CN104193947A - 阻燃导热聚氨酯复合材料及其制备方法 - Google Patents

阻燃导热聚氨酯复合材料及其制备方法 Download PDF

Info

Publication number
CN104193947A
CN104193947A CN201410403142.2A CN201410403142A CN104193947A CN 104193947 A CN104193947 A CN 104193947A CN 201410403142 A CN201410403142 A CN 201410403142A CN 104193947 A CN104193947 A CN 104193947A
Authority
CN
China
Prior art keywords
filler
flame
heat
polyurethane material
compound polyurethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410403142.2A
Other languages
English (en)
Other versions
CN104193947B (zh
Inventor
刘述梅
李志光
赵建青
姜蕾
刘运春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201410403142.2A priority Critical patent/CN104193947B/zh
Publication of CN104193947A publication Critical patent/CN104193947A/zh
Application granted granted Critical
Publication of CN104193947B publication Critical patent/CN104193947B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/4808Mixtures of two or more polyetherdiols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明公开了阻燃导热聚氨酯复合材料及其制备方法。按质量百分数计,其原料配方由如下组分组成:六亚甲基二异氰酸酯三聚体19.3%~23.8%、聚醚二元醇3.9%~4.9%、蔗糖聚醚多元醇3.9%~4.9%、扩链剂2.6%~3.2%、催化剂0.1%~0.2%、改性导热填料41.0%~52.5%和改性阻燃填料17.7%~22.0%;本发明的阻燃导热聚氨酯复合材料的垂直燃烧测试通过UL94V-0级,极限氧指数在50%以上,阻燃性能优异;热导率达1.3W/m·K时,拉伸强度能达到20.3MPa,弯曲强度能达到60.8MPa,力学性能良好。

