CN104245115A - 光催化剂、制备方法、光分解系统 - Google Patents

光催化剂、制备方法、光分解系统 Download PDF

Info

Publication number
CN104245115A
CN104245115A CN201380016819.0A CN201380016819A CN104245115A CN 104245115 A CN104245115 A CN 104245115A CN 201380016819 A CN201380016819 A CN 201380016819A CN 104245115 A CN104245115 A CN 104245115A
Authority
CN
China
Prior art keywords
photochemical catalyst
tio
srtio
transition metal
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201380016819.0A
Other languages
English (en)
Inventor
伊沙·伊德里斯
艾哈迈德·瓦哈卜·哈贾
塔伊沃·乌迪代罗
马吉德·穆罕默德·穆萨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saudi Basic Industries Corp
Original Assignee
Saudi Basic Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saudi Basic Industries Corp filed Critical Saudi Basic Industries Corp
Publication of CN104245115A publication Critical patent/CN104245115A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1229Ethanol
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及用于在光化辐射的影响下从含氢前体产生二原子氢的光催化剂,所述光催化剂包括由SrTiO3和TiO2组成的半导体载体,所述半导体载体具有沉积在其上的一种或多种贵金属和/或过渡金属。还公开了用于制备这样的催化剂的方法和通过光分解产生二原子氢的方法。

