CN104114259B - 有效吸收和回收废气中二氧化碳的水溶液及用其回收二氧化碳的方法 - Google Patents

有效吸收和回收废气中二氧化碳的水溶液及用其回收二氧化碳的方法 Download PDF

Info

Publication number
CN104114259B
CN104114259B CN201380008732.9A CN201380008732A CN104114259B CN 104114259 B CN104114259 B CN 104114259B CN 201380008732 A CN201380008732 A CN 201380008732A CN 104114259 B CN104114259 B CN 104114259B
Authority
CN
China
Prior art keywords
aqueous solution
carbon dioxide
weight
concentration
reclaim
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201380008732.9A
Other languages
English (en)
Other versions
CN104114259A (zh
Inventor
东井隆行
F·A·乔杜里
后藤和也
小野田正巳
松崎洋市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of CN104114259A publication Critical patent/CN104114259A/zh
Application granted granted Critical
Publication of CN104114259B publication Critical patent/CN104114259B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1418Recovery of products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20405Monoamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/2041Diamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20426Secondary amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20431Tertiary amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines
    • B01D2252/20484Alkanolamines with one hydroxyl group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/50Combinations of absorbents
    • B01D2252/504Mixtures of two or more absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/60Additives
    • B01D2252/604Stabilisers or agents inhibiting degradation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/60Additives
    • B01D2252/606Anticorrosion agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0233Other waste gases from cement factories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/025Other waste gases from metallurgy plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

