CN104239681B - 基于脉冲激励响应信号互功率谱函数的主轴系统运行模态分析方法 - Google Patents

基于脉冲激励响应信号互功率谱函数的主轴系统运行模态分析方法 Download PDF

Info

Publication number
CN104239681B
CN104239681B CN201410341207.5A CN201410341207A CN104239681B CN 104239681 B CN104239681 B CN 104239681B CN 201410341207 A CN201410341207 A CN 201410341207A CN 104239681 B CN104239681 B CN 104239681B
Authority
CN
China
Prior art keywords
mrow
msub
msubsup
matrix
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410341207.5A
Other languages
English (en)
Other versions
CN104239681A (zh
Inventor
蔡东海
文东辉
王扬渝
金明生
朴钟宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heze Jianshu Intelligent Technology Co Ltd
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201410341207.5A priority Critical patent/CN104239681B/zh
Publication of CN104239681A publication Critical patent/CN104239681A/zh
Application granted granted Critical
Publication of CN104239681B publication Critical patent/CN104239681B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

一种基于脉冲激励响应信号互功率谱函数的主轴系统运行模态分析方法,包括以下步骤:1)在主轴系统的刀柄上分别选取激励点,利用钢锤在选取的激励点对主轴系统实施脉冲激励;2)采集参考点和响应点在脉冲激励后产生的响应信号;3)对采集信号进行带通滤波;4)求取参考点与响应点之间的互功率谱函数,并构建互功率谱函数不同采样时刻数据构成的矩阵方程;5)利用矩阵方程求解系数矩阵,得到系统极点;6)识别模态振型及模态参与因子矩阵;7)进行模态置信判据矩阵值计算,当模态置信判据值在预设合理区间以内,获得主轴系统模态参数。本发明能够实现快速计算、精确度高、具有较好的误差控制、能够减少试验强度和时间、大幅提高试验效率。

