CN104134749A - 多层柔性平面内嵌迭片电极及其制备方法与在有机场单晶场效应晶体管中的应用 - Google Patents

多层柔性平面内嵌迭片电极及其制备方法与在有机场单晶场效应晶体管中的应用 Download PDF

Info

Publication number
CN104134749A
CN104134749A CN201410341768.5A CN201410341768A CN104134749A CN 104134749 A CN104134749 A CN 104134749A CN 201410341768 A CN201410341768 A CN 201410341768A CN 104134749 A CN104134749 A CN 104134749A
Authority
CN
China
Prior art keywords
electrode
substrate
preparation
drain electrode
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410341768.5A
Other languages
English (en)
Other versions
CN104134749B (zh
Inventor
童艳红
汤庆鑫
赵晓丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Normal University
Original Assignee
Northeast Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Normal University filed Critical Northeast Normal University
Priority to CN201410341768.5A priority Critical patent/CN104134749B/zh
Publication of CN104134749A publication Critical patent/CN104134749A/zh
Priority to US14/910,635 priority patent/US10135016B2/en
Priority to PCT/CN2015/000460 priority patent/WO2016008276A1/zh
Application granted granted Critical
Publication of CN104134749B publication Critical patent/CN104134749B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/481Insulated gate field-effect transistors [IGFETs] characterised by the gate conductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • H10K10/84Ohmic electrodes, e.g. source or drain electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了柔性平面内嵌迭片电极及其制备方法与在有机场单晶场效应晶体管中的应用。包括如下步骤:在衬底的表面连接十八烷基三氯硅烷;在经修饰之后的衬底上制备源电极、漏电极和栅电极;并在源电极、漏电极和栅电极的金属电极表面利用气相法连接巯丙基三甲氧基硅烷;在得到的源电极、漏电极和栅电极的金属电极表面分别旋涂聚二甲基硅氧烷;将旋涂有聚二甲基硅氧烷的栅电极从衬底上转移;将栅电极的金属电极表面、源电极和漏电极的聚二甲基硅氧烷表面分别进行氧等离子体处理,在表面形成羟基;剪裁源电极和漏电极;将栅电极、源电极和漏电极连接形成一整体即得。本发明由于半导体和电极和绝缘层之间是通过静电吸附的作用结合在一起,可以实现电极的重复利用,适用于各种尺寸的有机单晶。