Description

光催化剂、制备方法、光分解系统
技术领域
本发明涉及用于在光化辐射的影响下从含氢前体产生二原子氢的光催化剂,所述光催化剂包括半导体载体,所述半导体载体具有在所述半导体载体上沉积的一种或多种贵金属和/或过渡金属。
本发明还涉及用于制备这样的催化剂的方法、光解体系以及用于从含氢前体产生二原子氢的方法。
背景技术
全球水平的能源和环境问题是重要的议题,在某种程度上已经对清洁能源的产生关注了一段时间。作为能量载体的二原子形式的氢具有至少部分满足全球能量需要的潜力。作为燃料,氢在用于散热和发电的需要的内燃机、燃气轮机或燃料电池中具有非常广泛的用途。作为反应成分,氢被用于多种工业化学工艺中,例如,如合成甲醇、更高级的烃类和氨。
不幸的是,无法天然获得丰富的二原子形式(H2,也称为分子氢或二原子氢)的氢。而由于它的高反应性,氢更常见地与其它元素结合,例如作为水和烃形式的氧和/或碳。从这些化合物产生二原子氢与热力学的法则冲突,因此需要额外的能量以打断这些自然产生的键。
当二原子氢与氧反应时,释放H-H键内存储的能量,而产生作为终产物的水(H2O)。这与约122kJ/g的氢能量密度结合,带来二原子氢作为燃料的明显的优点。
目前,主要由化石燃料、生物质和水产生二原子氢。虽然通过天然气的蒸汽转化生产二原子氢的技术已经成熟,但是不能保证其为氢经济的长期策略,因为它即不可持续,也不清洁。通过水的电解作用生产二原子氢不是节能的方法,因为通过该方法获得的二原子氢所携带的能量比产生它所需要的能量更少。
因此,关注于研究开发新的方法,以从可再生的资源产生氢。认为生物质是可再生的资源,因为植物通过光合过程存储太阳能,并且当经合适的化学工艺(即生物质燃烧)时可释放该能量。这样,生物质作用为地球上用于存储能量的一种天然能量库。
据说全世界可用的太阳能为约4.3×1020J/h,相当于约1000W/m2的辐射通量密度。认为该太阳能的大约5%为具有大于3eV的光能的UV辐射。存储该太阳能的有益的方法为通过产生二原子氢。在某种程度上,太阳能可用在将水或生物质产物(例如生物乙醇)光催化成二原子氢中。
Fujishima和Honda(Electrochemical Photolysis of Water at a SemiconductorElectrode,A.Fujishima和K.Honda,Nature,1972,238,37)首次报道了光催化。从那以后,在专利和科技文献中都报道了许多的光催化剂。Kudo和Miseki(Heterogeneous photocatalyst materials for water splitting,A.Kudo,Y.Miseki,Chem.Soc.Rev.,2009,38,253-278)提供了总结。其他人已经报道了TiO2是最广为人知的光催化活性天然半导体,并且通过用贵金属改性TiO2,用其它离子掺杂TiO2,与其它半导体耦合,用染料感光以及向反应溶液添加牺牲剂而获得对太阳光的有效使用((Nadeem et aI.,The photoreaction of TiO2and Au/Ti O2single crystal and powder withorganic adsorbates,Int J.Nanotechnol.,Vol.9,Nos.1/2,2012;Photocatalytic hydrogenproduction from ethanol over Au/TiO2anatase and rutile nanoparticles,Effect of Au particlesize,M.Murdoch,G.W.N.Waterhouse,M.A.Nadeem,M.A.Keane,R.F.Howe,J.Llorca,H.Idriss*,Nature Chemistry,3,489-492(2011);The Photoreaction of TiO2and Au/TiO2single crystal and powder Surfaces with organic adsorbates.Emphasis on hydrogenproduction from renewable.K.A.Connelly and H.Idriss*,Green Chemistry,14(2),260-280(2012))。
Yan等(Nitrogen-doped SrTiO3/TiO2composite photocatalysts for hydrogen productionunder visible light irradiation,Journal of Alloys and Compounds 472(2009),429-433)公开了通过固相方法制备的掺杂氮的SrTiO3/TiO2复合粉末,并且进一步通过溶胶凝胶方法方法与TiO2进一步组合。