Description

阻燃导热聚氨酯复合材料及其制备方法
技术领域
本发明涉及聚氨酯复合材料,具体涉及一种阻燃导热聚氨酯复合材料及其制备方法;属于高分子材料改性技术领域。
发明背景
聚氨酯具有强度较高、硬度范围宽、耐磨性优异、耐水性好、耐疲劳性好、耐油耐溶剂性优良等优点,通过调节原料及其用量,聚氨酯性能变化范围大,可以替代金属或者陶瓷制备电子电气的组件和外壳。电子产品在运行时产生热量,热量不及时扩散会严重影响电子产品的寿命,这就对材料的导热性能提出要求,另外,电子产品对材料的电绝缘性和阻燃性能同样有一定的要求。聚氨酯热导率低、不阻燃,通过添加大量电绝缘导热填料和无卤阻燃填料后,其导热性能可大幅度提高,同时具有较高的阻燃性能和电绝缘性能,可以一定程度地满足实际应用需要。但是,填料的大量填充往往会引起聚氨酯加工性能和力学性能变差,因此,强度高、无卤阻燃、导热性好的聚氨酯复合材料制备意义重大。
中国发明专利申请CN102585479A采用三聚氰胺氰尿酸盐和有机次膦酸盐为阻燃剂,制备了无卤阻燃聚氨酯弹性体,两者用量分别为12%(质量百分数,下同)和8%时,复合材料能通过UL-94V-0级。中国发明专利申请CN102295835A采用氢氧化镁和磷酸酯为阻燃剂制备了无卤阻燃聚氨酯弹性体,两者用量分别为10%和20%时,复合材料能通过UL-94V-0级。以上两个发明专利采用有机磷次膦酸盐或磷酸酯复配无机阻燃填料阻燃,虽然在较低的填充量下复合材料的阻燃效果好,但是均存在使用过程中有机磷析出,导致复合材料的阻燃性能和力学性能降低的问题。中国发明专利申请CN103524698A采用二乙基次膦酸盐和N,N-双(2-羟乙基)胺基亚甲基膦酸二乙酯为阻燃剂制备了一种无卤阻燃导热的聚氨酯灌封胶,两者总用量为15.8%,另加25%的氧化铝和16.7%的氮化铝为导热填料,所得复合材料通过UL-94V0级,但其热导率只有0.63W/m·K,拉伸强度只有6.5MPa,而为了提高热导率而增加导热填料的用量又将导致更差的力学性能。
中国发明专利申请CN103351565A公开了一种耐磨导热聚氨酯轴承的制备方法,采用Kvelar纤维和KH-550改性的石墨烯作为填料,填充聚氨酯-甲基丙烯酸甲酯,其中甲基丙烯酸甲酯的用量为8.8%,Kvelar纤维的用量为0.44%,石墨烯的用量为2.6%,复合材料的热导率达到3.0W/m·K、拉伸强度达到42.0MPa。虽然该发明专利以较低的Kvelar纤维和石墨烯填充量获得较高的热导率,但是两者的价格昂贵,且没有赋予复合材料阻燃性能,实际应用价值较低。
综上所述,同时具备阻燃、导热且力学性能优良的聚氨酯复合材料几乎没有公开报道,本领域迫切需要开发一种具有导热、阻燃和电绝缘性能且良好力学性能的聚氨酯复合材料。
发明内容
针对现有技术的不足,本发明提供一种阻燃导热聚氨酯复合材料,该材料同时具有阻燃性能优异、导热性能好和力学性能良好的特点,且材料不含卤素和有机填料,对环境友好。
本发明的另一目的在于提供上述阻燃导热聚氨酯复合材料的制备方法,其工艺简单,操作性强。
本发明采用氢氧化铝作为阻燃填料,氧化镁和/或氮化硼作为导热填料,由于氢氧化铝的热导率为1.5W/m·K,比聚氨酯的热导率0.2~0.3W/m·K高,其加入可一定程度地提高聚氨酯的热导率,且氢氧化铝和氧化镁、氮化硼在微观上具有不同的形状,它们的复配能减少填料间的空隙,得到最大堆积密度,有利于导热性能的提高,因此,氢氧化铝在阻燃的同时有一定的导热协效作用,41.0%~52.5%的导热填料可使聚氨酯的热导率达到1.0W/m·K以上;另一方面,氧化镁和氮化硼是不可燃材料,在聚氨酯中具有稀释聚合物浓度、加快热量扩散的作用,对阻燃也有一定的帮助。
本发明采用聚氧化丙烯三醇磷酸酯作为偶联剂对导热填料和阻燃填料改性,该偶联剂链端的羟基能与聚氨酯的异氰酸酯基反应,结构中含有的聚氧化丙烯二醇链段,不仅能与聚氨酯的软段发生链缠结作用,而且链段上的大量醚键能与聚氨酯软段上的醚键以及氨基甲酸酯键产生氢键作用,改性导热填料和阻燃填料与聚氨酯不仅相容性好,而且结合力强,在聚氨酯中的填充量大,使其获得优异的阻燃性能和导热性能,在高填充量下复合材料的力学性能良好,且偶联剂中含有阻燃的磷元素,有助于提高复合材料的阻燃性能,因此,约20%的改性氢氧化铝能使复合材料获得高阻燃性能,通过UL-94V-0级,远远低于单独氢氧化铝阻燃所需要的约60%的用量。
为了上述发明目的,本发明采用如下技术方案:
一种阻燃导热聚氨酯复合材料,按质量百分数计,其原料配方由如下组分组成:
其中所述聚醚二元醇选自聚氧化丙烯二醇和聚四氢呋喃二醇中的一种或两种;
所述扩链剂选自乙二醇、丙三醇和三乙醇胺中的一种或多种;
所述催化剂选自N,N-二甲基乙醇胺、三乙醇胺和三乙胺中的一种或多种;
所述改性导热填料或改性阻燃填料是由以下步骤制备得到:
1)、将导热填料或阻燃填料加入到反应器中,加入去离子水搅拌分散均匀;
2)、将聚氧化丙烯三醇磷酸酯溶于无水乙醇中,聚氧化丙烯三醇磷酸酯的加入量为导热填料或阻燃填料质量用量的1.5%~2.5%;
3)、将步骤2)中的乙醇溶液加入到反应器中,温度升至85~95℃,回流反应4~6小时,反应结束后,离心分离,所得的填料用去离子水洗涤,真空干燥,过筛后备用;
所述导热填料选自氧化镁和氮化硼中的一种或两种,其中氮化硼为片状结构填料,长宽比为2~10:1,长度为10μm~50μm;氧化镁为无定形或片状结构,无定形填料的粒径为3μm~8μm,片状填料的长宽比为2~5:1,长度为5μm~20μm;
所述阻燃填料选自氢氧化铝,粒径为1μm~5μm。
优选地,所述六亚甲基二异氰酸酯三聚体的异氰酸酯基的质量百分数为20%~23%,粘度为1500~4000mPa·s,固含量为100%。
所述聚醚二元醇的分子量为900~1100,羟值为100~120mg KOH/g,粘度为100~400mPa·s。
所述蔗糖聚醚多元醇的起始剂为蔗糖,分子量为300~800,羟值为350~650mg KOH/g,官能度为3~8,粘度为2000~4000mPa·s。
所述加入去离子水搅拌分散均匀是加入去离子水搅拌分散20~30分钟,控制去离子水与填料的质量比为1.5~2:1。
所述无水乙醇与聚氧化丙烯三醇磷酸酯质量比为20~50:1。
离心分离所得的填料用去离子水洗涤2~4次;所述真空干燥的温度100℃~110℃,真空干燥的时间为6小时~8小时;所述过筛为过200目筛。
所述的聚氧化丙烯三醇磷酸酯是由以下方法制备得到:将聚氧化丙烯三醇和磷酸加入反应瓶中,磁力搅拌,控制磷酸/聚氧化丙烯三醇的摩尔比为3.15~3.45,加热升温并通N2保护,温度升至80~90℃,回流反应3~4小时,然后升温至100~110℃,在磁力搅拌下抽真空直至无气泡为止,得到聚氧化丙烯三醇磷酸酯。
所述的阻燃导热聚氨酯复合材料的制备方法,包括以下步骤:
a、将聚醚二元醇和蔗糖聚醚多元醇分别在磁力搅拌下于100℃~120℃抽真空除水1~2小时,冷却后置于干燥器中备用;在所述扩链剂和催化剂中加入活性的4分子筛,置于干燥器中静置7天后备用;
b、按照配方比例,加入聚醚二元醇和蔗糖聚醚多元醇、扩链剂、催化剂、改性导热填料和改性阻燃填料、六亚甲基二异氰酸酯三聚体;
c、步骤b所得物料使用行星式搅拌机按设定的程序高速搅拌并脱除气泡,物料充模后用冷压机在80~120MPa的压力下压模30~40分钟,然后于75~85℃下常压固化18~24小时,得到阻燃导热聚氨酯复合材料;所述设定的程序为:第一阶段控制转速为600~800r/min,时间为30~60秒,常压;第二阶段控制转速为1000~1200r/min,时间为120~180秒,常压;第三阶段控制转速为800~1000r/min,时间为30~60秒,常压。
所述六亚甲基二异氰酸酯三聚体的加入量优选满足-NCO/-OH=1.1,-NCO为异氰酸酯基的摩尔数,-OH为聚醚多元醇和扩链剂的羟基的摩尔数。
本发明与现有技术相比,优势在于:
(1)、本发明的阻燃导热聚氨酯复合材料采用约20%的改性阻燃填料,3.2mm样条的垂直燃烧测试通过UL94V-0级,极限氧指数在50%以上,阻燃性能优异;
(2)、本发明的阻燃导热聚氨酯复合材料的热导率为1.3W/m·K时,拉伸强度能达到20.3MPa,弯曲强度能达到60.8MPa,力学性能良好,且垂直燃烧测试通过UL94V-0级。
具体实施方式
以下结合具体实施例来对本发明作进一步说明,但本发明所要求保护的范围并不局限于实施例所表述的范围。