Description

多层柔性平面内嵌迭片电极及其制备方法与在有机场单晶场效应晶体管中的应用
技术领域
本发明涉及一种多层柔性平面内嵌迭片电极及其制备方法与在有机场单晶场效应晶体管中的应用,属于有机电子领域。
背景技术
自1986年第一个有机场效应晶体管发明以来(Applied Physics Letters1986,49,1210),因其制备工艺简单,材料来源广泛,成本低以及与柔性衬底兼容性好等特点(Nature2004,428,911;Advanced Materials2005,17,1705;Journal of MaterialsChemistry2005,15,53;Advanced Materials2005,17,2411),使得基于有机半导体材料制备的有机场效应晶体管备受研究者的重视并得到了快速的发展。根据有机半导体层的形态不同,可以把有机场效应晶体管分为有机薄膜场效应晶体管和有机单晶场效应晶体管。与有机薄膜相比,有机单晶中不存在晶界,并且有机单晶中分子的有序性使其具有很好的π-π轨道重叠,电荷陷阱密度被减至最低。因此有机单晶场效应晶体管一方面是作为研究有机半导体的本征传输的重要工具,另一方面也是最大程度提高器件迁移率的有效方法(Advanced Materials1998,10,365)。然而如何制备有有机单晶场效应晶体管也是目前研究的热点。如果利用传统的方法,真空掩膜沉积法,直接在有机半导体上构筑电极,制备场效应晶体管,会使有机半导体受到热辐射损伤等,严重的会使有机半导体失去场效应性能(Advanced Materials2008,20,2947;AdvancedMaterials2008,20,1511)。为了克服真空掩膜沉积法所带来的缺点,就需要发明新的制备有机单晶场效应晶体管的方法。目前有几个研究组已经在这方面已经做了一些工作。例如胡文平课题组发明了“贴金膜”(Advanced Materials2008,20,1511;AppliedPhysics Letters2008,92,083309;Advanced Materials2008,20,2947;Applied PhysicsLetters2009,94,203304)和“纳米带电极”(Advanced Materials2009,21,4234;AppliedPhysics Letters2014,104,073112)的两种方法有机制备场效应晶体管,这种两种方法的优点是可以在室温下操作,有效的避免热辐射对有机半导体的损伤。但是这种方法的缺点是需要利用探针台操作,要求精细操作;适合制备单一器件,器件集成度较低;底栅顶接触的器件构型,适合有机微/纳晶体,不适合较大(>100微米)的晶体,限制了晶体的使用尺寸。为了解决集成度低等问题,Sundar课题组发明了弹性晶体管印章的方法,利用这种方法制备了可重复利、对晶体无损伤的底栅底接触红荧烯场效应晶体管,并研究了红荧烯晶体的各向异性(Science,2004303,1644)。鲍哲南课题组利用在弹性绝缘层上光刻或真空蒸镀电极的方法制备了底栅底接触的有机单晶场效应晶体管(Applied Physics Letters2006,89,202108;Advanced Materials2006,18,2320)。这种两种方法都采用了底栅底接触的器件构型,把制备源/漏/栅电极和绝缘层与半导体分开,也就是先制备好源/漏/栅电极和绝缘层,然后把半导体通过静电吸附的作用直接放在电极和绝缘层上面。上述两种方法一方面有效的避免了热辐射对有机半导体的损伤,另一方面也提高了器件的集成度,可以实现一次制备多个器件。Sundar课题组发明的弹性晶体管印章的方法具有实现电极重复利用,方法简单等优点。但是这两种方法都有一个缺点,它们制备出的电极结构如图1所示,源/漏电极凸出于绝缘层表面。这种结构更适合较大尺寸晶体和较宽的沟道长度,同样限制了晶体使用尺寸和器件小型化。因为当把有机微/纳半导体转移到这种结构电极上时,如图2所示,由于这种电极凸出的结构会导致有机半导体并不能完全与绝缘层贴合,并且很容易在电极附近形成空气间隙。这样就会导致器件的导电沟道不均匀,影响器件的性能。因此需要提供一种新的制备有机单晶场效应管晶体管的方法,这种方法需要既可以实现避免溶液热辐射对有机半导体的损伤,又可以实现制备方法简单、高性能、高集成度、可重复利用和适用于各种尺寸的有机单晶。
发明内容
本发明的目的是提供一种多层柔性平面内嵌迭片电极及其制备方法与在有机场单晶场效应晶体管中的应用,本发明提供的方法可在室温下操作,进而避免了溶液和辐射对有机半导体的污染和损伤;本发明提供的电极结构是平面内嵌电极,即电极与绝缘层在同一平面,保证有机半导体与电极和绝缘层完全贴合,以获得高性能器件;且集成度高,可以制备复杂图案;可重复利用;适用于各种尺寸的有机单晶。
本发明所提供的多层柔性平面内嵌迭片电极的制备方法,包括如下步骤:
(1)在衬底的表面连接十八烷基三氯硅烷;
(2)在经步骤(1)之后的衬底上,利用光刻的方法分别制备源电极、漏电极和栅电极;并在所述源电极、所述漏电极和所述栅电极的金属电极表面利用气相法连接巯丙基三甲氧基硅烷;
(3)在步骤(2)的得到的所述源电极、所述漏电极和所述栅电极的金属电极表面分别旋涂聚二甲基硅氧烷,并进行固化;
(4)将旋涂有聚二甲基硅氧烷的所述栅电极从所述衬底上进行转移;将所述栅电极的金属电极表面、所述源电极和所述漏电极的聚二甲基硅氧烷表面分别进行氧等离子体处理,即在表面形成羟基;
