CN104168238B - 一种降低自适应数字预失真算法计算复杂度的方法 - Google Patents

一种降低自适应数字预失真算法计算复杂度的方法 Download PDF

Info

Publication number
CN104168238B
CN104168238B CN201310185059.8A CN201310185059A CN104168238B CN 104168238 B CN104168238 B CN 104168238B CN 201310185059 A CN201310185059 A CN 201310185059A CN 104168238 B CN104168238 B CN 104168238B
Authority
CN
China
Prior art keywords
mrow
squares
orthonormalization
computation complexity
msup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310185059.8A
Other languages
English (en)
Other versions
CN104168238A (zh
Inventor
姚赛杰
钱骅
黄浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Shanghai Research Center for Wireless Communications
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Shanghai Research Center for Wireless Communications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS, Shanghai Research Center for Wireless Communications filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN201310185059.8A priority Critical patent/CN104168238B/zh
Publication of CN104168238A publication Critical patent/CN104168238A/zh
Application granted granted Critical
Publication of CN104168238B publication Critical patent/CN104168238B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Amplifiers (AREA)

Abstract

本发明提供一种降低自适应数字预失真算法计算复杂度的方法,针对原始多项式基函数自相关矩阵条件数较高的特性,在建立多项式预失真模型的非线性模型后,通过对原始多项式基函数得到的自相关矩阵的期望进行归一正交化,得到归一正交化的基函数,进一步对递归最小二乘算法的计算复杂度进行简化。本发明的降低自适应数字预失真算法计算复杂度的方法在保证收敛速度快、失调量小的前提下,使得传统递归最小二乘算法的计算复杂度降低为最小均方误差算法的复杂度。