实施例所用聚四氢呋喃二醇为台湾大连化学工业股份有限公司产品,牌号为PTMG-1000,羟值为100~120mg KOH/g,粘度为200~400mPa·s;聚氧化丙烯二醇为山东蓝星东大化工有限责任公司产品,牌号为DL-1000D,羟值为108~115mg KOH/g,粘度为120~180mPa·s;聚氧化丙烯三醇为山东蓝星东大化工有限责任公司产品,牌号为MN-3050DF,羟值为54~58mg KOH/g,粘度为400~700mPa·s;蔗糖聚醚多元醇为连云港迈佳化工有限公司产品,牌号为MA-4110,羟值为410~450mg KOH/g,粘度为2500~3000mPa·s,官能度为3~8;六亚甲基二异氰酸酯三聚体为日本NPU产品,牌号为HX,固含量为100%,异氰酸酯基含量为21.6~22.1%,粘度为1400~3400mPa·s;氢氧化铝为佛山市天信多元环保材料有限公司产品,牌号为AH-1,粒径为1μm~5μm;氮化硼为片状结构填料,长宽比为2~10:1,长度为10μm~50μm;氧化镁A1为无定形填料,粒径为3μm~8μm,氧化镁A2为片状填料,长宽比为2~5:1,长度为5μm~20μm;其余原料为化学纯试剂。
实施例1:
聚醚二元醇和蔗糖聚醚多元醇分别在磁力搅拌的作用下于110℃抽真空除水1小时;在三乙醇胺和N,N-二甲基乙醇胺中加入活性的4分子筛,并静置7天。
将78.9g聚氧化丙烯三醇(牌号为MN-3050DF)和10.0g磷酸加入250ml反应瓶中,磁力搅拌,加热升温并通N2保护,温度升至85℃,回流反应3.5小时,然后升温至105℃,在磁力搅拌下抽真空直至无气泡为止,得到聚氧化丙烯三醇磷酸酯。
将100g氢氧化铝(牌号为AH-1)加入500ml反应瓶中,加入150g去离子水搅拌分散20分钟,然后将1.5g聚氧化丙烯三醇磷酸酯溶于30g无水乙醇中后,将其加入到反应瓶中,温度升至85℃,回流反应4小时,反应结束后,离心分离,所得的填料用去离子水洗涤2次,置于100℃的真空烘箱中真空干燥6小时,过200目筛,得到改性氢氧化铝。
将100g氧化镁A2加入500ml反应瓶中,加入175g去离子水搅拌分散25分钟,然后将2.0g聚氧化丙烯三醇磷酸酯溶于70g无水乙醇中后,将其加入到反应瓶中,温度升至90℃,回流反应5小时,反应结束后,离心分离,所得的填料用去离子水洗涤3次,置于105℃的真空烘箱中真空干燥7小时,过200目筛,得到改性氧化镁A2。
向反应瓶中依次加入3.9g聚四氢呋喃二醇(牌号为PTMG-1000)、3.9g蔗糖聚醚多元醇(牌号为MA-4110)、2.6g三乙醇胺、0.15g N,N-二甲基乙醇胺、17.7g改性氢氧化铝和52.5g改性氧化镁A2、19.3g六亚甲基二异氰酸酯三聚体(牌号为HX),然后用ARV-310LED型自转公转真空搅拌机按设定的程序高速搅拌并脱除气泡,物料充模后用冷压机在100MPa压力下压模30分钟,最后置于烘箱中80℃固化18小时,得到阻燃导热聚氨酯复合材料;ARV-310LED型自转公转真空搅拌机设定的程序为:第一阶段转速为600r/min,时间为30秒,常压;第二阶段转速为1200r/min,时间为120秒,常压;第三阶段转速为800r/min,时间为30秒,常压。
根据表1中原料的配比,按照实施例1的方法制备实施例2~7的阻燃导热聚氨酯复合材料。以导热聚氨酯复合材料为对比例1:聚氨酯体各原料用量与实施例3相同,不加改性氢氧化铝,以等量的导热填料改性氧化镁A1替换,具体用量如表1。
此外,实施例2和3所用聚氧化丙烯三醇磷酸酯是按照实施例1的方法制备;实施例4和5以及对比例1所用聚氧化丙烯三醇磷酸酯是由以下方法制备得到:将85.6g聚氧化丙烯三醇(牌号为MN-3050DF)和10.0g磷酸加入250ml反应瓶中,磁力搅拌,加热升温并通N2保护,温度升至80℃,回流反应3小时,然后升温至100℃,在磁力搅拌下抽真空直至无气泡为止,得到聚氧化丙烯三醇磷酸酯;实施例6和7所用聚氧化丙烯三醇磷酸酯是由以下方法制备得到:将75.4g聚氧化丙烯三醇(牌号为MN-3050DF)和10.0g磷酸加入250ml反应瓶中,磁力搅拌,加热升温并通N2保护,温度升至90℃,回流反应4小时,然后升温至110℃,在磁力搅拌下抽真空直至无气泡为止,得到聚氧化丙烯三醇磷酸酯。
实施例2和3所用改性氢氧化铝是按照实施例1的方法制备;实施例4和5所用改性氢氧化铝是由以下方法制备得到:将100g氢氧化铝(牌号为AH-1)加入500ml反应瓶中,加入175g去离子水搅拌分散25分钟,然后将2.0g聚氧化丙烯三醇磷酸酯溶于70g无水乙醇中后,将其加入到反应瓶中,温度升至90℃,回流反应5小时,反应结束后,离心分离,所得的填料用去离子水洗涤3次,置于105℃的真空烘箱中真空干燥7小时,过200目筛,得到改性氢氧化铝;实施例6和7所用改性氢氧化铝是由以下方法制备得到:将100g氢氧化铝(牌号为AH-1)加入500ml反应瓶中,加入200g去离子水搅拌分散30分钟,然后将2.5g聚氧化丙烯三醇磷酸酯溶于125g无水乙醇中后,将其加入到反应瓶中,温度升至95℃,回流反应6小时,反应结束后,离心分离,所得的填料用去离子水洗涤4次,置于110℃的真空烘箱中真空干燥8小时,过200目筛,得到改性氢氧化铝;