JP 2003-288955公开了通过使用多层薄膜太阳能电池催化剂面板利用太阳光生产氢的方法和仪器,所述多层薄膜太阳能电池催化剂面板通过组合具有增强的电动势的太阳能电池和能够降低过电压的催化剂而形成。
EP0070712公开了用于光辅助氧化还原(氧化还原反应)反应的催化剂。这些催化剂由半导体的胶状颗粒组成,在其表面上包含还原催化剂和氧化催化剂。
Zielinska等(Photocatalytic hydrogen generation over alkaline-earth titanates in thepresence of electron donors,INTERNATIONAL JOURNAL OF HYDROGEN ENERGY33(2008)1797-1802)公开了对用于光催化产生氢的催化剂的碱土钛酸盐化合物(Ca、Sr、Ba)的效率的研究。作者已经显示加入有机供体(例如甲酸、乙酸、甲醇、2-丙醇和甲醛)增强了所研究的方法的效率。系统的研究显示与氢产生效率有关的最有效的有机供体是甲酸。所开发的催化剂中,SrTiO3:TiO2显示最高的光催化活性。
US2003/144140公开了在可见光范围内具有高催化功能的光催化剂,并且包含一种具有通过氧化物半导体(I)和(II)形成的结的氧化物复合物,所述氧化物半导体(I)和(II)彼此具有光催化性能,且在能带结构的导带底部的电子能级以及在能带结构的价带顶部的电子能级互不相同,其中上述电子能级是基于真空能级;所述光催化剂还包含至少一种即使在可见光范围内也具有光催化性能的氧化物半导体。
EP 2092981公开了二氧化硅类复合光催化剂,所述光催化剂包含复合氧化物相,所述复合氧化物相主要包括主要由二氧化硅成分组成的氧化物相(第一相)和二氧化钛相(第二相),第二相的存在比向表层梯度性增加,所述第二相含有钛酸锶和钛酸钡之中的至少一种以上的金属氧化物。
发明内容
本发明的目的为提供从含氢前体产生二原子氢的光催化剂,所述光催化剂提供了良好的二原子氢产率。
在这个意义上,本发明涉及在光化辐射的影响下从含氢前体产生二原子氢的光催化剂,所述光催化剂包括由SrTiO3和TiO2组成的半导体载体颗粒,并且所述半导体载体颗粒具有在其上沉积的一种或多种贵金属和/或过渡金属,并且,其中,所述半导体载体颗粒中SrTiO3和TiO2的摩尔比为至少0.01。
本发明人意外地发现由这两种材料组成的半导体载体颗粒可具有高表面积的颗粒形状,该形状显示出高的氢产生活性。本发明人称这样的形状为纳米片。这样的纳米片的最大尺寸为小于25nm,优选小于20nm,更优选小于10nm,最优选小于5nm。这样的纳米片的结块被称为纳米花。此外,不与理论结合,本发明人相信这些材料的结合使光催化剂的电子态增强到这样的程度,即与SrTiO3或TiO2类光催化剂相比,其满足更高产率的每克催化剂所产生的二原子氢。该增强归因于两种材料在原子尺度上的大量紧密接触。
SrTiO3具有3.25eV的间接带隙,并且金红石形式的TiO2具有3.0eV的直接带隙。本发明人相信一旦以原子尺度紧密接触而制备,这两种材料的界面延迟了电子-空穴再结合的速度,因而增强了光催化反应。
为了避免疑问,应理解根据本发明的由SrTiO3和TiO2组成的半导体载体颗粒不与通过物理混合/结合SrTiO3和TiO2颗粒而形成的载体颗粒混淆。相反地,本发明的半导体载体颗粒包含物理上不可分离的混合物形式的SrTiO3和TiO2
根据本发明的半导体载体颗粒中的SrTiO3和TiO2的摩尔比优选在0.05至1的范围内,优选0.1至0.5。本发明人相信在该范围内,最大地增强了半导体载体的电子态,并且产生更高的二原子氢产率。
在本发明优选的实施方式中,以金属颗粒的形式沉积一种或多种贵金属和/或过渡金属,其中,通过透射电子显微镜确定的金属颗粒的长轴方向的平均长度为最多5nm。本领域技术人员将理解所沉积的金属颗粒可不优选球形或圆形。因此,文中使用的长轴的长度理解为意味着颗粒的最大的轴长度。平均长轴长度为数值平均数。本发明的光催化剂中的金属颗粒优选具有最多15nm的长轴长度,更优选最多10nm的长度。
优选地,选择在本发明的半导体载体颗粒中的SrTiO3和TiO2的摩尔比,以使半导体载体具有一个或多个,优选两个在2.8eV与3.3eV之间的带隙。本发明人发现带隙越低,电荷载体的数目越高,结果电荷载体的再结合速度也越高。SrTiO3与TiO2(特别是金红石形式的TiO2)的结合允许缓慢的电子空穴再结合速率与相对高的电荷载体的数目的组合。
优选地,选择一种或多种贵金属和/或过渡金属以使其具有通过UV-Vis反射吸收测量的在500nm至600nm范围内的等离子体损失。虽然未完全理解机制,但本发明人相信在该范围内的等离子体损失增强了光反应。
一种或多种贵金属和/或过渡金属可选自由铂、铑、金、钌、钯和铼组成的组中。为了避免疑问,应理解本发明的光催化剂中的贵金属和/或过渡金属颗粒还可由两种或多种上述贵金属和/或过渡金属的混合物组成。