Description

一种降低自适应数字预失真算法计算复杂度的方法
技术领域
本发明涉及属于无线通信技术领域,具体地,涉及一种降低自适应数字预失真算法计算复杂度的方法。
背景技术
在无线通信系统中,射频功率放大器(Radio Frequency Power Amplifier,RFPA)是所有射频器件中最主要的非线性设备。这种非线性随着外部因素的变化而变化,例如环境温度、时间以及输入信号的功率等等。研究结果表明,非线性能带来带内的频谱失真以及带外的频谱增生,前者导致传输信号的误差向量(Error Vector Magnitude,EVM)恶化,后者引起邻频干扰(Adjacent Channel Interference,ACI),从而导致通信系统性能的下降。
自适应数字预失真技术是一种常用的补偿射频功率放大器非线性的技术。在数字预失真技术实现的过程中,参数估计部分的计算复杂度是主要的瓶颈。传统的参数估计算法有最小二乘(Least Square,LS)算法、递归最小二乘(Recursive Least Square,RLS)算法以及最小均方误差(Least Mean Square,LMS)算法,然而这些算法都不能同时具有收敛速度快和计算复杂度低的性能。
最小二乘算法需要通过一整块的数据进行参数估计,而且直接对一个矩阵求逆也很难在硬件平台上实现。此外,最小二乘算法不能实时的更新非线性参数,导致不能及时的跟踪补偿射频功放的非线性的变化。实时处理算法如递归最小二乘算法、最小均方误差算法因其能够实时地更新非线性参数而受到广泛的应用。递归最小二乘算法通过迭代地对矩阵求逆实现非线性参数更新的过程,该算法具有收敛速度快,失调量小等优点,但是计算复杂度较高。最小均方误差算法具有计算复杂度低的优点,但是在迭代步长的选择上存在一个折中。当迭代步长较大时,收敛速度很快,同时失调量也很大;当选择迭代步长较小时,收敛速度很慢,同时失调量很小。因此,以上三种算法均不能同时具有收敛速度快,计算复杂度低,失调量小的性能。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种降低自适应数字预失真算法计算复杂度的方法,其在保证递归最小二乘算法收敛速度快、失调量小的前提下,进一步将其复杂度降低为最小均方误差算法的复杂度。
为实现上述目的及其他相关目的,本发明提供一种降低自适应数字预失真算法计算复杂度的方法,其包括以下步骤:
步骤一、建立非线性模型,其中,所述非线性模型为多项式预失真模型,其数学表达式为其中,y(n)是射频功率放大器的输出信号,是预失真估计模块的输出信号,K为多项式的个数,2k-1是多项式的阶数;
参数定义为A=[a1,a3,...,a2K-1]T,多项式基函数定义为φ2k-1(n),φ2k-1(n)=|y(n)|2(k-1)y(n),φ(n)=[φ1(n),φ3(n),......φ2K-1(n)];误差信号为z(n)是预失真器的输出信号;
在最小二乘准则下,参数表达式为:A=(ΦHΦ)-1ΦHz;
其中, N是采样点的总数;
步骤二、对多项式基函数φ2k-1(n)的自相关矩阵ΦHΦ的期望进行归一正交化,其中,归一正交化的定义为具体步骤如下:
步骤21、定义归一化正交基函数ψ2k-1(n)为多项式基函数φ2k-1(n)的线性组合,即:其中,Ul,k是归一化正交基函数的系数,且
步骤22、定义归一化正交基函数ψ2k-1(n)的自相关矩阵为ΨHΨ,通过推导得到ΦHΦ=N(UH)-1(U)-1
步骤23、对一个给定概率密度分布函数的|y|,ΦHΦ是确定的,将矩阵ΦHΦ的维数从小到大递增,迭代地求解出U;
步骤三、降低递归最小二乘算法计算复杂度,具体步骤如下:
步骤31、由最小二乘算法的定义得到其中,P(n)是归一化正交基函数ψ2k-1(n)的自相关矩阵ΨHΨ前n个采样点的逆矩阵,初始化为δ为任意的正数;
步骤32、展开归一化正交基函数ψ2k-1(n)的自相关矩阵ΨHΨ,结合P(n)得到ψH(n)ψ(n)=I;
步骤33、将ψH(n)ψ(n)=I代入递归最小二乘算法的第一条迭代方程中,得到
步骤34、将步骤33的结果代入递归最小二乘算法的第二条迭代方程 中,得到其中,β(n)是应用了归一化正交基函数ψ2k-1(n)的预失真参数,β(0)=0。
根据上述的降低自适应数字预失真算法计算复杂度的方法,其中:步骤23中,假设|y|服从[0,1]之间的均匀分布,矩阵U的元素Ul,k表示为:
根据上述的降低自适应数字预失真算法计算复杂度的方法,其中:步骤三中,步骤34之后还包括:
步骤35、将进行量化,量化方程表示如下:
n=[2n-1,2n-1]。
进一步地,根据上述的降低自适应数字预失真算法计算复杂度的方法,其中:步骤35之后,降低复杂度的最小二乘算法每次迭代需要的复数乘法器个数为2K,复数加法器的个数为2K+1。
根据上述的降低自适应数字预失真算法计算复杂度的方法,其中:步骤22中,由Ψ=ΦU,ΨHΨ=NI,得到ΦHΦ=N(UH)-1(U)-1
如上所述,本发明的降低自适应数字预失真算法计算复杂度的方法,具有以下有益效果:
本发明的降低自适应数字预失真算法计算复杂度的方法通过对原始多项式基函数得到的自相关矩阵的期望进行归一正交化,得到归一正交化的基函数,进一步对传统递归最小二乘算法的计算复杂度进行简化;在保证收敛速度快、失调量小的前提下,使得传统递归最小二乘算法的计算复杂度降低为最小均方误差算法的复杂度。
附图说明
图1显示为本发明中的自适应数字预失真算法中参数估计模块的模型示意图;
图2显示为本发明中的矩阵条件数与矩阵维数的关系图;
图3显示为本发明的一个实施例中的递归最小二乘算法、最小均方误差算法和降低复杂度的递归二乘算法的收敛性能示意图;
图4显示为本发明的另一个实施例中的递归最小二乘算法、最小均方误差算法和降低复杂度的递归二乘算法收敛性能示意图;
图5显示为本发明中的不同算法预失真性能示意图。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
本发明的降低自适应数字预失真算法计算复杂度的方法至少包括建立非线性模型、对采用原始多项式基函数得到的自相关矩阵期望进行归一正交化,降低递归最小二乘算法计算复杂度等步骤。
具体地,非线性模型的建立采用目前应用最为广泛的多项式预失真模型。针对原始多项式基函数自相关矩阵条件数较高的特性,对采用原始多项式基函数得到的自相关矩阵的期望进行归一正交化,得到归一化正交的基函数。该归一化正交的基函数离线计算,不同概率密度分布函数下的归一化正交基函数均可互相应用。在应用归一化正交基函数的基础上,对递归最小二乘算法的计算复杂度进行降低,最终这种降低复杂度的递归最小二乘算法同时拥有递归最小二乘算法的性能以及最小均方误差算法的计算复杂度。
图1显示了本发明的自适应数字预失真算法中的参数估计模块的示意图。在该预失真算法的参数估计模块中,预失真器1的输出信号经处理后输入射频功率放大器2,射频功率放大器2的输出信号经处理后输入预失真估计模块3,预失真估计模块3的输出信号和预失真器1的输出信号用于得到预失真参数。具体地,x(n)是预失真器1的输入信号,y(n)是射频功率放大器2的输出信号,z(n)是预失真器1的输出信号同时也是射频功率放大器2的输入信号。射频功率放大器2的输入和输出信号z(n)和y(n)是用来进行第n次递归参数估计的,其中z(n)是x(n)通过第n-1次递归的参数计算得来的。通过最小化预失真器1的输出信号z(n)和预失真估计模块3的输出信号之间的误差信号e(n)来获得预失真参数。当预失真估计模块3更新后,预失真器1的参数也随之更新,用于输入信号x(n)的非线性校正。
本发明的非线性模型的建立采用目前应用最为广泛的多项式预失真模型,预失真估计的数学表达式为其中2k-1是多项式的阶数,K为多项式的个数,参数定义为A=[a1,a3,...,a2K-1]T,传统的多项式基函数定义为φ2k-1(n),且φ2k-1(n)=|y(n)|2(k-1)y(n),φ(n)=[φ1(n),φ3(n),......φ2K-1(n)]。误差信号可以表示为在最小二乘准则下,参数表达式为:A=(ΦHΦ)-1ΦHz
其中,
N是采样点的总数。
通过计算可知,多项式基函数φ2k-1(n)的自相关矩阵ΦHΦ是一个对称矩阵,每一个元素均由|y|的分布函数所决定而且元素之间也是高度相关的,意味着这个矩阵的特征值很大。一个矩阵的条件数定义为最大特征值除以最小特征值结果的绝对值。当一个矩阵的特征值很大时,在矩阵求逆的过程中会引入数值不稳定性的问题。
为了降低矩阵的特征值,减轻矩阵求逆过程中的数值不稳定性,本发明对多项式基函数φ2k-1(n)的自相关矩阵ΦHΦ进行归一正交化,以降低矩阵的条件数,归一正交化的定义为归一正交化的具体步骤如下:
步骤21、定义归一化正交基函数ψ2k-1(n)为传统多项式基函数φ2k-1(n)的线性组合,具体定义为:其中,Ul,k是归一化正交基函数的系数,矩阵形式为:
步骤22、定义归一化正交基函数ψ2k-1(n)的自相关矩阵为ΨHΨ,通过推导可以得到Ψ=ΦU。由归一化正交性的定义可以得到ΨHΨ=NI,进一步推导可得到ΦHΦ=N(UH)-1(U)-1
步骤23、对一个给定概率密度分布函数的|y|,ΦHΦ是确定的,通过将原始多项式基函数φ2k-1(n)的自相关矩阵ΦHΦ的维数从小到大递增,可以迭代地求解出U。
假设|y|服从[0,1]之间的均匀分布,矩阵U的元素Ul,k可表示为:
图2为矩阵条件数与矩阵维数的分布图。在图2中,均匀分布信号的多项式基函数的自相关矩阵ΦHΦ的条件数与矩阵维数成指数型增长关系,而归一化正交基函数的自相关矩阵ΨHΨ的条件数不随矩阵维数的增加而变化,一直是1。当输入信号的分布变化时,例如复高斯分布的信号,仍然适应均匀分布的归一化正交基函数,尽管正交归一化不满足了,但是从图2可以看出归一化正交基函数矩阵的条件数还是大幅度的降低了,意味着求逆过程中的数值不稳定性得到了保证。
由于最小二乘算法需要一整块的数据来估计、更新参数,因此不满足实时补偿射频功率放大器的要求,故采用递归最小二乘算法。应用了归一化正交基函数的递归最小二乘算法的迭代方程如下:
其中,β(n)是应用了归一化正交基函数ψ2k-1(n)的预失真参数,P(n)是归一化正交基函数ψ2k-1(n)的自相关矩阵ΨHΨ的前n个采样点的逆矩阵,初始化为δ为任意的正数。最小二乘算法每次递归需要的复数乘法器个数为2K2+4K,复数加法器的个数为2K2+4K+2。
在应用了归一化正交基函数的基础上,本发明对递归最小二乘算法的计算复杂度进行简化,具体步骤如下:
步骤31、由最小二乘算法的定义可以得到
步骤32、展开归一化正交基函数ψ2k-1(n)的自相关矩阵ΨHΨ,结合P(n)可以得到ψH(n)ψ(n)=I。
步骤33、将ψH(n)ψ(n)=I代入递归最小二乘算法的第一条迭代方程(1),可以得到
步骤34、将步骤33的结果代入递归最小二乘算法的第二条迭代方程(2),可以得到β(0)=0。可以看出此时递归最小二乘算法的计算复杂度与最小均方误差算法的计算复杂度一致。
步骤35、考虑到针对不同概率密度分布函数,归一化正交性不一定满足,可知降低复杂度的递归最小二乘算法不一定和递归最小二乘算法拥有相同的收敛性能。既然如此,为了进一步降低计算复杂度,将进行量化,量化方程表示如下:
n=[2n-1,2n-1]。
最终降低复杂度的最小二乘算法每次迭代需要的复数乘法器个数为2K,复数加法器的个数为2K+1。
图3为本发明的一个实施例中的递归最小二乘算法、最小均方误差算法和降低复杂度的递归二乘算法的收敛性能图。该图中,输入信号服从[0,1]之间的均匀分布,信噪比为35dB,由图可知,递归最小二乘算法收敛最快,失调量很小;最小均方误差算法在大的迭代步长下收敛较快但是失调量较大,在小的迭代步长下则相反;降低复杂度的递归最小二乘算法的收敛性能与递归最小二乘算法的收敛性能基本一致。
图4为本发明的另一个实施例中的递归最小二乘算法、最小均方误差算法和降低复杂度的递归二乘算法的收敛性能图。该图中,输入信号服从复高斯分布,信噪比为35dB。由图可知,尽管归一化的正交基函数是基于[0,1]均匀分布信号的,但是应用于其他分布也能得到近似的收敛性能。
图5为本发明中递归最小二乘算法、伴有大迭代步长最小均方误差算法、伴有小迭代步长最小均方误差算法和降低复杂度的递归二乘算法的预失真性能比较示意图。从图5中可以看出,在500次迭代以后,递归最小二乘算法、降低复杂度的递归最小二乘算法以及伴有大迭代步长最小均方误差算法均已经收敛,预失真性能基本相当。而伴有小迭代步长最小均方误差算法还没收敛,该算法在2000次迭代时才收敛。
综上所述,本发明的降低自适应数字预失真算法计算复杂度的方法通过对原始多项式基函数得到的自相关矩阵的期望进行归一正交化,得到归一正交化的基函数,进一步对传统递归最小二乘算法的计算复杂度进行简化;在保证收敛速度快、失调量小的前提下,使得传统递归最小二乘算法的计算复杂度降低为最小均方误差算法的复杂度。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (5)