(5)剪裁所述源电极和所述漏电极;将所述栅电极的金属电极表面、所述源电极和所述漏电极的聚二甲基硅氧烷表面进行对正(利用对正坐标图案在显微镜下,进行面的连接),并放入烘箱中加热,则将所述栅电极、所述源电极和所述漏电极连接形成一整体,即得到所述多层柔性平面内嵌迭片电极。
上述的制备方法中,步骤(1)中,连接十八烷基三氯硅烷的步骤如下:
将清洗后的所述衬底静置于浓硫酸与过氧化氢体积比为7:3的混合溶液中;然后清洗所述衬底,再将所述衬底置于正庚烷与十八烷基三氯硅烷体积比为1000:1的混合溶液中,即在所述衬底表面连接上所述十八烷基三氯硅烷;
所述衬底可为硅或玻璃。
上述的制备方法中,对正时,是将所述栅电极的金属电极表面贴附在所述源电极和所述漏电极的聚二甲基硅氧烷表面上。
上述的制备方法中,步骤(2)中,所述光刻的方法的条件如下:
在所述衬底上旋涂光刻胶,经加热后置于365nm下的紫外灯下进行曝光,然后依次经显影和定影后,进行蒸镀金属;
具体可按照如下步骤进行:
在所述衬底上旋涂一层AZ5214光刻胶;然后把旋涂好光刻胶的衬底放在100度的烘台上加热3min;再把加热后旋有光刻胶的衬底在365nm的紫外灯下曝光20s;再把曝光之后的衬底放入显影液中显影60s;去离子水定影为30s;在光刻图案后的衬底上利用真空热蒸发的方法蒸镀25nm的金属;最后利用去胶液去除光刻胶,形成图案化的金属;
利用真空气相法在金属电极表面连接所述巯丙基三甲氧基硅烷,该步骤的目的是使聚二甲基硅氧烷(PDMS)与金属之间有很好的连接,利于金属电极从衬底表面转移下来。具体方法是把所述源、漏、栅电极和30μm巯丙基三甲氧基硅烷同时放入真空系统中,保持7000pa压强20min,最终在电极表面形成一层巯丙基三甲氧基硅烷;
上述的制备方法中,步骤(3)中,所述栅电极上旋涂的所述聚二甲基硅氧烷的厚度可为50~500μm;
所述源电极和所述漏电极上旋涂的所述聚二甲基硅氧烷的厚度均可为0.8~5μm;
所述固化的温度可为70℃~100℃,所述固化的时间可为12~2小时。
上述的制备方法中,步骤(4)中,所述氧等离子体处理的时间可为10s~60s。
上述的制备方法中,步骤(5)中,所述加热的温度可为70℃~100℃,所述加热的时间可为10~30min。
本发明还提供了一种利用上述方法制备得到的多层柔性平面内嵌迭片电极。
本发明提供的多层柔性平面内嵌迭片电极可用于制备有机场单晶场效应晶体管。
本发明具有如下优点:
本发明制备方法制备的多层柔性平面内嵌迭片电极,电极电极结构是电极与绝缘层处在同一平面的内嵌电极并且是柔性的,且使电极、绝缘层与有机晶体形成完全接触,可以制备高性能的有机单晶场效应晶体管;本发明提供的制备方法,可以室温下操作,有机半导体没有受到辐射、显影液、去胶液的损伤;其使用高精度的光刻法技术制备电极,可以制备精度高,复杂的图案,实现高集成度,方便实用;因为PDMS和金属本身的柔性就很好,所以形成的电极,绝缘层和衬底都是柔性的,实现全柔性器件的制备的;由于半导体和电极和绝缘层之间是通过静电吸附的作用结合在一起的,可以实现电极的重复利用;这种柔性平面内嵌迭片电极适用于各种尺寸的有机单晶。
附图说明
图1是现有的底栅底接触电极结构示意图。
图2是现有的有机微/纳单晶半导体与传统底栅底接触电极接触示意图。
图3本发明实施例1制备的多层柔性平面内嵌迭片电极结构示意图。
图4是本发明实施例1制备的多层柔性平面内嵌迭片电极场效应晶体管的结构示意图(图4(a))和显微镜图(图4(b))。
图5是本发明实施例1制备的多层柔性平面内嵌迭片电极(PDMS绝缘层厚度:1μm)应用到酞菁铜单晶场效应晶体管的转移曲线(图5(a))和输出曲线(图5(b))。
图6是本发明实施例1制备的多层柔性平面内嵌迭片电极应用到酞菁铜有机单晶场效应晶体管中可以重复利用的显微镜图(插图)和转移曲线图。
图7是本发明实施例1制备的多层柔性平面内嵌迭片电极制备的多个变沟道器件的显微镜图(图7(a))和转移曲线(图7(b))。
图8是本发明实施例1制备的多层柔性平面内嵌迭片电极应用到酞菁铜微/纳单晶的显微镜图(图8(a))和转移曲线图(图8(b))。
图9是本发明实施例1制备的多层柔性平面内嵌迭片电极应用到酞菁铜大尺寸单晶(>100微米)的显微镜图(图9(a))和转移曲线图(图9(b))。
图10是本发明实施例2制备的多层柔性平面内嵌迭片电极(PDMS绝缘层厚度:1μm)应用到红荧烯单晶场效应晶体管的转移曲线(图10(a))和输出曲线(图10(b))。
图11是本发明实施例3制备的多层柔性平面内嵌迭片电极(PDMS绝缘层厚度:5μm)应用到红荧烯单晶场效应晶体管的转移曲线(图11(a))和输出曲线(图11(b))。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1、制备柔性平面内嵌迭片电极
1、十八烷基三氯硅烷OTS修饰硅表面:首先把衬底表面清洗干净;然后把衬底放入食人鱼洗液(浓硫酸与过氧化氢体积比7:3的溶液)中,在衬底表面形成羟基化;再次清洗衬底;把衬底放入体积比1000:1的正庚烷的OTS溶液中,使衬底表面形成一层OTS。