公开了用于由含有二氧化碳的气体吸收和回收二氧化碳的水溶液,该水溶液含有由式1表示的氨基醇化合物和由式2表示的胺化合物,其中R代表具有1至5个碳原子的烷基,n等于1或2,

Description

有效吸收和回收废气中二氧化碳的水溶液及用其回收二氧化碳的方法
技术领域
本发明涉及用于吸收和回收气体中所含的CO2的水溶液以及通过利用所述水溶液有效地吸收和回收气体中所含的CO2的方法。
背景技术
近年来,频繁发生的气候变化和自然灾害被认为是归因于全球变暖,使农业生产、居住环境、能量消耗等受到巨大的影响。全球变暖被认为是由于人类密集的工业活动造成在大气中以CO2为代表的温室气体增多。因此,急需降低大气中的CO2浓度的措施。
CO2的主要来源包括使用煤、重油、天然气等作为燃料的火力发电厂、工厂锅炉、水泥厂窑炉、用焦炭还原氧化铁的炼铁厂的高炉、以及使用汽油、重油、轻油等作为燃料的运输设备,如汽车、船舶、飞机等。除了运输设备以外的这些CO2的来源是固定的设施,并期待容易实施用于减少CO2向大气排放的措施。
有人研究了种类繁多的从上述来源排放的气体回收CO2的方法,若干方法是已知的。
例如,通过在吸收塔中将链烷醇胺的水溶液与含有CO2的气体接触而吸收CO2的方法是公知的。已知的链烷醇胺的例子包括单乙醇胺(下面有时称作“MEA”)、二乙醇胺(DEA)、三乙醇胺(TEA)、甲基二乙醇胺(MDEA)、二异丙醇胺(DIPA)及二甘醇胺(DGA)。通常使用MEA。
但是,伯胺如MEA对于设备材料具有强烈的腐蚀性,因此将该链烷醇胺的水溶液用作CO2的吸收液则需要使用昂贵的耐腐蚀钢材,或者需要降低胺在吸收液中的浓度。此外,虽然吸收的CO2通常是在再生塔中通过加热该溶液至约120℃的温度而释放和回收,但是因为上述链烷醇胺的使用就在吸收塔中CO2的吸收量及在再生塔中CO2的释放量而言是不能令人满意的,所以该方法最终需要消耗大量的能量以回收单位重量的CO2
在力求减少CO2排放及节约能源和自然资源的当今时代,为了吸收和回收CO2而消耗大量的能量是阻碍上述技术实际应用的因素。因此,以更少的能量分离和回收CO2的技术是值得期待的。
作为使用更少的能量分离和回收CO2的现有技术的例子,专利文献1公开了一种通过将具有氨基周围的烷基等的空间位阻的所谓受阻胺的水溶液与大气压下的燃烧废气接触以使该水溶液吸收CO2从而由燃烧废气去除CO2的方法。
在专利文献1中,将2–甲基氨基乙醇(下面有时称作MAE)和2–乙基氨基乙醇(下面有时称作EAE)描述为受阻胺,在实施例中使用MAE和EAE的30重量%水溶液。虽然没有在实施例中使用,受阻胺的其他例子包括胺,如2–(异丙基氨基)乙醇(下面有时称作IPAE)。
专利文献2至6公开了含有N,N,N′,N′–四甲基–1,3–丁二胺或N,N,N′,N′–四甲基己烷–1,6–二胺的吸收液,以及通过使用该吸收液去除CO2的方法。
引用列表
专利文献
专利文献1:第2871334号日本专利
专利文献2:JP 2009-529420 A
专利文献3:JP 2010-110749 A
专利文献4:JP 2010-188336 A
专利文献5:JP 2010-201422 A
专利文献6:JP 2011-528993 A
发明内容
技术问题
如上所述,能量消耗量低并且具有低腐蚀性的CO2吸收液对于分离和回收CO2是值得期待的。
因此,本发明的目的是提供不仅高效地吸收气体中的CO2而且高效地释放CO2从而以低能耗回收高纯度CO2的水溶液和方法。具体而言,本发明的目的是提供可用于通过有效地吸收和释放CO2回收高纯度CO2、即每单位量的水溶液吸收和释放CO2的量大同时需要低的能量以释放CO2的水溶液,并且提供使用该水溶液吸收和回收CO2的方法。
解决问题的方案