实施例2所用改性氧化镁A2和实施例3所用改性氧化镁A1是按照实施例1的方法制备;实施例4和5所用改性氧化镁A1是由以下方法制备得到:将100g氧化镁A1加入500ml反应瓶中,加入200g去离子水搅拌分散30分钟,然后将2.5g聚氧化丙烯三醇磷酸酯溶于125g无水乙醇中后,将其加入到反应瓶中,温度升至95℃,回流反应6小时,反应结束后,离心分离,所得的填料用去离子水洗涤4次,置于110℃的真空烘箱中真空干燥8小时,过200目筛,得到改性氧化镁A1;对比例1的改性氧化镁A1是由以下方法制备得到:将100g氧化镁A1加入500ml反应瓶中,加入150g去离子水搅拌分散20分钟,然后将1.5g聚氧化丙烯三醇磷酸酯溶于30g无水乙醇中后,将其加入到反应瓶中,温度升至55℃,回流反应4小时,反应结束后,离心分离,所得的填料用去离子水洗涤2次,置于100℃的真空烘箱中真空干燥6小时,过200目筛,得到改性氧化镁A1。
实施例4和5所用改性氮化硼是由以下方法制备得到:将100g氮化硼加入500ml反应瓶中,加入200g去离子水分散30分钟,然后将2g聚氧化丙烯三醇磷酸酯溶于70g无水乙醇中后,将其加入到反应瓶中,温度升至90℃,回流反应5小时,反应结束后,离心分离,所得的填料用去离子水洗涤3次,置于105℃的真空烘箱中干燥7小时,过200目筛,得到改性氮化硼;实施例6和7所用改性氮化硼是由以下方法制备得到:将100g氮化硼加入500ml反应瓶中,加入200g去离子水分散30分钟,然后将2.5g聚氧化丙烯三醇磷酸酯溶于125g无水乙醇中后,将其加入到反应瓶中,温度升至95℃,回流反应6小时,反应结束后,离心分离,所得的填料用去离子水洗涤4次,置于110℃的真空烘箱中干燥8小时,过200目筛,得到改性氮化硼。
表1:实施例2~7和对比例1的原料配方
以发明专利CN103524698A的实施例9为对比例2,其原料配方列于表2。
表2对比例2的原料配方
组分 对比例2
聚四氢呋喃二醇(PTMG-1000,g) 25
2,6-甲苯二异氰酸酯(g) 8.3
MDI-50(g) 8.3
二乙基次膦酸盐(g) 8.3
N,N-双(2-羟乙基)胺基亚甲基磷酸二乙酯(g) 7.5
氧化铝(g) 25
氮化铝(g) 16.7
其他助剂(g) 0.9
根据ASTM E1461标准测量复合材料的热导率,根据GB/T 1410-2006标准测量复合材料的电阻率,根据UL94-2009标准测量复合材料的阻燃级别,根据GB/T 2406.2-2009标准测量复合材料的极限氧指数,根据GB/T 1040.2-2006标准测量复合材料的拉伸强度,根据GB/T 1843-2008标准测量复合材料的冲击强度,根据GB/T 9341-2008标准测量复合材料的弯曲强度,实施例1~7和对比例1~2复合材料的性能结果如表3。
表3实施例1~7和对比例1~2复合材料的性能
对比例1聚氨酯体各原料用量与实施例3相同,不加改性氢氧化铝,以等量的导热填料改性氧化镁A1替换;与对比例1相比,本发明的阻燃导热聚氨酯复合材料,仅采用约20%的聚氧化丙烯三醇磷酸酯改性氢氧化铝就能使聚氨酯的垂直燃烧测试通过UL-94V-0级,达到现有技术中采用有机磷阻燃剂阻燃(对比例2)的水平,阻燃性能优异;本发明的阻燃导热聚氨酯复合材料的导热性能较好,在阻燃填料用量为17.7%,导热填料用量为52.5%下,热导率为1.3W/m·K,仅比采用70.2%导热填料的对比样的1.4W/m·K低7.1%,而垂直燃烧测试通过了UL-94V-0级,尤其是拉伸强度达到了20.3MPa,弯曲强度达到了60.8MPa,两者分别比对比样高11%和38%,力学性能更好。其他实施例与实施例3相比UL‐94阻燃等级都同样达到了V‐0;热导率都超过了1.0W/m·K,具有良好的导热性能;且拉升强度、冲击强度和完全强度虽有所差异,但也都具有较好的综合力学性能。由此可见本发明阻燃导热聚氨酯复合材料在取得较好的阻燃和导热性能的同时,综合力学性能优异,极大地提升了聚氨酯的使用价值。