在本发明的光催化剂中,贵金属和/或过渡金属的含量优选为至少75wt%,优选至少95wt%为非氧化状态。非氧化的意思是贵金属和/或过渡金属为其纯金属状态,因此未结合任何氧化材料,例如氧。应理解,当首次使用光催化剂和/或在光解反应之间已经在氧中暴露一段时间后,优选该条件。当贵金属和/或过渡金属在氧化状态时,它们的活性较低。然而,本发明人发现在贵金属和/或过渡金属在氧化状态的实施方式中,光催化剂在使用时活性将提高。可能的原因为所产生的氢将使氧化颗粒还原。为了提高活性,可在用于光解前将根据本发明的光催化剂暴露在还原条件下。
基于由SrTiO3和TiO2构成的所述半导体载体颗粒和其上沉积的一种或多种贵金属和/或过渡金属的总重,所述贵金属和/或过渡金属在本发明的光催化剂中的含量优选在0.1wt%至10wt%的范围内,优选0.4wt%至8wt%。为避免疑问,应理解,该含量是基于贵金属和/或过渡金属自身的重量,即基于其元素状态,而不是基于任何化合物,例如它们的氧化物。
本发明的光催化剂优选具有每克催化剂至少30m2的BET表面积,更优选每克催化剂30至60m2。术语“BET表面积”是本领域中已知的表示材料的比表面积的标准测量。因此,根据2003年10月ASTM International的ASTM D-3663-03通过标准的BET氮检测测量BET表面积。
本发明的光催化剂不掺杂或者不包含氮。虽然已知用氮掺杂可改变催化剂对可见光的吸收,但是本发明人已经认识到用氮掺杂产生再结合中心,其不利地影响光催化剂的光催化性能。而且,在可见光下反应速度的微小的改善大部分被催化剂随时间的不稳定性以及在UV光下较弱的反应性所抵消。
根据本发明的制备光催化剂的方法包括步骤
i)组合钛前体,优选钛卤化物与锶盐溶液,
ii)将pH提高到使沉淀发生的值,
iii)用水清洗步骤ii)的沉淀,
iv)在500至800℃范围内的温度下煅烧所述沉淀,以形成载体,
v)在所述载体上沉积一种或多种贵金属或过渡金属。
钛前体可为任何可溶(水或醇)的钛化合物,并且优选自钛四醇盐和钛卤化物。在这种情况下,钛卤化物为被定义钛化合物,其中至少一个卤素原子与钛原子键合。例如,钛前体可为TiCl4、TiR4R3TiCl、R2TiCl2,Cl3TiR,其中,R为-OCH3、-OC2H5、-OC3H7、-OC4H9或-OC(O)CH3
如果钛前体是钛卤化物,那么步骤i)中的pH将由于酸的形成(例如HCl)而变得较低。然而,根据钛卤化物的量以及钛卤化物中每个钛原子的卤素原子的量,优选加入额外的酸,例如,如HCl、甲酸或乙酸,以将pH降低至至多为4的值,并且优选1至4的值。如果钛前体不是钛卤化物,那么可通过加入酸,例如,如HCl、甲酸或乙酸,而将步骤i)中的pH降低至1至4的值。
因此,在实施方式中,本发明的方法的步骤i)进一步包括将通过组合所述钛前体和锶盐溶液而获得的混合物的pH降至小于4的值,优选1至4。
本发明的方法的一个重要的特征为从包含锶和钛前体的溶液中沉淀载体颗粒,因为这产生由钛酸锶和二氧化钛组成的载体颗粒,其中,随后以物理上不可分离的混合物的形式获得钛酸锶和二氧化钛,这允许这两种材料之间的有效原子接触。该有效原子接触反过来允许了良好的光催化性能。因此,本发明的方法与Yan等的文章(Nitrogen-doped SrTiO3/TiO2composite photocatalysts for hydrogenproduction under visible light irradiation,Journal of Alloys and Compounds 472(2009),429-433)中公开的方法不同,其中,SrTiO3粉末与TiO2通过溶胶凝胶方法混合。本领域技术人员会理解SrTiO3和TiO2在本发明的光催化剂中存在的方式与这些组分在通过Yan等的方法获得的光催化剂中存在的方式有很大的不同。
因此,本发明涉及用于在光化辐射的影响下从含氢前体产生二原子氢的光催化剂,所述光催化剂包括由SrTiO3和TiO2组成的半导体载体颗粒,所述半导体载体具有在其上沉积的一种或多种贵金属和/或过渡金属,并且可通过文中公开的制备这样的光催化剂的方法而获得。
可通过使根据本发明的光催化剂接触含氢前体,同时将光催化剂暴露于光化辐射,而从含氢前体产生二原子氢。
文中使用的术语含氢前体应被理解为指包含化学(即共价或离子)键合氢原子、且可成功被用作用于光催化产生二原子氢的原料的化合物。不导致光催化产生二原子氢的含氢化合物不被认为是含氢前体。
根据本发明的用于光催化过程中的含氢前体优选地选自由水、醇以及水和醇的混合物组成的组中。换句话说,含氢前体可为单一化合物或至少两种化学化合物的混合物。由于易于可用性的原因,含氢前体优选为水和乙醇的混合物,其中基于含氢前体的重量,乙醇的量是1wt%至95wt%,优选30wt%至95wt%,更优选60wt%至95wt%。理想地,使用从生物质产生的乙醇。本发明还允许从纯乙醇(即100%)或其非常高纯度的溶液(即包含至少99wt%乙醇的溶液)中光催化产生氢。还可使用其它醇,尤其是低级醇,例如甲醇和乙醇。本发明人认为二原子氢的产生不限于水和醇,还可成功地使用其它含氢的材料,例如,如糖。