Description

基于脉冲激励响应信号互功率谱函数的主轴系统运行模态分 析方法
技术领域
本发明涉及运行模态分析技术领域,尤其是一种主轴系统运行模态分析方法。
背景技术
主轴系统的动态特性对机床的加工精度和切削效率有直接影响,准确掌握包含刀具-刀柄-主轴的主轴系统的模态参数是稳定性预测、加工参数优化等的重要依据。通常在刀尖点施加激励并拾取响应,获得刀尖点频响函数,再由试验模态分析获得系统模态参数。
然而由于刀具需不断更换,当主轴系统结构变化时,需要重新进行试验,增加了测试时间。从在役结构的响应信号中获取模态参数的运行模态分析方法,只需要利用响应数据便可进行参数辨识,其测试结果比实验模态分析方法更接近结构的真实动力学行为。
从结构在役状态的振动响应信号中提取模态参数的工作模态分析(OperationalModal Analysis,简称OMA)方法,识别的结构动态特性比试验模态分析(ExperimentalModal Analysis,简称EMA)更接近实际运行条件下结构的真实动力学行为,成为近年来模态分析领域发展活跃一个研究方向[1]。但现有研究多基于激励信号为白噪声的假设,而切削过程中存在由于主轴周期性旋转产生的谐波激励,给切削系统的OMA分析造成困难,为此研究学者们发展了从切削过程响应数据中滤除谐波成分的方法,如张义民等提出在工作模态分析时,利用概率密度函数识别响应信号中周期强迫响应的方法,实现谐波模态与固有模态的区分[2]等。
目前基于环境激励的运行模态分析方法通常假设激励信号为零均值白噪声信号。但是对于用于切削加工的主轴系统而言,切削振动信号中存在由于主轴周期性旋转产生的刀齿通过频率、切削力周期频率等复杂谐波,往往淹没包含动态特性信息的自由振动响应信号。虽然可以通过从切削响应数据中滤除谐波成分的方法,获得结构的自由振动响应来识别模态参数,但是由于谐波成分复杂,难以确定需要滤除的频率成分,并且滤波和重构过程易破坏信号结构,易造成识别误差,给主轴系统运行模态分析造成困难。为了在进行机床结构运行模态分析时,能获得较强的宽频带随机激励,准确识别切削系统模态参数,国内外学者提出通过切削特别设计的具有伪随机分布的突起或沟槽的工件表面,以获得较强的宽频带随机激励的方法;使用单齿刀具断续铣削狭窄工件以获得脉冲状切削力激励的方法;通过数控系统使主轴以随机转速旋转,用单刃面铣刀切削单齿工件,以模拟随机激励等。但是这些方法根据不同的机床以及感兴趣的频率范围,需要精心设计被切削工件,试验成本较高且费时费力。因此,面向数控装备主轴系统动态特性辨识的合理激励方式以及运行模态分析方法亟待研究。
发明内容
为了克服已有主轴系统模态分析方法的计算速度较慢、精确度较低、误差控制较差、试验效率较低的不足,本发明提供一种能够实现快速计算、精确度高、具有较好的误差控制、能够减少试验强度和时间、大幅提高试验效率的基于脉冲激励响应信号互功率谱函数的主轴系统运行模态分析方法。
本发明解决其技术问题所采用的技术方案是:
一种基于脉冲激励响应信号互功率谱函数的主轴系统运行模态分析方法,包括以下步骤:
1)在主轴系统的刀柄上分别选取激励点,利用钢锤在选取的激励点对主轴系统实施脉冲激励;
选取距离激励点较近且响应信号幅值较大的响应点作为参考点;
在所述参考点及反映主轴振型的各关键几何模型节点布置响应测点;
2)采集所述参考点和响应点在脉冲激励后产生的响应信号;
3)对采集信号进行带通滤波,其通频带为感兴趣的结构模态频率范围,对所有响应通道加汉宁窗;
4)求取参考点与响应点之间的互功率谱函数,并构建互功率谱函数不同采样时刻数据构成的矩阵方程;
5)利用所述矩阵方程求解系数矩阵,得到系统极点;
6)识别模态振型及模态参与因子矩阵;
7)进行模态置信判据矩阵值计算,如果模态置信判据值不佳,则选取不同采样时刻值,返回到步骤4)重新构建矩阵方程组,直至模态置信判据值在预设合理区间以内,获得主轴系统模态参数。
进一步,所述方法还包括以下步骤:8)模态动画绘制:得出各点每个方向的模态振型矢量,与测点布置几何模型对应,就得到描述各测点x、y、z方向上的相对振幅的模态振型动画。