本发明的发明人对于能够有效地吸收和释放CO2以回收高纯度CO2的吸收液进行了广泛的研究。因此,本发明的发明人发现,含有由式1表示的氨基醇化合物及由式2表示的胺化合物的水溶液吸收和释放CO2的量大,同时显示出优异的吸收速率,从而显著提高了在一次吸收和释放的循环中单位量的吸收液回收CO2的量,并且使以更低的能耗回收CO2变为可能。因此,本发明的发明人完成了本发明。
具体而言,通过以下第1至5项定义本发明。
第1项、用于由含有二氧化碳的气体吸收和回收二氧化碳的水溶液,该水溶液含有由式1表示的氨基醇化合物及由式2表示的胺化合物,
其中R代表具有1至5个碳原子的烷基,n等于1或2,
其中X代表–NR1R2;Y代表–NR3R4;R1、R2、R3和R4可相同或不同,各自代表具有1至3个碳原子的烷基;m代表3至7的整数。
第2项、根据第1项的水溶液,其中氨基醇化合物和胺化合物的总浓度为20至80重量%;氨基醇化合物的浓度为10至70重量%;胺化合物的浓度为1至50重量%。
第3项、根据第2项的水溶液,其中氨基醇化合物的浓度为30至60重量%;胺化合物的浓度为1至40重量%。
第4项、根据第1至3项之一的水溶液,其中氨基醇化合物的R代表具有2至4个碳原子的烷基;胺化合物的m代表5至7的整数。
第5项、用于吸收和回收二氧化碳的方法,该方法包括以下步骤:
(1)将根据第1至4项之一的水溶液与含有二氧化碳的气体接触以从所述气体吸收二氧化碳;及
(2)加热在步骤(1)中获得的其中含有吸收的二氧化碳的水溶液以释放二氧化碳,从而回收二氧化碳。
本发明的有利效果
通过使用根据本发明的水溶液分离和回收CO2能够提高在每次吸收和释放CO2的循环中回收CO2的量,并且每单位重量的所述水溶液分离和回收CO2所需的能量更少,从而以低能耗有效地回收高纯度CO2。此外,这减少了在整个吸收-释放循环中的循环流量,从而能够缩小吸收塔、释放塔及其他相关装置的尺寸。
广泛使用的MEA对于碳钢具有强烈的腐蚀性,并且被认为特别是在高浓度的情况下变得腐蚀性更高。另一方面,本发明中使用的水溶液的腐蚀性低,有利的是不需要使用昂贵的高等级耐腐蚀钢材。
具体实施方式
下面详细描述本发明。
用于吸收和回收二氧化碳的水溶液
根据本发明的用于由含有CO2的气体吸收和回收CO2的水溶液含有由式1表示的氨基醇化合物和由式2表示的胺化合物,
其中R代表具有1至5个碳原子的烷基,n等于1或2,
其中X代表–NR1R2;Y代表–NR3R4;R1、R2、R3和R4可相同或不同,各自代表具有1至3个碳原子的烷基;m代表3至7的整数。
具有1至5个碳原子的烷基可以是直链或分支的,其例子包括甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、正戊基和异戊基。R优选为具有2至4个碳原子的烷基,其例子包括乙基、正丙基、异丙基、正丁基和异丁基,更优选为异丙基、正丁基和异丁基。
具有1至3个碳原子的烷基可以是直链或分支的,其例子包括甲基、乙基、正丙基和异丙基。R1、R2、R3和R4优选为甲基或乙基。
m优选等于5至7,更优选等于5。
由式1表示的氨基醇化合物的例子包括N–乙基乙醇胺、N–正丙基乙醇胺、N–异丙基乙醇胺、N–正丁基乙醇胺、N–异丁基乙醇胺、3–乙基氨基–1–丙醇、3–正丙基氨基–1–丙醇、3–异丙基氨基–1–丙醇、3–正丁基氨基–1–丙醇及3–异丁基氨基–1–丙醇。它们可用于工业应用。
由式2表示的胺化合物的例子包括N,N,N′,N′–四甲基–1,4–丁二胺、N,N,N′,N′–四甲基–1,5–戊二胺、N,N,N′,N′–四甲基–1,6–己二胺、N,N,N′,N′–四甲基–1,8–辛二胺、N,N,N′,N′–四乙基–1,4–丁二胺、N,N,N′,N′–四乙基–1,5–戊二胺、N,N,N′,N′–四乙基–1,6–己二胺和N,N,N′,N′–四乙基–1,8–辛二胺。它们可用于工业应用。
由式1表示的氨基醇化合物和由式2表示的胺化合物的总浓度优选为20至80重量%;由式1表示的氨基醇化合物的浓度优选为10至70重量%;由式2表示的胺化合物的浓度优选为1至50重量%。由式1表示的氨基醇化合物的浓度更优选为30至60重量%,由式2表示的胺化合物的浓度更优选为1至40重量%。