1.一种降低自适应数字预失真算法计算复杂度的方法,其特征在于:包括以下步骤:
步骤一、建立非线性模型,其中,所述非线性模型为多项式预失真模型,其数学表达式为其中,y(n)是射频功率放大器的输出信号,是预失真估计模块的输出信号,K为多项式的个数,2k-1是多项式的阶数;a2k-1为2k-1阶系数;
参数定义为A=[a1,a3,...,a2K-1]T,多项式基函数定义为φ2k-1(n),φ2k-1(n)=|y(n)|2(k-1)y(n),φ(n)=[φ1(n),φ3(n),......φ2K-1(n)];误差信号为z(n)是预失真器的输出信号;
在最小二乘准则下,参数表达式为:A=(ΦHΦ)-1ΦHz;
其中,N是采样点的总数;
步骤二、对多项式基函数φ2k-1(n)的自相关矩阵ΦHΦ的期望进行归一正交化,其中,归一正交化的定义为具体步骤如下:
步骤21、定义归一化正交基函数ψ2k-1(n)为多项式基函数φ2k-1(n)的线性组合,即:其中,Ul,k是归一化正交基函数的系数,且
步骤22、定义归一化正交基函数ψ2k-1(n)的自相关矩阵为ΨHΨ,通过推导得到ΦHΦ=N(UH)-1(U)-1
步骤23、对一个给定概率密度分布函数的|y|,ΦHΦ是确定的,将矩阵ΦHΦ的维数从小到大递增,迭代地求解出U;
步骤三、降低递归最小二乘算法计算复杂度,具体步骤如下:
步骤31、由最小二乘算法的定义得到其中,P(n)是归一化正交基函数ψ2k-1(n)的自相关矩阵ΨHΨ前n个采样点的逆矩阵,初始化为δ为任意的正数;I为单位矩阵;
步骤32、展开归一化正交基函数ψ2k-1(n)的自相关矩阵ΨHΨ,结合P(n)得到ψH(n)ψ(n)=I;
步骤33、将ψH(n)ψ(n)=I代入递归最小二乘算法的第一条迭代方程中,得到
步骤34、将步骤33的结果代入递归最小二乘算法的第二条迭代方程 中,得到其中,β(n)是应用了归一化正交基函数ψ2k-1(n)的预失真参数,β(0)=0。
2.根据权利要求1所述的降低自适应数字预失真算法计算复杂度的方法,其特征在于:步骤23中,假设|y|服从[0,1]之间的均匀分布,矩阵U的元素Ul,k表示为:
<mrow> <msub> <mi>U</mi> <mrow> <mi>l</mi> <mo>,</mo> <mi>k</mi> <mo>=</mo> </mrow> </msub> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msup> <mrow> <mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mrow> <mi>l</mi> <mo>+</mo> <mi>k</mi> </mrow> </msup> <mfrac> <mrow> <mo>(</mo> <mn>2</mn> <mi>l</mi> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mo>-</mo> <mn>3</mn> <mo>)</mo> <mo>!</mo> <msqrt> <mrow> <mn>4</mn> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msqrt> </mrow> <mrow> <msup> <mn>4</mn> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mi>l</mi> <mo>)</mo> </mrow> <mo>!</mo> <mrow> <mo>(</mo> <mn>2</mn> <mi>l</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>!</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mi>l</mi> <mo>-</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>!</mo> </mrow> </mfrac> <mo>,</mo> <mi>l</mi> <mo>&amp;le;</mo> <mi>k</mi> <mo>.</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>,</mo> <mi>l</mi> <mo>&gt;</mo> <mi>k</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
3.根据权利要求1所述的降低自适应数字预失真算法计算复杂度的方法,其特征在于:步骤三中,步骤34之后还包括:
步骤35、将进行量化,量化方程表示如下:
<mrow> <mi>&amp;delta;</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> </mfrac> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mo>&amp;lsqb;</mo> <msup> <mn>2</mn> <mrow> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> <msup> <mn>2</mn> <mi>n</mi> </msup> <mo>-</mo> <mn>1</mn> <mo>&amp;rsqb;</mo> <mo>.</mo> </mrow>
4.根据权利要求3所述的降低自适应数字预失真算法计算复杂度的方法,其特征在于:步骤35之后,降低复杂度的最小二乘算法每次迭代需要的复数乘法器个数为2K,复数加法器的个数为2K+1。
5.根据权利要求1所述的降低自适应数字预失真算法计算复杂度的方法,其特征在于:步骤22中,由Ψ=ΦU,ΨHΨ=NI,得到ΦHΦ=N(UH)-1(U)-1
CN201310185059.8A 2013-05-17 2013-05-17 一种降低自适应数字预失真算法计算复杂度的方法 Expired - Fee Related CN104168238B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310185059.8A CN104168238B (zh) 2013-05-17 2013-05-17 一种降低自适应数字预失真算法计算复杂度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310185059.8A CN104168238B (zh) 2013-05-17 2013-05-17 一种降低自适应数字预失真算法计算复杂度的方法