本发明的有益效果主要表现在:1、能够实现快速计算、精确度高、具有较好的误差控制、能够减少试验强度和时间,大幅提高试验效率;2、突破了已有实验模态分析技术要求外加激励响应输入和对激励输入各种强制假设的缺陷,可实现在工作现场方便快速地对数控加工设备的主轴系统进行动态特性分析,而且可以得到有些在实验室激励条件下不能得到的振型;3、不需要测量外部激励,只测量响应数据,减少了设备需求,试验成本可以大大降低,为主轴系统运行模态分析理论和技术增添了一种新方法。
附图说明
图1为本发明流程示意图。
图2为主轴系统运行模态分析系统组成示意图。
图3为主轴系统测点及激励点布置示意图。
图4为模态参数识别稳态图。
图5为模态参数的MAC矩阵图。
图6为识别的主轴系统模态振型图,其中,(a)是一阶振型,(b)是二阶振型,(c)为三阶振型,(d)为四阶振型。
具体实施方式
下面结合附图对本发明作进一步描述。
参照图1~图6,一种基于脉冲激励响应信号互功率谱函数的主轴系统运行模态分析方法,包括以下步骤:
1)在主轴系统的刀柄上选取激励点,利用钢锤在选取的激励点对主轴系统实施脉冲激励;
选取距离激励点较近且响应信号幅值较大的响应点作为参考点;
在所述参考点及反映主轴振型的各关键几何模型节点布置响应测点;
2)采集所述参考点和响应点在脉冲激励后产生的响应信号;
3)对采集信号进行带通滤波,其通频带为感兴趣的结构模态频率范围,对所有响应通道加汉宁窗;
4)求取参考点与响应点之间的互功率谱函数,并构建互功率谱函数不同采样时刻数据构成的矩阵方程;
5)利用所述矩阵方程求解系数矩阵,得到系统极点;
6)识别模态振型及模态参与因子矩阵;
7)进行模态置信判据矩阵值计算,如果模态置信判据值不佳,则选取不同采样时刻值,返回到步骤4)重新构建矩阵方程组,直至模态置信判据值在预设合理区间以内,获得主轴系统模态参数。
进一步,所述方法还包括以下步骤:8)模态动画绘制:得出各点每个方向的模态振型矢量,与测点布置几何模型对应,就得到描述各测点x、y、z方向上的相对振幅的模态振型动画。
参见图2,本发明的主轴运行模态分析系统,包括主轴1、刀柄2、加速度传感器3、刀具4、钢锤5、数据采集前端6、移动工作站7。利用LMS SCADAIII系统,用加速度传感器3测试主轴系统各测点的振动加速度-时间数据,各加速度传感器3分别与数据采集前端6电连接,数据采集前端6与移动工作站7电连接,。加速度传感器3采集到多点脉冲激励下的响应信号后,将其传入数据采集前端6,再传到移动工作站7,所采集的振动响应信号数据通过数据采集前端导入运行模态分析软件模块进行分析处理,(参见图2),识别模态参数,具体操作步骤如下:
1)选择激励点
为了识别主轴系统的模态参数,应尽可能对数控装备输入一个宽频随机激励信号。脉冲激励的自功率谱与白噪声信号相近,即其谱密度在较低频率段接近于平直,是较理想的激励信号。因此,可以利用钢锤对主轴系统施加脉冲激励,以激发主轴系统的各阶模态。
在本发明所述的技术方案中,“脉冲激励”是指在主轴系统刀柄上选取激励点,以保证激励能量均匀输入至主轴系统各部件,充分激励结构的模态振型,提高采集信号的信噪比。参见图3,以刀具上下运动方向为z轴,以加工进给运动方向作为x轴建立笛卡尔坐标系。在主轴及球头铣刀上共布置19个测点,其中主轴和刀柄上各布置8个测点,每90度布置一个测点,球头铣刀上布置3个测点。由于多点激励时能量在系统中分布较均匀,既能充分激励结构的各阶模态,又可改善单点激励时的非线性和信噪比低等现象,达到对主轴系统的有效激励,且对于密集模态和重根情况有很强的识别能力,降低模态丢失的可能性,因此选择刀柄上的8号点进行脉冲激励。
2)选择参考点和响应点,测取结构振动响应
在本实施例中,在待测主轴系统选取刀柄上8号点作为参考点和18个响应点,同时在参考点和响应点上分别固定加速度传感器3。通过加速度传感器3采集脉冲激励下参考点及各响应点的振动加速度。
3)求取互相关函数,并将其表示为复模态形式
互相关函数表示的是两个时间序列之间和同一个时间序列在任意两个不同时刻的取值之间的相关程度,即互相关函数是描述随机信号x(t),y(t)在任意两个不同时刻t1,t2的取值之间的相关程度。按照式(1)计算结构响应点j和参考点i之间的互相关函数