2、在OTS修饰的衬底上分别利用光刻的方法制备源/漏电极和栅电极并在金属表面修饰巯丙基三甲氧基硅烷(MPT):首先利用AZ5214E光刻胶在衬底上分别光刻(烘烤温度:100度;烘烤时间:3min;曝光时间:20s;显影时间:60s;定影时间:30s)源/漏电极和栅电极;然后真空蒸镀一层金(真空度:10-6torr;蒸镀速率:0.01nm/s;蒸镀厚度:25nm);去除胶之前,在金属表面利用真空气相法(具体方法是把所述源、漏、栅电极和30μm巯丙基三甲氧基硅烷同时放入真空系统中,保持7000Pa压强20min,最终在电极表面形成一层巯丙基三甲氧基硅烷)修饰一层MPT分子(厚度1~5nm),目的是使聚二甲基硅氧烷PDMS与金属之间有很好的连接,利于金属电极从衬底表面转移下来;修饰完MPT之后,再利用N-甲基吡咯烷酮溶液去胶,目的是只在金属表面修饰MPT,衬底表面没有MPT分子。
3、在光刻和修饰MPT后的源/漏电极和栅电极上分别旋涂不同厚度的聚二甲基硅氧烷(PDMS)并固化:
以10:1(PDMS:固化剂,体积比)的比例配置PDMS溶液,搅拌后静置2小时;直接在光刻和修饰MPT后的栅电极上旋涂一层200微米PDMS溶液,然后放入烘箱中加热70度固化12小时;把静置后的PDMS放入正己烷的溶液中进行稀释,体积比为1:10,搅拌并静置;在光刻和修饰MPT后的源/漏电极上旋涂一层1μm PDMS的正己烷溶液,然后放入烘箱中加热70度固化12小时。
4、氧等离子体处理源/漏,栅电极表面:首先把带有栅极的PDMS从硅衬底上转移下来;然后把转移下来的栅极与带有PDMS的源/漏电极同时放进氧等离子体中处理100s,使其表面羟基化—栅极的带有金属电极的表面和源/漏电极的PDMS层表面。
5、裁剪源/漏电极:利用探针(对于精细电极)裁剪带有PDMS的源/漏电极,目的是方便以后测试。
6、对正栅电极和源/漏电极并加热:利用对正工具(可以实现上下左右调平)在显微镜下使栅电极和源/漏电极对正;把对正之后的电极放入烘箱中(温度:70度)加热10分钟,目的是使栅电极和源/漏电极形成不可逆的键,使其紧密连接,至此,源/漏电极的PDMS层与栅极的金属电极表面连接在一起。
7、利用带有较厚PDMS的栅电极把带有薄的PDMS的源/漏电极整体转移下来,这就形成了多层平面内嵌迭片电极。因为PDMS和金属本身的柔性就很好,所以形成的电极,绝缘层和衬底是全柔性的平面内嵌迭片电极,如图3所示。
将酞菁铜有机单晶(酞菁铜单晶的尺寸为:长度:260μm;宽度:4.35μm;厚度为0.15μm)放置在本实施例制备的柔性平面内嵌迭片电极上,就形成了有机单晶场效应晶体管,如图4所示,其中图4(a)为柔性平面内嵌迭片电极场效应晶体管的结构示意图,图4(b)为柔性平面内嵌迭片电极场效应晶体管的显微镜图。
上述酞菁铜单晶场效应晶体管的转移曲线如图5(a)所示,输出曲线如图5(b)所示。
由图5可得知,酞菁铜的迁移率为0.243cm2/Vs。利用本发明多层柔性平面内嵌迭片电极制备的有机单晶场效应晶体管的迁移率高于文献中的酞菁铜(AdvancedMaterials2006,18,65)单晶场效应晶体管的迁移率。上述结果一方面表明,本发明的多层柔性平面内嵌电极可以制备出高性能的有机单晶场效应晶体管。
本发明制备的柔性平面内嵌迭片电极,由于半导体和电极和绝缘层之间是通过静电吸附的作用结合在一起的,所以可以把有机单晶转移下来,这样就可以实现本专利制备的柔性平面内嵌迭片电极重复利用的特点。图6是柔性平面内嵌迭片电极重复利用酞菁铜有机单晶场效应晶体管的显微镜图(图6插图)和器件转移曲线图(图6(b))。
本发明制备的多层柔性平面内嵌迭片电极,由于在电极图案化过程是通过光刻技术制备的,可以形成精度高,复杂的图案。因此利用这种柔性平面内嵌迭片电极就可以实现高集成度的器件制备。图7(a)和图7(b)分别表示利用这种平面内嵌迭片电极一次可以制备多个不同沟道的酞菁铜有机单晶场效应晶体管的显微镜图和器件转移曲线图。
本发明制备的电极,是一种柔性平面内嵌的电极,这种电极可以适用于各种尺寸的有机单晶。图8(a)和图8(b)分别表示利用这种多层平面内嵌迭片电极可以应用到酞菁铜的微/纳单晶的显微镜图和转移曲线图。
利用本发明提供的平面内嵌迭片电极可以应用到大尺寸单晶(>100微米)上,如放置酞菁铜大尺寸单晶得到的有机单晶场效应晶体管的显微镜图如图9(a)所示,其转移曲线如图9(b)所示。
实施例2、制备柔性平面内嵌迭片电极
1、十八烷基三氯硅烷OTS修饰玻璃表面:首先把衬底表面清洗干净;然后把衬底放入食人鱼洗液(浓硫酸与过氧化氢体积比7:3的溶液)中,在衬底表面形成羟基化;再次清洗衬底;把衬底放入体积比1000:1的正庚烷的OTS溶液中,使衬底表面形成一层OTS。
2、在OTS修饰的衬底上分别利用光刻的方法制备源/漏电极和栅电极并在金属表面修饰巯丙基三甲氧基硅烷(MPT):首先利用AZ5214E光刻胶在衬底上分别光刻(烘烤温度:100度;烘烤时间:3min;曝光时间:20s;显影时间:60s;定影时间:30s)源/漏电极和栅电极;然后真空蒸镀一层金(真空度:10-6torr;蒸镀速率:0.01nm/s;蒸镀厚度:25nm);去胶之前,在金属表面利用真空(真空度为7000Pa)气相法(具体方法是把所述源、漏、栅电极和30μm巯丙基三甲氧基硅烷同时放入真空系统中,保持7000Pa压强20min)修饰一层MPT分子(1~5nm),目的是使聚二甲基硅氧烷PDMS与金属之间有很好的链接,利于金属电极从衬底表面转移下来;修饰完MPT之后,再利用N-甲基吡咯烷酮溶液去胶,目的是只在金属表面修饰MPT,衬底表面没有MPT分子。
3、在光刻和修饰MPT后的源/漏电极和栅电极上分别旋涂不同厚度的聚二甲基硅氧烷PDMS并固化:
以10:1(PDMS:固化剂,体积比)的比例配置PDMS溶液,搅拌后静置1个小时;直接在光刻和修饰MPT后的栅电极上旋涂一层200微米PDMS溶液,然后放入烘箱中加热固化(加热70度固化12小时);把静置后的PDMS放入正己烷的溶液中稀释10倍,搅拌并静置;在光刻和修饰MPT后的源/漏电极上旋涂一层稀释的PDMS的正己烷溶液(厚度1μm左右),然后放入烘箱中加热70度固化12个小时以上。
4、氧等离子体处理源/漏,栅电极表面:首先把带有栅极的PDMS转移下来;然后把转移下来的栅极与带有PDMS的源/漏电极同时放进氧等离子体中处理100s,使其表面羟基化—栅极的带有金属电极的表面、源/漏电极的PDMS层表面。
5、裁剪源/漏电极:利用探针或刀片(对于宏观电极)裁剪带有PDMS的源/漏电极,目的是方面以后测试。
6、对正栅电极和源/漏电极并加热:利用对正工具使栅电极和源/漏电极对正;把对正之后的电极放入烘箱中(温度:70度)加热10分钟,目的是使栅电极和源/漏电极形成不可逆的键,使其紧密连接,至此,源/漏电极的PDMS层与栅极的金属电极表面连接在一起。
7、利用带有较厚PDMS的栅电极把带有薄的PDMS的源/漏电极整体转移下来,这就形成了平面内嵌迭片电极。因为PDMS和金属本身的柔性就很好,所以形成的电极,绝缘层和衬底是全柔性的平面内嵌迭片电极。
把红荧烯有机单晶放在多层柔性平面内嵌迭片电极上,就形成了有机单晶场效应晶体管(红荧烯单晶的尺寸为:长度:300μm;宽度:7.5μm;厚度为0.2μm)。红荧烯器件的迁移率为2.4cm2/Vs。图10(a)和图10(b)分别是红荧烯器件转移曲线和输出曲线。利用本发明多层柔性平面内嵌迭片电极制备的有机单晶场效应晶体管的迁移率高于文献中红荧烯(Nature2006,444,913)单晶场效应晶体管的迁移率。上述结果一方面表明,本发明的柔性平面内嵌电极可以制备出高性能的有机单晶场效应晶体管,另一方面表明本发明的多层柔性平面内嵌迭片电极可以应用到多种有机单晶半导体上,并制备高性能有机单晶场效应晶体管。
实施例3、制备柔性平面内嵌迭片电极
1、十八烷基三氯硅烷OTS修饰玻璃表面:首先把衬底表面清洗干净;然后把衬底放入食人鱼洗液(浓硫酸与过氧化氢体积比7:3的溶液)中,在衬底表面形成羟基化;再次清洗衬底;把衬底放入体积比1000:1的正庚烷的OTS溶液中,使衬底表面形成一层OTS。
2、在OTS修饰的衬底上分别利用光刻的方法制备源/漏电极和栅电极并在金属表面修饰巯丙基三甲氧基硅烷(MPT):首先利用AZ5214E光刻胶在衬底上分别光刻(烘烤温度:100度;烘烤时间:3min;曝光时间:20s;显影时间:60s;定影时间:30s)源/漏电极和栅电极;然后真空蒸镀一层金(真空度:10-6torr;蒸镀速率:0.01nm/s;蒸镀厚度:25nm);去胶之前,在金属表面利用真空(真空度为0.01MP)气相法(具体方法是把所述源、漏、栅电极和30μm巯丙基三甲氧基硅烷同时放入真空系统中,保持7000Pa压强20min)修饰一层MPT分子(1~5nm),目的是使的聚二甲基硅氧烷PDMS与金属之间有很好的链接,利于金属电极从衬底表面转移下来;修饰完MPT之后,再利用N-甲基吡咯烷酮溶液去胶,目的是只在金属表面修饰MPT,衬底表面没有MPT分子。
3、在光刻和修饰MPT后的源/漏电极和栅电极上分别旋涂不同厚度的聚二甲基硅氧烷PDMS并固化:
以10:1(PDMS:固化剂,质量比)的比例配置PDMS溶液,搅拌后静置;直接在光刻和修饰MPT后的栅电极上旋涂一层100微米PDMS溶液,然后放入烘箱中加热固化(加热70度固化12小时);把静置后的PDMS放入正己烷的溶液中稀释4倍,搅拌并静置;在光刻和修饰MPT后的源/漏电极上旋涂一层稀释的PDMS的正己烷溶液(厚度5微米左右),然后放入烘箱中加热70度固化12小时。
4、氧等离子体处理源/漏,栅电极表面:首先把带有栅极的PDMS转移下来;然后把转移下来的栅极与带有PDMS的源/漏电极同时放进氧等离子体中处理100s,使其表面羟基化—栅极的带有金属电极表面、源/漏电极的PDMS层表面。
5、裁剪源/漏电极:利用探针(对于精细电极)裁剪带有PDMS的源/漏电极,目的是方面以后测试。
6、对正栅电极和源/漏电极并加热:利用对正工具使栅电极和源/漏电极对正;把对正之后的电极放入烘箱中加热(温度:70度;时间:20min),目的是使栅电极和源/漏电极形成不可逆的键,使其紧密连接,至此,源/漏电极的PDMS层与栅极的金属电极表面连接在一起。
7、利用带有较厚PDMS的栅电极把带有薄的PDMS的源/漏电极整体转移下来,这就形成了平面内嵌迭片电极。因为PDMS和金属本身的柔性就很好,所以形成的电极,绝缘层和衬底是全柔性的平面内嵌迭片电极。
把红荧烯有机单晶放在多层柔性平面内嵌迭片电极上,就形成了有机单晶场效应晶体管(红荧烯单晶的尺寸为:410μm;宽度:9.9μm;厚度为0.4μm)。红荧烯器件的迁移率最高为25.23cm2/Vs。图11(a)和图11(b)分别是红荧烯器件转移曲线和输出曲线。利用本发明多层柔性平面内嵌迭片电极制备的有机单晶场效应晶体管的迁移率是高于目前报告的红荧烯单晶的最高值(Physical Review Letters2004,93,086602)。上述结果一方面表明,本发明的柔性平面内嵌电极可以制备出高性能的有机单晶场效应晶体管。

