AlAs、GaP、AlP、GaN、BN、AlN、CdTe、CdSe、HgS、ZnTe、CdS、ZnSe、MnSe、MnTe、MgTe、MnS、MgSe、ZnS、MgS、HgI2、PbI2、TlBr的任意一者。
9.根据权利要求1~8中任一项所述的固体摄像装置,其中,
所述第1半导体包含Ge、SiGe、InSb、InAs、GaSb、HgTe、HgSe、PbSe、PbS、PbTe、HgCdTe、InGaAs的任意一者。
10.根据权利要求1~9中任一项所述的固体摄像装置,其中,
所述势垒层包含Si、C、AsSex、AsSx、SiOx、GeOx、MgOx、AlOx、ZrOx、HfOx、YOx、LaOx、SiCx、SiOxNy、SiNx、GeNx、Se、GaAs、InP、AlAs、BP、InN、AlAs、GaP、AlP、GaN、BN、AlN、CdTe、CdSe、HgS、ZnTe、CdS、ZnSe、MnSe、MnTe、MgTe、MnS、MgSe、ZnS、MgS、HgI2、PbI2、TlBr的任意一者。
11.根据权利要求10所述的固体摄像装置,其中,
所述势垒层包含SiOx、GeOx、MgOx、AlOx、ZrOx、HfOx、YOx、LaOx、SiOxNy、SiNx、BN、AlN、C的任意一者。
12.根据权利要求1~11所述的固体摄像装置,其中,
所述层叠结构的所述阱层中的至少一者的膜厚,厚于其它阱层。
13.根据权利要求12所述的固体摄像装置,其中,
膜厚厚于其它阱层的所述阱层的带隙,处于近红外到红外光的波段。
14.一种固体摄像装置的制造方法,具备:
在具备摄像区域和周边电路区域的半导体基板上形成布线层的工序;
在所述摄像区域的上方,在所述布线层之上形成矩阵状地配置的多个像素电极的工序;
在所述摄像区域的上方,在所述布线层以及所述多个像素电极之上形成光电变换膜的工序;和
在所述光电变换膜之上形成上部电极的工序,
形成所述光电变换膜的工序,交替层叠由在长于近红外的波段有基础吸收端的第1半导体构成的多个阱层、和由带隙宽于所述第1半导体的带隙的第2半导体或绝缘体构成的多个势垒层。
CN201380019790.1A 2012-04-19 2013-02-25 固体摄像装置以及其制造方法 Pending CN104247022A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012095316 2012-04-19
JP2012-095316 2012-04-19
PCT/JP2013/001043 WO2013157180A1 (ja) 2012-04-19 2013-02-25 固体撮像装置及びその製造方法

Publications (1)

Publication Number Publication Date
CN104247022A true CN104247022A (zh) 2014-12-24

Family

ID=49383155

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380019790.1A Pending CN104247022A (zh) 2012-04-19 2013-02-25 固体摄像装置以及其制造方法

Country Status (4)

Country Link
US (1) US20150021731A1 (zh)
JP (1) JPWO2013157180A1 (zh)
CN (1) CN104247022A (zh)
WO (1) WO2013157180A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110098218A (zh) * 2018-01-31 2019-08-06 松下知识产权经营株式会社 摄像装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014122861A1 (ja) * 2013-02-07 2014-08-14 シャープ株式会社 光電変換素子
US10490687B2 (en) 2018-01-29 2019-11-26 Waymo Llc Controlling detection time in photodetectors
JP7283148B2 (ja) 2019-03-14 2023-05-30 富士通株式会社 赤外線検出器、これを用いた撮像装置、及び赤外線検出器の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314422A (ja) * 1987-06-17 1988-12-22 Nikon Corp 赤外線検出素子
JPH0794690A (ja) * 1993-09-21 1995-04-07 Toshiba Corp イメージセンサー
CN1622335A (zh) * 2003-11-28 2005-06-01 松下电器产业株式会社 固体摄像装置和其制造方法
US20080308149A1 (en) * 2007-06-15 2008-12-18 Fujifilm Corporation Squarylium dye, method of producing the same, photoelectric conversion element containing the dye, and solid-state imaging device
TW201212215A (en) * 2010-03-24 2012-03-16 Fujifilm Corp Photoelectric conversion element and image pickup element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0540235A3 (en) * 1991-10-30 1993-09-29 American Telephone And Telegraph Company Article comprising a quantum well infrared photodetector
JPH1041538A (ja) * 1996-07-22 1998-02-13 Fuji Xerox Co Ltd 半導体受光装置及び半導体受光素子の駆動方法
JP4996869B2 (ja) * 2006-03-20 2012-08-08 株式会社日立製作所 半導体レーザ
US20120160312A1 (en) * 2010-12-22 2012-06-28 Sharp Kabushiki Kaisha Solar cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314422A (ja) * 1987-06-17 1988-12-22 Nikon Corp 赤外線検出素子
JPH0794690A (ja) * 1993-09-21 1995-04-07 Toshiba Corp イメージセンサー
CN1622335A (zh) * 2003-11-28 2005-06-01 松下电器产业株式会社 固体摄像装置和其制造方法
US20080308149A1 (en) * 2007-06-15 2008-12-18 Fujifilm Corporation Squarylium dye, method of producing the same, photoelectric conversion element containing the dye, and solid-state imaging device
TW201212215A (en) * 2010-03-24 2012-03-16 Fujifilm Corp Photoelectric conversion element and image pickup element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110098218A (zh) * 2018-01-31 2019-08-06 松下知识产权经营株式会社 摄像装置

Also Published As

Publication number Publication date
JPWO2013157180A1 (ja) 2015-12-21
WO2013157180A1 (ja) 2013-10-24
US20150021731A1 (en) 2015-01-22

Similar Documents

Publication Publication Date Title
TWI740769B (zh) 光學感測器
US10134792B2 (en) Semiconductor devices
US7208811B2 (en) Photo-detecting device
JP4376516B2 (ja) Cmosと一体化されたヘテロ接合ホトダイオードの製造方法
US10714531B2 (en) Infrared detector devices and focal plane arrays having a transparent common ground structure and methods of fabricating the same
US8441032B2 (en) Low-level signal detection by semiconductor avalanche amplification
US7535033B2 (en) Multicolor photodiode array and method of manufacturing
US20080217724A1 (en) Backside illuminated solid-state imaging device
US8350937B2 (en) Solid-state imaging device having pixels including avalanche photodiodes
US10811450B2 (en) Image sensors
US8507311B2 (en) Method for forming an image sensing device
JP2016201449A (ja) 固体撮像装置および固体撮像装置の製造方法
JP6880601B2 (ja) 光検出器及び撮像装置
CN114041210A (zh) 电磁波检测器
CN112331684B (zh) 图像传感器及其形成方法
US20150048317A1 (en) Solid state imaging device
US20110001207A1 (en) Solid state image sensor and manufacturing method thereof
CN104247022A (zh) 固体摄像装置以及其制造方法
US20190157492A1 (en) Optical device and method of manufacturing the same
JP2005347599A (ja) カラー受光素子、及び撮像素子
US7875491B2 (en) CMOS image sensors and methods of manufacturing the same
US7115910B2 (en) Multicolor photodiode array and method of manufacturing thereof
US20120235271A1 (en) Solid-state image sensing device
KR20040058733A (ko) 스페이서 블록마스크를 적용한 시모스 이미지센서의제조방법
KR102499854B1 (ko) 격리 구조물 및 이를 포함하는 이미지 센서

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20141224