Claims (10)

1.一种阻燃导热聚氨酯复合材料,其特征在于,按质量百分数计,其原料配方由如下组分组成:
其中所述聚醚二元醇选自聚氧化丙烯二醇和聚四氢呋喃二醇中的一种或两种;
所述扩链剂选自乙二醇、丙三醇和三乙醇胺中的一种或多种;
所述催化剂选自N,N-二甲基乙醇胺、三乙醇胺和三乙胺中的一种或多种;
所述改性导热填料或改性阻燃填料是由以下步骤制备得到:
1)、将导热填料或阻燃填料加入到反应器中,加入去离子水搅拌分散均匀;
2)、将聚氧化丙烯三醇磷酸酯溶于无水乙醇中,聚氧化丙烯三醇磷酸酯的加入量为导热填料或阻燃填料质量用量的1.5%~2.5%;
3)、将步骤2)中的乙醇溶液加入到反应器中,温度升至85~95℃,回流反应4~6小时,反应结束后,离心分离,所得的填料用去离子水洗涤,真空干燥,过筛后备用;
所述导热填料选自氧化镁和氮化硼中的一种或两种,其中氮化硼为片状结构填料,长宽比为2~10:1,长度为10μm~50μm;氧化镁为无定形或片状结构,无定形填料的粒径为3μm~8μm,片状填料的长宽比为2~5:1,长度为5μm~20μm;
所述阻燃填料选自氢氧化铝,粒径为1μm~5μm。
2.根据权利要求1所述的阻燃导热聚氨酯复合材料,其特征在于:所述六亚甲基二异氰酸酯三聚体的异氰酸酯基的质量百分数为20%~23%,粘度为1500~4000mPa·s,固含量为100%。
3.根据权利要求1所述的阻燃导热聚氨酯复合材料,其特征在于:所述聚醚二元醇的分子量为900~1100,羟值为100~120mg KOH/g,粘度为100~400mPa·s。
4.根据权利要求1所述的阻燃导热聚氨酯复合材料,其特征在于:所述蔗糖聚醚多元醇的起始剂为蔗糖,分子量为300~800,羟值为350~650mg KOH/g,官能度为3~8,粘度为2000~4000mPa·s。
5.根据权利要求1所述的阻燃导热聚氨酯复合材料,其特征在于:所述加入去离子水搅拌分散均匀是加入去离子水搅拌分散20~30分钟,控制去离子水与填料的质量比为1.5~2:1。
6.根据权利要求1所述的阻燃导热聚氨酯复合材料,其特征在于:所述无水乙醇与聚氧化丙烯三醇磷酸酯质量比为20~50:1。
7.根据权利要求1所述的阻燃导热聚氨酯复合材料,其特征在于:离心分离所得的填料用去离子水洗涤2~4次;所述真空干燥的温度100℃~110℃,真空干燥的时间为6小时~8小时;所述过筛为过200目筛。
8.根据权利要求1所述的阻燃导热聚氨酯复合材料,其特征在于:所述的聚氧化丙烯三醇磷酸酯是由以下方法制备得到:将聚氧化丙烯三醇和磷酸加入反应瓶中,磁力搅拌,控制磷酸/聚氧化丙烯三醇的摩尔比为3.15~3.45,加热升温并通N2保护,温度升至80~90℃,回流反应3~4小时,然后升温至100~110℃,在磁力搅拌下抽真空直至无气泡为止,得到聚氧化丙烯三醇磷酸酯。
9.根据权利要求1~8任一项所述的阻燃导热聚氨酯复合材料的制备方法,其特征在于:包括以下步骤:
a、将聚醚二元醇和蔗糖聚醚多元醇分别在磁力搅拌下于100℃~120℃抽真空除水1~2小时,冷却后置于干燥器中备用;在所述扩链剂和催化剂中加入活性的4分子筛,置于干燥器中静置7天后备用;
b、按照配方比例,加入聚醚二元醇和蔗糖聚醚多元醇、扩链剂、催化剂、改性导热填料和改性阻燃填料、六亚甲基二异氰酸酯三聚体;
c、步骤b所得物料使用行星式搅拌机按设定的程序高速搅拌并脱除气泡,物料充模后用冷压机在80~120MPa的压力下压模30~40分钟,然后于75~85℃下常压固化18~24小时,得到阻燃导热聚氨酯复合材料;所述设定的程序为:第一阶段控制转速为600~800r/min,时间为30~60秒,常压;第二阶段控制转速为1000~1200r/min,时间为120~180秒,常压;第三阶段控制转速为800~1000r/min,时间为30~60秒,常压。
10.根据权利要求9所述的阻燃导热聚氨酯复合材料的制备方法,其特征在于:所述六亚甲基二异氰酸酯三聚体的加入量满足-NCO/-OH=1.1,-NCO为异氰酸酯基的摩尔数,-OH为聚醚多元醇和扩链剂的羟基的摩尔数。
CN201410403142.2A 2014-08-15 2014-08-15 阻燃导热聚氨酯复合材料及其制备方法 Expired - Fee Related CN104193947B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410403142.2A CN104193947B (zh) 2014-08-15 2014-08-15 阻燃导热聚氨酯复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410403142.2A CN104193947B (zh) 2014-08-15 2014-08-15 阻燃导热聚氨酯复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN104193947A true CN104193947A (zh) 2014-12-10
CN104193947B CN104193947B (zh) 2016-10-05