式中,Rij(τ)为响应点j和参考点i之间的互相关函数,T为测试时间,xi(t)为参考点的加速度响应信号,xj(t)为响应点的加速度响应信号,τ为时间间隔。
对结构响应点j和参考点i之间的互相关函数Rij(τ)按照时间间隔Δt采样,并将其表示为复模态形式
式中Crij为与第r阶模态相关的常系数;N为待识别模态阶数;Δt为采样时间间隔;λr为系统极点。
将系统极点λr表达为式中ξr为第r阶模态阻尼比;ωr为第r阶模态无阻尼固有频率。
4)求取响应信号互功率谱函数,构建由不同采样时刻的互功率谱函数值构成的矩阵方程。
将Rij(kΔt)作周期延拓,并进行离散傅里叶变换(DFT),得到响应点j和参考点i之间单边互功率谱密度函数:
在不同采样起始时刻的值建立互功率谱函数矩阵方程:
式中a0,a1,…a2N为系数;Sij(t0),Sij(t1)...Sij(t4N)为响应点j和参考点i之间互功率谱函数在t0,t1,…t4N时刻的取值。利用该方程组的协方差矩阵构成压缩方程,得到超定方程的最小二乘解,得到系数a0,a1,…a2N的取值。
5)识别系统极点
为识别系统极点,令构造下列方程:
式中ak为系数,上式左边由2N项相加而成,因此方程组特征解的个数至少应等于2N,因此k=0,1,2…2N。上式如果成立,则系数a0,a1,…a2N满足下列有理分式正交多项式即Poroney多项式方程,且该多项式以为特征解。取a2N=1,得到:
将估计出的系数矩阵a0,a1,…a2N代入式(8),求得系统的极点。
6)识别模态振型及模态参与因子矩阵
将互功率谱函数矩阵表示为系统各阶模态振型和模态参与因子矩阵的部分分式之和,得到
式中,Vr为模态振型矩阵,Lr为模态参与因子矩阵,表示在系统响应中各阶模态的贡献量,为模态振型矩阵的复共轭矩阵,为模态参预因子矩阵的复共轭矩阵,为系统极点的共轭复数;
将识别的系统极点代入式(9),求得由各阶模态振型矢量Ψr构成的模态振型矩阵Vr及其模态参与因子矩阵Lr,获得系统模态参数的全局估计。
在本实施例中,采用最小二乘复频域法(LSFD方法)考察不同计算阶次下各阶模态对应的固有频率、阻尼比及模态振型的计算误差。为了实现当计算阶次增加时最小二乘误差能快速收敛,设定识别时的频率误差为2%,阻尼比误差为5%,振型误差为2%。如果增加计算阶次后,得到的极点和留数基本不变,则在该频率处标注符号“S”,如果只有频率不变,则注上“f”,如果只有阻尼比不变,则标注“d”,只有留数不变则注上“V”,得到如图4所示的最小二乘误差稳态图,选取在所有计算阶次上标注“S”点最多的N列所对应的频率为系统模态频率,并由此计算出系统阻尼比及模态振型。
7)模态验证和分析:主要完成运行模态分析结果的正确性检验。利用模态置信判据判断模态估计的准确性。其中Ψr为第r阶模态振型矢量;Ψs为第s阶模态振型矢量;Ψr *T为第r阶模态振型矢量的共轭转置;Ψs *T为第s阶模态振型矢量的共轭转置。通过模态置信判据MAC矩阵可判断模态参数拾取结果的正确性,从而判断模态估计的准确性。如果两模态振型之间存在线性关系,其MAC值接近于1,如果它们是彼此无关的,则MAC值接近于零。经过模态置信判据矩阵判断识别结果的正确性,如果各阶模态间的MAC值均在合理区间内,则识别的各阶模态为真实模态,识别结果准确,结束整个运算过程,利用该方法识别的模态参数的MAC矩阵如图5所示。如果存在某两阶模态间的MAC值不在合理区间内,则从步骤(4)开始,选择不同采样时刻数据重新计算直至符合要求为止。这样确定了各阶模态参数值,基于多点脉冲激励的运行模态分析核心计算过程结束。
8)模态动画绘制:得出各点每个方向的模态振型矢量,与测点布置几何模型对应,就得到描述各测点x、y、z方向上的相对振幅的模态振型动画,从而完成整个运行模态分析全过程。识别的主轴系统前四阶模态振型图参见图6。
所述步骤2)中参考点和响应点的振动加速度由加速度传感器3测量,由数据采集前端6完成振动加速度的记录。
所述步骤7)中,利用模态置信判据进行识别结果的正确性检验。
上所述仅是本发明的较佳实施方式,故凡依本发明专利申请范围所述的构造、特征及原理所做的等效变化或修饰,均包括于本发明专利申请范围内。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (4)