文中使用的光化辐射应被理解为指根据上述方法能够产生二原子氢的辐射。在这个意义上,光化辐射将在文中限定的10nm至400nm的UV波长范围中具有至少一部分。优选地,使用300nm至400nm的范围内的UV辐射。发现具有小于300nm的波长的光化辐射在本发明中可能无法实行。光化辐射的光子能必须至少匹配带隙能。辐射通量密度,有时被称作强度,优选在0.3mW/cm2至3.0mW/cm2的范围内,更优选约1mW/cm2。根据季节和地理位置,该强度接近于太阳光提供的UV强度,意味着如果使用太阳光,可以可持续的方式进行二原子氢的光催化形成。
根据本发明的光催化剂可用在用于从含氢前体产生二原子氢的任何光解体系中。通常,这样的体系包括其中发生二原子氢的实际的产生的反应区,以及一个或多个用于将二原子氢从其它可能形成或存在的气体分离的分离区。可使用的体系包括其中光催化剂与液态的含氢前体接触的光解体系,也包括其中光催化剂与气态的含氢前体接触的体系,例如,如在US 7,909,979中公开的。其中同时从液态和气态的含氢前体形成二原子氢的组合体系被认为是本发明可能的实施方式,该实施方式将允许使用具有相互不同的蒸汽压的含氢前体的混合物。
用作本发明的光催化剂中的载体的半导体材料可具有被称为纳米片的形状。这样的纳米片的结块被称为纳米花。这些纳米片可具有1nm和10nm,优选3nm至7nm级别的最小轴长度(宽度和厚度)以及15nm至50nm,优选20nm至40nm的长轴长度(长度)的大小。本领域技术人员将理解该纳米片和/或纳米花结构允许高表面积。
附图说明
现在将通过下面非限制性实例和图描述本发明,其中,
图1a至图1d显示了根据本发明的光催化剂的TEM图像。
图2显示了根据本发明的光催化剂的TEM图像。
图3显示了根据本发明的光催化剂的进一步的TEM图像。
具体实施方式
首先参照图1a至图1d,这些TEM图像显示了本发明的光催化剂可被描述为纳米花或纳米片的结块。纳米片的组成显示包含SrTiO3和TiO2域,从大小方面看,其已经为物理不可分离。由于域的尺寸较小,在两种材料之间存在大面积的原子接触,这允许较高的光催化活性。金属(在该情况下为铑)不能与载体清楚地区分,这表明金属颗粒的粒径非常小。
从图2进一步明确了金属颗粒的小尺寸。箭头表示金属的位置(如通过TEM确定),但仍未观察到清楚的颗粒。
图3为根据本发明的光催化剂的进一步的TEM图像。在该具体的催化剂中,发明人观察到了非常小的铑颗粒,参见图3中的框“a”。由图3的左上角可见,X射线(raw)衍射确认了铑。对于该催化剂,本发明人进一步区分了TiO2的非晶相和金红石TiO2
催化剂的制备
通过溶胶凝胶方法制备催化剂。以适当的量向硝酸锶溶液中加入TiCl4,以制造钛酸锶(SrTiO3)或具有过量的二氧化钛(TiO2)的钛酸锶。在向硝酸锶溶液加入TiCl4约30分钟后,用氢氧化钠将pH提高至8与9之间的值,氢氧化锶和氢氧化钛在此pH值下沉淀。
室温静置沉淀物约12个小时,以确保反应完成,然后将其过滤并用去离子水洗,直至中性pH(约7)。然后,在100℃的烘箱中以至少12个小时的时间干燥合成的材料。然后,在500℃至800℃范围内的温度下煅烧材料。使用X射线衍射技术确定单独的SrTiO3或SrTiO3(钙钛矿)和TiO2(金红石和/或锐钛矿)的形成。
从它们的前体,例如RhCl3/HCl、PtCl4/H2O、PdCl2/HCl、RuCl3等将贵金属和/或过渡金属引入到半导体载体上。在搅拌下将溶液保持在约60℃,直到形成糊剂。
在0.1N至1N之间改变HCl浓度进行不同的制备。然后,在100℃于烘箱中以至少12个小时的时间干燥糊剂,然后在350℃至800℃范围内的温度下煅烧。
以共浸法沉积双金属(即两种贵金属和/或过渡金属的混合物),由此加入两种金属前体而非一种。对它们进行与单金属光催化剂制备相同的方法。
使用来自Quantachrome公司的表面积分析仪测定BET表面积。
制造以下催化剂:
表1
(a)在800℃煅烧
光分解
在光解前,在300至400℃范围内的温度下以一个小时的时间用氢还原催化剂。
然后,将10mg至50mg的催化剂加入具有100ml与250ml之间的总体积的Pyrex反应器中。用氮气吹扫后,向反应器中加入10ml至20ml的水和/或乙醇。然后进一步用氮气吹扫,以使得水和/或乙醇溶液脱气。
通过将悬浮液暴露于强度在0.5mW/cm2与2mW/cm2之间的UV光下而开始反应。UV光的波长为约360nm。
使用注射剂进行对所形成的气体的抽取。使用装有热传导检测器的气体色谱装置分析抽取的气体。
发现了表1中列出的光催化剂的下述二原子氢气体产率。
表2