若希望,根据本发明的水溶液可以含有稳定剂(例如抗氧剂)以确保水溶液的化学或物理稳定性,或者含有抑制剂(例如腐蚀抑制剂)以防止其中使用本发明的水溶液的装置和设备的材料恶化。
由式1表示的氨基醇化合物和由式2表示的胺化合物可以商购获得,或者通过已知方法制备。
含有CO2的气体的例子包括:来自使用煤、重油、天然气等作为燃料的火力发电厂、工厂锅炉、水泥厂窑炉、用焦炭还原氧化铁的炼铁厂的高炉、燃烧生铁中的碳以生产钢材的炼钢厂的转炉、整体煤气化联合循环设备等的废气;未经处理的天然气;及改质气。这些气体的CO2浓度通常在约5至30体积%、特别是约6至25体积%的范围内。在CO2浓度在该范围内时,有利地产生本发明的效果。所述含有CO2的气体除了CO2以外还可以含有诸如水蒸汽、CO、H2S、COS、SO2、NO2、氢等的气体。
用于吸收和回收二氧化碳的方法
根据本发明的用于吸收和回收CO2的方法包括以下步骤:
(1)将上述水溶液与含有CO2的气体接触以从所述气体吸收CO2;及
(2)加热在步骤(1)中获得的其中含有吸收的CO2的水溶液以释放和回收CO2
·吸收二氧化碳的步骤
根据本发明的方法包括将上述水溶液与含有CO2的气体接触以从所述气体吸收CO2的步骤。对于将本发明的水溶液与含有CO2的气体接触以吸收CO2的方法没有特别的限制。例子包括:包括将含有CO2的气体在该水溶液中鼓泡以吸收CO2的方法、包括将该水溶液以雾状喷洒在含有CO2的气体流中(雾化或喷雾法)的方法、或者包括在包含陶瓷或金属筛网填料的吸收塔中将该水溶液在逆流中与含有CO2的气体接触的方法。
通常在由室温至60℃的范围内、优选50℃以下、更优选在约20至45℃的范围内的温度下在水溶液中吸收含有CO2的气体。温度越低,则吸收量越大。然而,应当根据废气的气温、热回收目标等确定降低温度的程度。通常在大气压下吸收二氧化碳。虽然可以升高压力至更高的水平以提高吸收能力,但是优选在大气压下进行吸收以抑制压缩所需的能耗。
所述含有CO2的气体与上述气体相同。
·释放二氧化碳的步骤
根据本发明的方法包括加热在吸收CO2的步骤中获得的水溶液从而释放和回收CO2的步骤。
通过由其中含有吸收的CO2的水溶液释放出CO2而回收纯或高浓度CO2的方法的例子包括:包括以与蒸馏相同的方式在容器中加热和煮沸该水溶液的方法、包括在板式蒸馏塔、喷淋塔或包含陶瓷或金属筛网填料的释放塔中加热该水溶液以增大液体接触界面的方法。由此由重碳酸离子释出和释放CO2
在通常为70℃以上、优选80℃以上、更优选约90至120℃的溶液温度下释放CO2。温度越高,则吸收量越大;然而,温度升高导致加热吸收液所需的能量增加。因此,该温度根据该工艺过程中的气温、热回收目标等加以确定。将释放CO2的胺的水溶液重新送至CO2吸收步骤从而将其循环使用。在此期间,将在CO2释放步骤中施加的热量有效地用于循环过程中以通过热交换升高有待送至CO2释放步骤的水溶液的温度,从而减少整个回收过程的能耗。
如此回收的CO2的纯度通常为99体积%以上,这意味着其纯度极高,并且可以用于化学工业或食品工业。此外,对于目前考虑用于实际应用的EOR(提高的原油采收Enhanced Oil Recovery)或CCS,还可以将回收的CO2储存在地下。
实施例
以下实施例详细地阐述本发明。然而,本发明并不限制于实施例。
实施例1
将玻璃制洗气瓶浸入液温被设定在40℃的恒温水浴中。该瓶装有50克含有50重量%的2–(异丙基氨基)乙醇(IPAE,东京化成工业社制)和10重量%的N,N,N′,N′–四甲基–1,6–己二胺(TMHA,东京化成工业社制)的水溶液。将20体积%二氧化碳和80体积%氮气的气体混合物在大气压下以0.7L/min的流量引入该水溶液中通过孔径为100μm且直径为13mm的玻璃过滤器,从而将该气体以气泡形式分散并进行吸收60分钟。