1.一种基于脉冲激励响应信号互功率谱函数的主轴系统运行模态分析方法,其特征在于:包括以下步骤:
1)在主轴系统的刀柄上选取激励点,利用钢锤在选取的激励点对主轴系统实施脉冲激励;
选取距离激励点较近且响应信号幅值较大的响应点作为参考点;
在所述参考点及反映主轴振型的各关键几何模型节点布置响应测点;
2)采集所述参考点和响应点在脉冲激励后产生的响应信号;
3)对采集信号进行带通滤波,其通频带为感兴趣的结构模态频率范围,对所有响应通道加汉宁窗;
4)求取参考点与响应点之间的互功率谱函数,并构建互功率谱函数不同采样时刻数据构成的矩阵方程;
5)利用所述矩阵方程求解系数矩阵,得到系统极点;
6)识别模态振型及模态参与因子矩阵;
7)进行模态置信判据矩阵值计算,如果模态置信判据值不佳,则选取不同采样时刻值,返回到步骤4)重新构建矩阵方程组,直至模态置信判据值在预设合理区间以内,获得主轴系统模态参数;
8)模态动画绘制:得出各点每个方向的模态振型矢量,与测点布置几何模型对应,就得到描述各测点x、y、z方向上的相对振幅的模态振型动画;
所述步骤4)中,按照式(1)计算结构响应点j和参考点i之间的互相关函数:
<mrow> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;tau;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <mi>o</mi> <mi>T</mi> </msubsup> <msub> <mi>x</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>x</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mi>&amp;tau;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;tau;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
式中,Rij(τ)为响应点j和参考点i之间的互相关函数,T为测试时间,xi(t)为参考点的加速度响应信号,xj(t)为响应点的加速度响应信号,τ为时间间隔;
对结构响应点j和参考点i之间的互相关函数Rij(τ)按照时间间隔Δt采样,并将其表示为复模态形式
<mrow> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>C</mi> <mrow> <mi>r</mi> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msup> <mi>e</mi> <mrow> <msub> <mi>&amp;lambda;</mi> <mi>r</mi> </msub> <mi>k</mi> <mi>&amp;Delta;</mi> <mi>t</mi> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
式中Crij为与第r阶模态相关的常系数;N为待识别模态阶数;Δt为采样时间间隔;λr为系统极点;
将系统极点λr表达为式中ξr为第r阶模态阻尼比;ωr为第r阶模态无阻尼固有频率
将Rij(kΔt)作周期延拓,并进行离散傅里叶变换,得到响应点j和参考点i之间单边互功率谱密度函数:
<mrow> <msubsup> <mi>S</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mo>+</mo> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>N</mi> </mrow> </msubsup> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </msubsup> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mo>(</mo> <mo>-</mo> <mi>j</mi> <mi>&amp;pi;</mi> <mi>k</mi> <mi>r</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
在不同采样起始时刻的值建立互功率谱函数矩阵方程:
式中a0,a1,…a2N为系数;Sij(t0),Sij(t1)…Sij(t4N)为响应点j和参考点i之间互功率谱函数在t0,t1,…t4N时刻的取值,利用该方程组的协方差矩阵构成压缩方程,得到超定方程的最小二乘解,得到系数a0,a1,…a2N的取值。
2.如权利要求1所述的基于脉冲激励响应信号互功率谱函数的主轴系统运行模态分析方法,其特征在于:所述步骤5)中,令构造下列方程:
<mrow> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>N</mi> </mrow> </msubsup> <msub> <mi>a</mi> <mi>k</mi> </msub> <msubsup> <mi>S</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mo>+</mo> </msubsup> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mi>&amp;Delta;</mi> <mi>t</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>N</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mrow> <msub> <mi>a</mi> <mi>k</mi> </msub> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </msubsup> <msub> <mi>C</mi> <mrow> <mi>r</mi> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msubsup> <mi>V</mi> <mi>r</mi> <mi>k</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </msubsup> <mrow> <mo>(</mo> <mrow> <msub> <mi>C</mi> <mrow> <mi>r</mi> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>N</mi> </mrow> </msubsup> <msub> <mi>a</mi> <mi>k</mi> </msub> <msubsup> <mi>V</mi> <mi>r</mi> <mi>k</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