Claims (15)

1.一种用于在光化辐射的影响下从含氢前体产生二原子氢的光催化剂,所述光催化剂包括由SrTiO3和TiO2组成的半导体载体颗粒,并且所述半导体载体颗粒具有沉积在其上的一种或多种贵金属和/或过渡金属,并且其中,所述半导体载体颗粒中SrTiO3和TiO2的摩尔比为至少0.01。
2.如权利要求1所述的光催化剂,其中,由SrTiO3和TiO2组成的所述半导体载体颗粒中的SrTiO3和TiO2的摩尔比在0.05至1的范围内,优选0.1至0.5。
3.如权利要求1至2的一项或多项所述的光催化剂,其中,所述一种或多种贵金属和/或过渡金属以金属颗粒的形式沉积,其中,所述金属颗粒的平均长轴方向的长度为最多5nm。
4.如权利要求1至3的一项或多项所述的光催化剂,其中,对于由SrTiO3和TiO2组成的所述半导体载体颗粒,选择SrTiO3和TiO2的摩尔比,使所述半导体载体在2.8eV与3.3eV之间具有一个或多个,优选两个的能带隙。
5.如权利要求1至4的一项或多项所述的光催化剂,其中,选择所述一种或多种贵金属和/或过渡金属,使得它具有通过UV-Vis反射吸收测定的500nm至600nm范围内的等离子体损失。
6.如权利要求1至5的一项或多项所述的光催化剂,其中,所述一种或多种贵金属和/或过渡金属选自由铂、铑、金、钌、钯和铼组成的组中。
7.如权利要求1至6的一项或多项所述的光催化剂,其中,至少75wt%,优选至少95wt%的所述贵金属和/或过渡金属为非氧化态。
8.如权利要求1至7的一项或多项所述的光催化剂,其中,基于由SrTiO3和TiO2组成的所述半导体载体颗粒以及其上沉积的所述一种或多种贵金属和/或过渡金属的组合重量,并且基于在其元素状态的所述贵金属和/或过渡金属,所述一种或多种贵金属和/或过渡金属的含量在0.1wt%至10wt%的范围内,优选0.4wt%至8wt%。
9.如权利要求1至8的一项或多项所述的光催化剂,其中,所述催化剂具有每克催化剂30至60m2的BET表面积,使用氮吸收技术得到所述BET表面积。
10.如权利要求1至9的一项或多项所述的光催化剂,所述光催化剂能够通过权利要求11的方法获得。
11.一种制备根据权利要求1至10的一项或多项所述的光催化剂的方法,包括步骤:
i)组合钛前体与锶盐溶液,所述钛前体优选钛卤化物,
ii)将pH提高到使沉淀发生的值,
iii)用水清洗步骤ii)的沉淀,
iv)在500℃至800℃范围内的温度下煅烧所述沉淀,以形成所述载体,
v)将所述贵金属或过渡金属沉积到所述载体上。
12.如权利要求11所述的方法,其中,步骤i)进一步包括将通过组合所述钛前体和锶盐溶液而获得的混合物的pH降至最大4的值,优选1至4。
13.一种从含氢前体产生二原子氢的方法,包括使根据权利要求1至10的一项或多项的光催化剂与含氢前体接触,同时将所述光催化剂暴露于光化辐射。
14.用根据权利要求12至14的一项或多项的方法产生二原子氢的光分解系统,包括反应区,所述反应区包含根据前述权利要求1至10的任一项或多项的光催化剂。
15.包括SrTiO3和TiO2的半导体材料,其中,SrTiO3和TiO2的摩尔比为至少0.01,优选在0.05至1的范围内,更优选0.1至0.5,所述半导体材料能够通过包括下面步骤的方法获得:
i)组合钛前体与锶盐溶液,
ii)将pH提高到使沉淀发生的值,
iii)用水清洗步骤ii)的沉淀,
iv)在500℃至800℃范围内的温度下煅烧所述沉淀,以形成所述半导体材料。
CN201380016819.0A 2012-04-26 2013-04-22 光催化剂、制备方法、光分解系统 Pending CN104245115A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12002966.5 2012-04-26
EP12002966.5A EP2656910A1 (en) 2012-04-26 2012-04-26 Photocatalyst, method for preparation, photolysis system
PCT/EP2013/001190 WO2013159894A1 (en) 2012-04-26 2013-04-22 Photocatalyst, method for preparation, photolysis system