Publications (2)

Publication Number Publication Date
CN104168238A CN104168238A (zh) 2014-11-26
CN104168238B true CN104168238B (zh) 2018-01-19

Family

ID=51911868

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310185059.8A Expired - Fee Related CN104168238B (zh) 2013-05-17 2013-05-17 一种降低自适应数字预失真算法计算复杂度的方法

Country Status (1)

Country Link
CN (1) CN104168238B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3257153B1 (en) * 2015-02-10 2020-09-02 Nokia Solutions and Networks GmbH & Co. KG Controlling mechanism for a direct learning algorithm
CN107612856B (zh) * 2017-10-10 2020-01-14 京信通信系统(中国)有限公司 一种数字预失真处理方法及装置
CN115021689B (zh) * 2022-08-09 2022-10-28 北京力通通信有限公司 数字预失真算法里增强运算稳定性的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102427336A (zh) * 2011-11-30 2012-04-25 上海瑞和安琦通信科技有限公司 一种实现自适应数字预失真线性化的射频功率放大系统
CN102522957A (zh) * 2011-11-30 2012-06-27 上海瑞和安琦通信科技有限公司 一种改善射频功率放大器预失真性能的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7915954B2 (en) * 2004-01-16 2011-03-29 Qualcomm, Incorporated Amplifier predistortion and autocalibration method and apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102427336A (zh) * 2011-11-30 2012-04-25 上海瑞和安琦通信科技有限公司 一种实现自适应数字预失真线性化的射频功率放大系统
CN102522957A (zh) * 2011-11-30 2012-06-27 上海瑞和安琦通信科技有限公司 一种改善射频功率放大器预失真性能的方法

Also Published As

Publication number Publication date
CN104168238A (zh) 2014-11-26

Similar Documents

Publication Publication Date Title
JP6037318B2 (ja) ソフトウェアで信号に対して1つまたは複数のデジタル・フロントエンド(dfe)機能を実行するための方法およびプロセッサ
KR101680207B1 (ko) 디지털 전치 왜곡 파라미터를 산출하는 방법 및 전치 왜곡 시스템
US20220200540A1 (en) Model trainer for digital pre-distorter of power amplifiers
CN104363191B (zh) 一种跳频通信系统的数字预失真方法
CN104796364B (zh) 一种预失真参数求取方法及预失真处理系统
US7847631B2 (en) Method and apparatus for performing predistortion
Raich et al. Digital baseband predistortion of nonlinear power amplifiers using orthogonal polynomials
CN104168238B (zh) 一种降低自适应数字预失真算法计算复杂度的方法
CN102075469B (zh) 用于数字预失真系统的信号延迟时间的估计方法
WO2003092154A1 (fr) Procede permettant d&#39;ameliorer l&#39;efficacite d&#39;un amplificateur de puissance radiofrequence par une technique de pre-distorsion numerique en bande de base
Abdelhafiz et al. A PSO based memory polynomial predistorter with embedded dimension estimation
CN113037226A (zh) 基于自适应步长裁剪方法的数字预失真设计方法及装置
Pan et al. A predistortion algorithm based on accurately solving the reverse function of memory polynomial model
CN113987788A (zh) 一种基于压缩感知技术的数字预失真模型简化方法
CN103179074A (zh) 基于正交多项式的自适应预失真系统及方法
CN114911837A (zh) 预失真处理方法和装置
CN102522957B (zh) 一种改善射频功率放大器预失真性能的方法
US20100293213A1 (en) Method and apparatus for approximating a function
CN105471783B (zh) 基于输入序列的mimo系统发射端数字预失真优化方法
Campo et al. Adaptive cancellation of nonlinear self-interference in wireless full-duplex: Cascaded spline-interpolated methods
WO2016107201A1 (zh) 数字预失真方法、装置和计算机存储介质
Zhang et al. A new adaptive algorithm for digital predistortion using LS with singular value decomposition
Xie et al. An Improved Adaptive Algorithm for Digital Predistortion
LI et al. A Direct Learning Digital Predistortion Algorithm to Accurately Compensate for the Power Amplifier Nonlinearity
CN115396268B (zh) 数据处理方法、装置及存储介质

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180119

Termination date: 20190517

CF01 Termination of patent right due to non-payment of annual fee