式中ak为系数,上式左边由2N项相加而成,因此方程组特征解的个数至少应等于2N,因此k=0,1,2…2N,上式如果成立,则系数a0,a1,…a2N满足下列有理分式正交多项式即Poroney多项式方程,且该多项式以为特征解,取a2N=1,得到:
<mrow> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <msubsup> <mi>V</mi> <mi>r</mi> <mn>1</mn> </msubsup> <mo>+</mo> <mo>...</mo> <mo>+</mo> <msub> <mi>a</mi> <mrow> <mn>2</mn> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>V</mi> <mi>r</mi> <mrow> <mn>2</mn> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>V</mi> <mi>r</mi> <mrow> <mn>2</mn> <mi>N</mi> </mrow> </msubsup> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
将估计出的系数矩阵a0,a1,…a2N代入式(8),求得系统的极点。
3.如权利要求2所述的基于脉冲激励响应信号互功率谱函数的主轴系统运行模态分析方法,其特征在于:所述步骤6)中,将互功率谱函数矩阵表示为系统各阶模态振型和模态参与因子矩阵的部分分式之和,得到
<mrow> <mo>&amp;lsqb;</mo> <msubsup> <mi>S</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mo>+</mo> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>=</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <msub> <mi>&amp;lambda;</mi> <mi>r</mi> </msub> <mi>k</mi> <mi>&amp;Delta;</mi> <mi>t</mi> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mo>(</mo> <msubsup> <mi>V</mi> <mi>r</mi> <mo>*</mo> </msubsup> <mo>)</mo> <msup> <mi>e</mi> <mrow> <msubsup> <mi>&amp;lambda;</mi> <mi>r</mi> <mo>*</mo> </msubsup> <mi>k</mi> <mi>&amp;Delta;</mi> <mi>t</mi> </mrow> </msup> <mo>(</mo> <msubsup> <mi>L</mi> <mi>r</mi> <mo>*</mo> </msubsup> <mo>)</mo> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
式中,Vr为模态振型矩阵,Lr为模态参与因子矩阵,表示在系统响应中各阶模态的贡献量,为模态振型矩阵的复共轭矩阵,为模态参预因子矩阵的复共轭矩阵,为系统极点的共轭复数;
将识别的系统极点代入式(9),求得由各阶模态振型矢量Ψr构成的模态振型矩阵Vr及其模态参与因子矩阵Lr,获得系统模态参数的全局估计。
4.如权利要求3所述的基于脉冲激励响应信号互功率谱函数的主轴系统运行模态分析方法,其特征在于:所述步骤7)中,模态置信判据矩阵值为:
<mrow> <msub> <mi>MAC</mi> <mrow> <mi>r</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <msup> <msub> <mi>&amp;Psi;</mi> <mi>r</mi> </msub> <mrow> <mo>*</mo> <mi>T</mi> </mrow> </msup> <msub> <mi>&amp;Psi;</mi> <mi>s</mi> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> <mrow> <mrow> <mo>(</mo> <mrow> <msup> <msub> <mi>&amp;Psi;</mi> <mi>r</mi> </msub> <mrow> <mo>*</mo> <mi>T</mi> </mrow> </msup> <msub> <mi>&amp;Psi;</mi> <mi>r</mi> </msub> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <msub> <mi>&amp;Psi;</mi> <mi>s</mi> </msub> <mrow> <mo>*</mo> <mi>T</mi> </mrow> </msup> <msub> <mi>&amp;Psi;</mi> <mi>s</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
其中,Ψr为第r阶模态振型矢量;Ψs为第s阶模态振型矢量;Ψr *T为第r阶模态振型矢量的共轭转置;Ψs *T为第s阶模态振型矢量的共轭转置。
CN201410341207.5A 2014-07-17 2014-07-17 基于脉冲激励响应信号互功率谱函数的主轴系统运行模态分析方法 Active CN104239681B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410341207.5A CN104239681B (zh) 2014-07-17 2014-07-17 基于脉冲激励响应信号互功率谱函数的主轴系统运行模态分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410341207.5A CN104239681B (zh) 2014-07-17 2014-07-17 基于脉冲激励响应信号互功率谱函数的主轴系统运行模态分析方法