Claims (8)

1.一种柔性平面内嵌迭片电极的制备方法,包括如下步骤:
(1)在衬底的表面连接十八烷基三氯硅烷;
(2)在经步骤(1)修饰之后的衬底上,利用光刻的方法分别制备源电极、漏电极和栅电极;并在所述源电极、所述漏电极和所述栅电极的金属电极表面利用气相法连接巯丙基三甲氧基硅烷;
(3)在步骤(2)的得到的所述源电极、所述漏电极和所述栅电极的金属电极表面分别旋涂聚二甲基硅氧烷,并进行固化;
(4)将旋涂有聚二甲基硅氧烷的所述栅电极从所述衬底上进行转移;将所述栅电极的金属电极表面、所述源电极和所述漏电极的聚二甲基硅氧烷表面分别进行氧等离子体处理,即在表面形成羟基;
(5)剪裁所述源电极和所述漏电极;将所述栅电极的金属电极表面、所述源电极和所述漏电极的聚二甲基硅氧烷表面进行对正,并放入烘箱中加热,则将所述栅电极、所述源电极和所述漏电极连接形成一整体,即得到所述多层柔性平面内嵌迭片电极。
2.根据权利要求1所述的制备方法,其特征在于:步骤(1)中,连接十八烷基三氯硅烷的步骤如下:
将清洗后的所述衬底静置于浓硫酸与过氧化氢体积比为7:3的混合溶液中;然后清洗所述衬底,再将所述衬底置于正庚烷与十八烷基三氯硅烷体积比为1000:1的混合溶液中,即在所述衬底表面连接上所述十八烷基三氯硅烷。
3.根据权利要求1或2所述的制备方法,其特征在于:步骤(2)中,所述光刻的方法的条件如下:
在所述衬底上旋涂光刻胶,经加热后置于365nm下的紫外灯下进行曝光,然后依次经显影和定影后,进行蒸镀金属;
利用真空气相法在金属电极表面连接所述巯丙基三甲氧基硅烷。
4.根据权利要求1-3中任一项所述的制备方法,其特征在于:步骤(3)中,所述栅电极上旋涂的所述聚二甲基硅氧烷的厚度为50~500μm;
所述源电极和所述漏电极上旋涂的所述聚二甲基硅氧烷的厚度均为0.8~5μm;
所述固化的温度为70℃~100℃,所述固化的时间可为12~2小时。
5.根据权利要求1-4中任一项所述的制备方法,其特征在于:步骤(4)中,所述氧等离子体处理的时间为10秒~60秒。
6.根据权利要求1-5中任一项所述的制备方法,其特征在于:步骤(5)中,所述加热的温度为70℃~100℃,所述加热的10~30min。
7.权利要求1-6中任一项所述方法制备的多层柔性平面内嵌迭片电极。
8.权利要求7所述多层柔性平面内嵌迭片电极在制备有机场单晶场效应晶体管中的应用。
CN201410341768.5A 2014-07-17 2014-07-17 多层柔性平面内嵌迭片电极及其制备方法与在有机场单晶场效应晶体管中的应用 Active CN104134749B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201410341768.5A CN104134749B (zh) 2014-07-17 2014-07-17 多层柔性平面内嵌迭片电极及其制备方法与在有机场单晶场效应晶体管中的应用
US14/910,635 US10135016B2 (en) 2014-07-17 2015-06-26 Multilayer flexible planar embedded laminated electrode and manufacturing method and application thereof
PCT/CN2015/000460 WO2016008276A1 (zh) 2014-07-17 2015-06-26 多层柔性平面内嵌迭片电极及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410341768.5A CN104134749B (zh) 2014-07-17 2014-07-17 多层柔性平面内嵌迭片电极及其制备方法与在有机场单晶场效应晶体管中的应用