Publications (1)

Publication Number Publication Date
CN104245115A true CN104245115A (zh) 2014-12-24

Family

ID=48289015

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380016819.0A Pending CN104245115A (zh) 2012-04-26 2013-04-22 光催化剂、制备方法、光分解系统

Country Status (4)

Country Link
US (1) US9339792B2 (zh)
EP (2) EP2656910A1 (zh)
CN (1) CN104245115A (zh)
WO (1) WO2013159894A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109817813A (zh) * 2017-11-21 2019-05-28 Tcl集团股份有限公司 一种复合金属氧化物及其制备方法、应用
CN112264093A (zh) * 2020-10-19 2021-01-26 浙江大学 微波诱导制备聚吡咯修饰TiO2包覆LaB6光解水制氢催化剂方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2656912A1 (en) * 2012-04-26 2013-10-30 Saudi Basic Industries Corporation Photocatalyst, method for preparation, photolysis system
WO2015049636A1 (en) 2013-10-02 2015-04-09 Sabic Global Technologies B.V. Photocatalyst for production of hydrogen by photocatalytic cleavage of water
EP3057906A1 (en) * 2013-10-17 2016-08-24 Saudi Basic Industries Corporation Photocatalytic hydrogen production from water, and photolysis system for the same
WO2015118424A1 (en) 2014-02-07 2015-08-13 Sabic Global Technologies B.V. Photocatalytic hydrogen production from water over ag-pd-au deposited on titanium dioxide materials
CN104307519B (zh) * 2014-09-30 2017-01-25 厦门大学 甲醛水溶液直接制氢金负载钛酸锶催化剂及其制备方法
US20160361713A1 (en) 2015-06-15 2016-12-15 Sabic Global Technologies B.V. Methods for producing oxygen and hydrogen from water using an iridium organometallic catalyst deposited on a titanium dioxide catalyst
JP6671062B2 (ja) * 2015-11-02 2020-03-25 公立大学法人山陽小野田市立山口東京理科大学 多孔質結晶性金属酸化物ナノ粒子の製造方法及び多孔質結晶性金属酸化物ナノ粒子

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0070712A2 (en) * 1981-07-20 1983-01-26 SIBIT S.p.A. Catalysts for photo-assisted oxidation-reduction reactions
US20030144140A1 (en) * 2001-08-08 2003-07-31 Shinya Matsuo Photocatalyst exhibiting catalytic activity even in visible light region
JP2003288955A (ja) * 2002-03-27 2003-10-10 Research Institute Of Innovative Technology For The Earth 太陽光を利用した水素の製造方法及び太陽光を利用した水素の製造装置
CN101522306A (zh) * 2006-09-27 2009-09-02 宇部兴产株式会社 二氧化硅基复合光催化剂及其制造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130017A (en) 1998-04-20 2000-10-10 Toda Kogyo Corporation Black non-magnetic composite particles for black toner and black toner using the same
WO2004085306A1 (ja) 2003-03-26 2004-10-07 Matsushita Electric Industrial Co. Ltd. 水の光分解装置および光分解方法
US7553464B2 (en) 2004-08-09 2009-06-30 General Motors Corporation Lanthanum tantalate photocatalysts
TWI423929B (zh) 2006-03-07 2014-01-21 Ishihara Sangyo Kaisha 氧化鈦及導電性氧化鈦與其之製造方法
US7682594B2 (en) 2006-06-21 2010-03-23 National Central University Method for producing photocatalyst
JP2011022187A (ja) 2009-07-13 2011-02-03 Konica Minolta Business Technologies Inc 静電荷像現像用トナー、フルカラートナーキット、画像形成方法
JP4594438B1 (ja) 2009-12-02 2010-12-08 シャープ株式会社 水素製造装置および水素製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0070712A2 (en) * 1981-07-20 1983-01-26 SIBIT S.p.A. Catalysts for photo-assisted oxidation-reduction reactions
US20030144140A1 (en) * 2001-08-08 2003-07-31 Shinya Matsuo Photocatalyst exhibiting catalytic activity even in visible light region
JP2003288955A (ja) * 2002-03-27 2003-10-10 Research Institute Of Innovative Technology For The Earth 太陽光を利用した水素の製造方法及び太陽光を利用した水素の製造装置
CN101522306A (zh) * 2006-09-27 2009-09-02 宇部兴产株式会社 二氧化硅基复合光催化剂及其制造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BEATA ZIELINSKA等: "Photocatalytic hydrogen generation over alkaline-earth titanates in the presence of electron donors", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 *
JUN ZHANG等: "Tailored TiO_2-SrTiO_3 Heterostructure Nanotube Arrays for Improved Photoelectrochemical Performance", 《AMERICAN CHEMICAL SOCIETY》 *
王连洲: "pH值对化学共沉淀法制备SrTiO_3粉料性能的影响", 《硅酸盐通报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109817813A (zh) * 2017-11-21 2019-05-28 Tcl集团股份有限公司 一种复合金属氧化物及其制备方法、应用
CN112264093A (zh) * 2020-10-19 2021-01-26 浙江大学 微波诱导制备聚吡咯修饰TiO2包覆LaB6光解水制氢催化剂方法