Publications (2)

Publication Number Publication Date
CN104239681A CN104239681A (zh) 2014-12-24
CN104239681B true CN104239681B (zh) 2018-04-20

Family

ID=52227731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410341207.5A Active CN104239681B (zh) 2014-07-17 2014-07-17 基于脉冲激励响应信号互功率谱函数的主轴系统运行模态分析方法

Country Status (1)

Country Link
CN (1) CN104239681B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106482827B (zh) * 2016-11-11 2018-12-25 北京航空航天大学 基于互功率谱函数模态参数识别的电子产品振动dlp方法
CN106980722B (zh) * 2017-03-22 2020-12-25 南京航空航天大学 一种脉冲响应中谐波成分的检测和去除方法
DE102017207979B4 (de) * 2017-05-11 2022-05-25 Hiwin Technologies Corp. Verfahren zum Schätzen einer Abweichung einer an eine lineare Führungsbahn angelegten Vorspannung
CN107478417B (zh) * 2017-06-23 2019-07-05 昆明理工大学 一种基于频率校正和互相关原理的往复运动周期提取方法
CN107389340A (zh) * 2017-07-20 2017-11-24 哈尔滨理工大学 高速主轴系统动力学特性非接触测试装置及测试方法
CN108469784A (zh) * 2018-03-07 2018-08-31 上海理工大学 适用于数控机床加工状态的模态参数的测量装置及方法
CN110207987B (zh) * 2019-05-13 2020-12-15 中国民航大学 一种滚动轴承性能退化衰退节点的判定方法
CN111024214B (zh) * 2019-12-25 2020-11-24 华中科技大学 一种实时获取声共振混合机运行过程中固有频率的方法
CN110988138B (zh) * 2020-01-02 2022-03-29 中车青岛四方机车车辆股份有限公司 一种焊接件质量检测装置及方法
CN112506058A (zh) * 2020-12-03 2021-03-16 华侨大学 一种线性时变结构的工作模态参数识别方法及系统
CN112926384B (zh) * 2021-01-15 2022-07-15 厦门大学 一种基于功率谱传递比和支持向量机的模态自动识别方法
CN113050596A (zh) * 2021-03-12 2021-06-29 北京强度环境研究所 一种随机激励下空气舵模态参数准确获取方法
CN113295087B (zh) * 2021-05-26 2024-04-30 合肥工业大学 基于球面三维编码的球铰链三轴回转角度测量方法
CN113386139B (zh) * 2021-07-01 2022-09-20 昆明理工大学 一种基于k-s检验的机器人运行状态判断方法
CN113761470A (zh) * 2021-09-01 2021-12-07 国家电投集团河南电力有限公司开封发电分公司 基于有限参考点的结构部件全息振型测试方法
CN113933007B (zh) * 2021-10-14 2024-04-26 沈阳航空航天大学 一种大型挠性结构参数辨识中最优激励点选取方法
CN114646462B (zh) * 2022-05-19 2022-08-23 坎德拉(深圳)新能源科技有限公司 一种磁悬浮储能飞轮转子的工作模态测试装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852681A (zh) * 2010-03-31 2010-10-06 桂林电子科技大学 掘进机主轴裂纹识别的方法
CN102620921A (zh) * 2012-03-16 2012-08-01 北京工业大学 可调拉刀力的双面锁紧刀柄-主轴动态性能实验装置
CN103196643A (zh) * 2013-03-04 2013-07-10 同济大学 主轴-刀柄结合面非线性动态特性参数识别方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852681A (zh) * 2010-03-31 2010-10-06 桂林电子科技大学 掘进机主轴裂纹识别的方法
CN102620921A (zh) * 2012-03-16 2012-08-01 北京工业大学 可调拉刀力的双面锁紧刀柄-主轴动态性能实验装置
CN103196643A (zh) * 2013-03-04 2013-07-10 同济大学 主轴-刀柄结合面非线性动态特性参数识别方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FWV-6A加工中心大件的有限元分析和模态测试;彭艳华等;《机械强度》;20131231;第35卷(第1期);第105-110页 *
多硬度拼接淬硬钢铣削动力学研究;王扬渝;《中国博士学位论文全文数据库(电子期刊)工程科技Ⅰ辑》;20140630;第2014年卷(第6期);第B022-50页 *