Family

ID=52079338

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410403142.2A Expired - Fee Related CN104193947B (zh) 2014-08-15 2014-08-15 阻燃导热聚氨酯复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN104193947B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108164992A (zh) * 2018-01-30 2018-06-15 昆山市中迪新材料技术有限公司 导热橡胶材料及其制备方法和导热橡胶片
CN109021202A (zh) * 2018-08-16 2018-12-18 德清舒华泡沫座椅有限公司 一种高强度聚氨酯泡沫
CN109369874A (zh) * 2018-09-12 2019-02-22 全球能源互联网研究院有限公司 一种聚氨酯组合物及使用其的饱和电抗器
CN109400846A (zh) * 2018-10-27 2019-03-01 濮阳天健生物科技有限公司 一种化工反应釜用复合保温板及其制备方法
CN110684170A (zh) * 2019-09-05 2020-01-14 上海阿莱德实业股份有限公司 一种导热材料的制备方法
CN115926716A (zh) * 2022-12-08 2023-04-07 湖北回天新材料股份有限公司 高导热低密度双组份聚氨酯结构胶及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1406998A (zh) * 2001-09-12 2003-04-02 张田林 一种软质阻燃聚氨酯泡沫塑料
CN102464880A (zh) * 2010-11-18 2012-05-23 上海杰事杰新材料(集团)股份有限公司 一种阻燃型聚氨酯材料、制备方法及其应用
CN103524698A (zh) * 2013-08-27 2014-01-22 福建瑞森化工有限公司 一种无卤阻燃导热聚氨酯灌封胶及其制备方法
US20140106637A1 (en) * 2011-06-29 2014-04-17 Dow Global Technologies Llc Flame resistant composition, fiber reinforced polyurethane based composite comprising the flame resistant composition and the use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1406998A (zh) * 2001-09-12 2003-04-02 张田林 一种软质阻燃聚氨酯泡沫塑料
CN102464880A (zh) * 2010-11-18 2012-05-23 上海杰事杰新材料(集团)股份有限公司 一种阻燃型聚氨酯材料、制备方法及其应用
US20140106637A1 (en) * 2011-06-29 2014-04-17 Dow Global Technologies Llc Flame resistant composition, fiber reinforced polyurethane based composite comprising the flame resistant composition and the use thereof
CN103524698A (zh) * 2013-08-27 2014-01-22 福建瑞森化工有限公司 一种无卤阻燃导热聚氨酯灌封胶及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108164992A (zh) * 2018-01-30 2018-06-15 昆山市中迪新材料技术有限公司 导热橡胶材料及其制备方法和导热橡胶片
CN109021202A (zh) * 2018-08-16 2018-12-18 德清舒华泡沫座椅有限公司 一种高强度聚氨酯泡沫
CN109369874A (zh) * 2018-09-12 2019-02-22 全球能源互联网研究院有限公司 一种聚氨酯组合物及使用其的饱和电抗器
CN109369874B (zh) * 2018-09-12 2021-11-30 全球能源互联网研究院有限公司 一种聚氨酯组合物及使用其的饱和电抗器
CN109400846A (zh) * 2018-10-27 2019-03-01 濮阳天健生物科技有限公司 一种化工反应釜用复合保温板及其制备方法
CN110684170A (zh) * 2019-09-05 2020-01-14 上海阿莱德实业股份有限公司 一种导热材料的制备方法
CN110684170B (zh) * 2019-09-05 2021-11-19 上海阿莱德实业股份有限公司 一种导热材料的制备方法
CN115926716A (zh) * 2022-12-08 2023-04-07 湖北回天新材料股份有限公司 高导热低密度双组份聚氨酯结构胶及其制备方法