Publications (2)

Publication Number Publication Date
CN104134749A true CN104134749A (zh) 2014-11-05
CN104134749B CN104134749B (zh) 2017-03-01

Family

ID=51807349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410341768.5A Active CN104134749B (zh) 2014-07-17 2014-07-17 多层柔性平面内嵌迭片电极及其制备方法与在有机场单晶场效应晶体管中的应用

Country Status (3)

Country Link
US (1) US10135016B2 (zh)
CN (1) CN104134749B (zh)
WO (1) WO2016008276A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016008276A1 (zh) * 2014-07-17 2016-01-21 东北师范大学 多层柔性平面内嵌迭片电极及其制备方法与应用
CN106505148A (zh) * 2015-09-08 2017-03-15 东北师范大学 一种基于迭片电极的有机薄膜场效应晶体管及其制备方法
CN108878649A (zh) * 2017-05-08 2018-11-23 东北师范大学 自支撑超薄柔性高性能有机薄膜场效应晶体管及其制备方法
CN108962744A (zh) * 2017-05-25 2018-12-07 东北师范大学 一种柔性且透明的导电聚合物聚吡咯图案化方法及其应用
CN110190188A (zh) * 2019-05-23 2019-08-30 东北师范大学 一种聚合物半导体薄膜制备方法及应用
WO2019196423A1 (zh) * 2018-04-11 2019-10-17 东北师范大学 一种随形贴合有机场效应晶体管及晶体管阵列和它们的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113106903B (zh) * 2021-02-24 2022-05-27 林强 一种机场跑道等离子除胶装备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1545153A (zh) * 2003-11-17 2004-11-10 中国科学院长春应用化学研究所 含有修饰层的有机薄膜晶体管器件及其加工方法
JP2005251876A (ja) * 2004-03-02 2005-09-15 Tdk Corp 有機半導体素子の製造方法、有機半導体素子及びこれを用いた回路装置
CN101783394A (zh) * 2009-01-21 2010-07-21 中国科学院微电子研究所 一种对上电极进行费米能级修饰的方法
US20110272674A1 (en) * 2010-05-06 2011-11-10 Los Alamos National Security, Llc Organic thin film devices with stabilized threshold voltage and mobility, and method for preparing the devices
CN103280527A (zh) * 2013-06-04 2013-09-04 东北师范大学 一种平面内嵌电极的制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080606A (en) 1996-03-26 2000-06-27 The Trustees Of Princeton University Electrophotographic patterning of thin film circuits
EP1367659B1 (en) 2002-05-21 2012-09-05 Semiconductor Energy Laboratory Co., Ltd. Organic field effect transistor
JP2006269599A (ja) * 2005-03-23 2006-10-05 Sony Corp パターン形成方法、有機電界効果型トランジスタの製造方法、及び、フレキシブルプリント回路板の製造方法
JP2008258558A (ja) 2007-03-13 2008-10-23 Tohoku Univ ショットキーゲート型電界効果トランジスタ
FR2926162B1 (fr) * 2008-01-03 2017-09-01 Centre Nat De La Rech Scient - Cnrs Procede de modification localisee de l'energie de surface d'un substrat
CN101645487B (zh) 2009-03-27 2013-01-02 中国科学院化学研究所 一种光传感有机场效应晶体管及其制备方法
CN101931052A (zh) 2010-08-17 2010-12-29 中国科学院苏州纳米技术与纳米仿生研究所 有机单晶场效应晶体管的制备方法
JP2013098487A (ja) 2011-11-04 2013-05-20 Sony Corp 有機半導体素子の製造方法、有機半導体素子および電子機器
CN103000809B (zh) 2012-12-20 2015-06-03 东北师范大学 一种提高有机场效应晶体管性能的方法
CN104134749B (zh) 2014-07-17 2017-03-01 东北师范大学 多层柔性平面内嵌迭片电极及其制备方法与在有机场单晶场效应晶体管中的应用
CN104112819B (zh) 2014-07-17 2017-06-20 东北师范大学 一种有机单晶场效应电路及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1545153A (zh) * 2003-11-17 2004-11-10 中国科学院长春应用化学研究所 含有修饰层的有机薄膜晶体管器件及其加工方法
JP2005251876A (ja) * 2004-03-02 2005-09-15 Tdk Corp 有機半導体素子の製造方法、有機半導体素子及びこれを用いた回路装置
CN101783394A (zh) * 2009-01-21 2010-07-21 中国科学院微电子研究所 一种对上电极进行费米能级修饰的方法
US20110272674A1 (en) * 2010-05-06 2011-11-10 Los Alamos National Security, Llc Organic thin film devices with stabilized threshold voltage and mobility, and method for preparing the devices
CN103280527A (zh) * 2013-06-04 2013-09-04 东北师范大学 一种平面内嵌电极的制备方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016008276A1 (zh) * 2014-07-17 2016-01-21 东北师范大学 多层柔性平面内嵌迭片电极及其制备方法与应用
US10135016B2 (en) 2014-07-17 2018-11-20 Northeast Normal University Multilayer flexible planar embedded laminated electrode and manufacturing method and application thereof
CN106505148A (zh) * 2015-09-08 2017-03-15 东北师范大学 一种基于迭片电极的有机薄膜场效应晶体管及其制备方法
CN106505148B (zh) * 2015-09-08 2019-08-09 东北师范大学 一种基于迭片电极的有机薄膜场效应晶体管及其制备方法
CN108878649A (zh) * 2017-05-08 2018-11-23 东北师范大学 自支撑超薄柔性高性能有机薄膜场效应晶体管及其制备方法
CN108878649B (zh) * 2017-05-08 2021-12-17 东北师范大学 自支撑超薄柔性高性能有机薄膜场效应晶体管及其制备方法
CN108962744B (zh) * 2017-05-25 2020-07-07 东北师范大学 一种柔性且透明的导电聚合物聚吡咯图案化方法及其应用
CN108962744A (zh) * 2017-05-25 2018-12-07 东北师范大学 一种柔性且透明的导电聚合物聚吡咯图案化方法及其应用
WO2019196423A1 (zh) * 2018-04-11 2019-10-17 东北师范大学 一种随形贴合有机场效应晶体管及晶体管阵列和它们的制备方法
CN110364623A (zh) * 2018-04-11 2019-10-22 东北师范大学 一种随形贴合有机场效应晶体管及晶体管阵列和它们的制备方法
CN110364623B (zh) * 2018-04-11 2021-05-18 东北师范大学 一种随形贴合有机场效应晶体管及晶体管阵列和它们的制备方法
US11411190B2 (en) 2018-04-11 2022-08-09 Northeast Normal University Conformal organic field-effect transistor, transistor array, and preparation method thereof
CN110190188A (zh) * 2019-05-23 2019-08-30 东北师范大学 一种聚合物半导体薄膜制备方法及应用
CN110190188B (zh) * 2019-05-23 2022-11-01 东北师范大学 一种聚合物半导体薄膜制备方法及应用