Also Published As

Publication number Publication date
CN104239681A (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
CN104239681B (zh) 基于脉冲激励响应信号互功率谱函数的主轴系统运行模态分析方法
CN104142219B (zh) 一种基于多点脉冲激励的主轴系统运行模态分析方法
CN104132791B (zh) 一种基于脉冲激励的运行模态分析实验方法
CN104133950B (zh) 一种悬臂梁运行模态分析实验方法及装置
CN103575523B (zh) 基于FastICA-谱峭度-包络谱分析的旋转机械故障诊断方法
CN106338385B (zh) 一种基于奇异谱分解的旋转机械故障诊断方法
CN106353623B (zh) 基于随机响应信号的电力系统低频振荡模式在线辨识方法
CN104165742B (zh) 一种基于互谱函数的运行模态分析实验方法及装置
CN102063375B (zh) 一种基于混合测试的软件可靠性评估方法及其装置
CN102721462B (zh) 旋转机械启停车过程波德图/奈奎斯特图的快速计算方法
CN107122802A (zh) 一种基于改进小波神经网络的滚动轴承的故障检测方法
CN106874950A (zh) 一种暂态电能质量录波数据的识别分类方法
CN103645248B (zh) 一种基于超声相速度的高温合金晶粒度评价方法
CN106502199A (zh) 一种机械装备结构运行状态下的频响函数识别方法
CN108594143A (zh) 一种永磁同步电机退磁故障诊断方法
CN104217112A (zh) 一种基于多类型信号的电力系统低频振荡分析方法
CN103178518B (zh) 根据轨迹及轨迹灵敏度定量评价电力系统暂态稳定性方法
CN116429902A (zh) 一种风机叶片多裂纹声发射监测方法及系统
CN106326530A (zh) 一种基于右矩阵分式模型的时变结构模态参数辨识方法
CN107679013A (zh) 基于eemd‑hht与时频重排结合的转速曲线估计方法
CN111626167A (zh) 基于叶端定时和改进多重信号分类的叶片裂纹辨识方法
CN110940933A (zh) 一种用于测量陡脉冲上升沿起始时刻的综合计算方法
CN105259795A (zh) 用于动力电池模拟器的内部阻抗参数扩展方法
CN104468251B (zh) 用于自动进行网络设备高低温和长时间循环测试的系统及方法
CN104898415A (zh) 一种基于低通滤波的发电机组转动惯量参数的在线辨识方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201118

Address after: 11th floor, donglecheng international, Shuguang Road, Chengguan Street, Dongming County, Heze City, Shandong Province

Patentee after: Heze Jianshu Intelligent Technology Co., Ltd

Address before: The city Zhaohui six districts Chao Wang Road Hangzhou City, Zhejiang province 310014 18

Patentee before: ZHEJIANG University OF TECHNOLOGY