Also Published As

Publication number Publication date
EP2841196A1 (en) 2015-03-04
US20150098893A1 (en) 2015-04-09
US9339792B2 (en) 2016-05-17
WO2013159894A1 (en) 2013-10-31
EP2656910A1 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
CN104245115A (zh) 光催化剂、制备方法、光分解系统
Tee et al. Recent progress in energy‐driven water splitting
Song et al. Photothermocatalytic hydrogen evolution over Ni2P/TiO2 for full-spectrum solar energy conversion
Vaiano et al. Photocatalytic H2 production from glycerol aqueous solutions over fluorinated Pt-TiO2 with high {001} facet exposure
Manwar et al. Ceria supported Pt/PtO-nanostructures: Efficient photocatalyst for sacrificial donor assisted hydrogen generation under visible-NIR light irradiation
Noureldine et al. State-of-the-art Sn 2+-based ternary oxides as photocatalysts for water splitting: electronic structures and optoelectronic properties
CN105636901A (zh) 由水光催化氢生产和用于其的光解系统
Grewe et al. Amorphous and crystalline sodium tantalate composites for photocatalytic water splitting
Kashiwaya et al. Nickel oxide selectively deposited on the {101} facet of anatase TiO2 nanocrystal bipyramids for enhanced photocatalysis
CN104602808A (zh) 包含金-钯合金的光催化剂、制备方法、光解系统
Yuan et al. Engineering Cu/TiO2@ N-doped C interfaces derived from an atom-precise heterometallic CuII4TiIV5 cluster for efficient photocatalytic hydrogen evolution
CN104203399A (zh) 光催化剂、制备方法、光解体系
CN104588040A (zh) 一种光催化剂及其制备方法
Huang et al. A perspective on perovskite oxide semiconductor catalysts for gas phase photoreduction of carbon dioxide
Chen et al. Z-scheme Bi/AgBiS2/P25 for enhanced CO2 photoreduction to CH4 and CO with photo-themal synergy
Xiao et al. Brookite TiO2 Nanoparticles Decorated with Ag/MnO x Dual Cocatalysts for Remarkably Boosted Photocatalytic Performance of the CO2 Reduction Reaction
Kozlova et al. Semiconductor photocatalysts and mechanisms of carbon dioxide reduction and nitrogen fixation under UV and visible light
Li et al. Advances for CO2 photocatalytic reduction in porous Ti-based photocatalysts
Nadeem et al. The photoreaction of TiO2 and Au/TiO2 single crystal and powder with organic adsorbates
Chen et al. Highly efficient photocatalytic hydrogen production by platinum modified ferroelectric SrBi4Ti4O15
Gao et al. Improving the CO2 Hydrogenation Activity of Photocatalysts via the Synergy between Surface Frustrated Lewis Pairs and the CuPt Alloy
Ozawa et al. TiO x N y/TiO2 Photocatalyst for Hydrogen Evolution under Visible-Light Irradiation. I: Characterization of N in TiO x N y/TiO2 Photocatalyst
Han et al. Advances and Perspectives of Titanium-Based Nanocomposites for Energy Generation and Environmental Remediation Applications: A Review
Nakabayashi et al. In situ infrared analysis for the process of water photo-oxidation on monoclinic bismuth vanadate
Supphasrirongjaroen et al. Dependence of quenching process on the photocatalytic activity of solvothermal-derived TiO2 with various crystallite sizes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned
AD01 Patent right deemed abandoned

Effective date of abandoning: 20180410