Also Published As

Publication number Publication date
US10135016B2 (en) 2018-11-20
WO2016008276A1 (zh) 2016-01-21
CN104134749B (zh) 2017-03-01
US20170125710A1 (en) 2017-05-04

Similar Documents

Publication Publication Date Title
CN104134749A (zh) 多层柔性平面内嵌迭片电极及其制备方法与在有机场单晶场效应晶体管中的应用
CN104112819B (zh) 一种有机单晶场效应电路及其制备方法
CN103943513B (zh) 一种柔性衬底上制备石墨烯器件的方法
CN102243435B (zh) 一种通过正负光刻胶复合显影制备微纳米流体系统的方法
CN108394858A (zh) 一种pdms柔性超疏水薄膜的制作方法
CN106883828B (zh) 基于图形化碳纳米管阵列的复合型界面散热材料的制备方法
CN102683217A (zh) 一种基于石墨烯的双栅mosfet的制备方法
CN101419400A (zh) 一种通过金属铬掩蔽膜进行干法刻蚀的方法
CN103011140B (zh) 利用光刻胶制备石墨烯/石墨图案的方法
CN105006482B (zh) 一种石墨烯场效应晶体管的制备方法
CN106505148B (zh) 一种基于迭片电极的有机薄膜场效应晶体管及其制备方法
CN102569054A (zh) 一种t型栅的制备方法
CN109179312B (zh) 一种图案化金属薄膜的制备方法
KR20140096863A (ko) 그래핀 패턴 형성 방법
CN105047548B (zh) 一种电子束曝光制备10纳米t型栅的方法
CN100585903C (zh) 一次掩膜光刻同时定义有机薄膜晶体管源漏栅电极的方法
CN107093607B (zh) 阵列基板、显示基板的制作方法、显示基板及显示面板
CN115373215A (zh) 一种采用光刻方法制备薄膜掩模版的方法及其应用
CN103435036B (zh) 一种石墨烯选择性定点转移方法
Horibe et al. Novolak resist removal by laser irradiation (532 nm) and adhesion between resist and substrate
CN105575895A (zh) 一种利用二维半导体制作场控带通晶体管阵列器件的方法
CN104465326A (zh) 一种采用Stencil光刻制备非损伤石墨烯纳米器件的方法
Choo et al. Fabrication of amorphous silicon thin-film transistor by micro imprint lithography
CN102903850A (zh) 一种有机场效应晶体管的制作方法
CN108336143A (zh) 柔性背板及其制作方法、柔性显示装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB03 Change of inventor or designer information

Inventor after: Tong Yanhong

Inventor after: Liu Yichun

Inventor after: Tang Qingxin

Inventor after: Zhao Xiaoli

Inventor before: Tong Yanhong

Inventor before: Tang Qingxin

Inventor before: Zhao Xiaoli

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: TONG YANHONG TANG QINGXIN ZHAO XIAOLI TO: TONG YANHONG LIU YICHUN TANG QINGXIN ZHAO XIAOLI

GR01 Patent grant
GR01 Patent grant