Also Published As

Publication number Publication date
CN104193947B (zh) 2016-10-05

Similar Documents

Publication Publication Date Title
CN104193947A (zh) 阻燃导热聚氨酯复合材料及其制备方法
JP6912466B2 (ja) ポリフェニレンエーテル樹脂組成物及びそれを適用した高周波回路基板
Zhang et al. The improvement of fire safety performance of flexible polyurethane foam by Highly-efficient PNS elemental hybrid synergistic flame retardant
Chen et al. Inherently flame-retardant flexible polyurethane foam with low content of phosphorus-containing cross-linking agent
Jiang et al. Intergrowth charring for flame-retardant glass fabric-reinforced epoxy resin composites
CN104070737B (zh) 层压板
KR102281563B1 (ko) 난연성 열가소성 폴리우레탄
JP6912467B2 (ja) ポリフェニレンエーテル樹脂組成物及びそれを適用した高周波回路基板
Wang et al. Preparation of polyurethane microencapsulated expandable graphite, and its application in ethylene vinyl acetate copolymer containing silica-gel microencapsulated ammonium polyphosphate
CN101376811B (zh) 一种聚氨酯微胶囊化无机含磷阻燃剂及其制备方法
CN106751636B (zh) 石墨烯/纤维增强高分子复合材料及其应用
CN103709432B (zh) 一种高阻燃硬质聚氨酯泡沫塑料及其制备方法
CN113278161B (zh) 石墨烯改性阻燃性水性聚氨酯涂料所需MOFs制备方法
CN108752735B (zh) 一种阻燃高强gmt复合板材及其制备方法
CN103304963B (zh) 一种热固性树脂组合物及使用其制作的半固化片及层压板
CN110894369A (zh) 一种基于磷杂菲基团修饰磷酸锆的阻燃剂及其制备方法
CN100528949C (zh) 低放热和低发烟的增强纤维-环氧复合材料
CN115010872B (zh) 一种可回收循环利用的互穿交联双网络结构本征阻燃水性聚氨酯的制备方法
Zhang et al. Effect of ammonium polyphosphate/cobalt phytate system on flame retardancy and smoke & toxicity suppression of rigid polyurethane foam composites
CN116948494A (zh) 用于电池的绝缘阻燃耐蚀粉末涂料及其制备方法
CN108463495B (zh) 具有至少一种添加剂的功能材料
Chi et al. The synergistic flame-retardant behaviors of soybean oil phosphate-based polyols and modified ammonium polyphosphate in polyurethane foam
Yang et al. Fabrication of a cinnamaldehyde-based bi-DOPO flame retardant with excellent glass transition temperature, fire safety and mechanical properties for epoxy resins
CN113088066B (zh) 一种阻燃热塑性聚氨酯复合材料
WO2022030886A1 (ko) 용접대체용 비할로겐계 난연성 실란트 조성물

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161005