使用红外二氧化碳计(HORIBA GAS ANALYZER VA-3000)在吸收液的入口和出口处连续地测定气体中的CO2浓度,由入口与出口之间的CO2流量之差测定CO2的吸收量。若需要,利用气相色谱式全有机碳分析仪(SHIMADZU TOC-VCSH)测定吸收液中无机碳的量,并与通过使用红外二氧化碳计获得的数值进行比较。饱和吸收量定义为直至吸收液在出口处的CO2浓度变得等于入口处的CO2浓度时的CO2吸收量。因为吸收速率取决于吸收量发生改变,所以测定和比较CO2吸收量等于饱和吸收量的1/2时的吸收速率。然后在相同气流中升高溶液温度至70℃历时若干分钟,在相同条件下测定CO2的释放量历时60分钟。
使用差示量热计(DRC Evolution,由SETARAM生产),通过在40℃下使预定量的CO2扩散在两个相同形状的、均装配有搅拌器的吸收装置的一个反应器中,并在此期间测定两个反应器之间的发热量之差,从而确定发热量。
实施例2至5
依照实施例1的过程,区别在于使用含有表1中所示浓度的IPAE和TMHA的水溶液代替含有50重量%的IPAE和10重量%的TMHA的水溶液,测定CO2的饱和吸收量、吸收速率、发热量和释放量。
实施例6
依照实施例1的过程,区别在于使用含有表1中所示浓度的3–异丙基氨基–1–丙醇(IPAP)和TMHA的水溶液代替含有50重量%的IPAE和10重量%的TMHA的水溶液,测定CO2的饱和吸收量、吸收速率、发热量和释放量。
实施例7至9
依照实施例1的过程,区别在于使用含有表1中所示浓度的IPAP和TMHA的水溶液代替含有50重量%的IPAE和10重量%的TMHA的水溶液,测定CO2的饱和吸收量、吸收速率和释放量。
实施例10至12
依照实施例1的过程,区别在于使用含有表1中所示浓度的2–乙基氨基–1–乙醇(EAE)和TMHA的水溶液代替含有50重量%的IPAE和10重量%的TMHA的水溶液,测定CO2的饱和吸收量、吸收速率和释放量。
与IPAE相比,EAE容易商购获得并且价格低廉;因此EAE在吸收液的成本方面是有利的。同比较例8和9相比可以清楚地看出,即使在使用EAE时,通过添加根据本发明的胺化合物显著地提高了CO2的释放量,这是吸收液的非常重要的特性。
实施例13至15
依照实施例1的过程,区别在于使用含有IPAE和N,N,N′,N′–四甲基–1,4–丁二胺(TMBA,东京化成工业社制)的水溶液代替含有IPAE和TMHA的水溶液,测定CO2的饱和吸收量和释放量。结果表明,与使用仅含有IPAE的水溶液的情况相比,提高了单位量吸收液的CO2的饱和吸收量和释放量。
比较例1至3
依照实施例1的过程,区别在于使用各自仅含有30、55和60重量%的IPAE的水溶液代替含有50重量%的IPAE和10重量%的TMHA的水溶液,测定CO2的饱和吸收量、吸收速率、发热量和释放量。
比较例4
依照实施例1的过程,区别在于使用含有52重量%的IPAE和3重量%哌嗪(PZ)的水溶液代替含有50重量%的IPAE和10重量%的TMHA的水溶液,测定CO2的饱和吸收量、吸收速率、发热量和释放量。
比较例5和6
依照实施例1的过程,区别在于使用各自含有30重量%和50重量%的TMHA的水溶液代替含有50重量%的IPAE和10重量%的TMHA的水溶液,测定CO2的饱和吸收量、吸收速率、发热量和释放量。
比较例7
依照实施例1的过程,区别在于使用含有30重量%的IPAP的水溶液代替含有50重量%的IPAP和10重量%的TMHA的水溶液,测定CO2的饱和吸收量和释放量。
比较例8和9
依照实施例1的过程,区别在于使用各自含有30重量%和54重量%的EAE的水溶液代替含有50重量%的EAE和10重量%的TMHA的水溶液,测定CO2的饱和吸收量和释放量。
表1所示为实施例1至15和比较例1至9的结果。表1中使用的符号“%”是指“重量%”
表1
实施例1的结果
在40℃的温度下CO2的饱和吸收量为每千克水溶液156克。在70℃的温度下CO2的释放量为每千克吸收液91克。回收的CO2的纯度为99.8%。结果表明,单位量的吸收液的饱和吸收量和释放量明显大于比较例1。因此,确认了本发明的吸收液的特性。
比较例1至3的结果
在30重量%的低浓度的情况下,吸收速率高;然而,在浓度为60重量%时,观察到吸收速率大幅下降。所有的比较例1至3的溶液的饱和吸收量和释放量均小于实施例1至5。
比较例4的结果
已知哌嗪是通过使用链烷醇胺水溶液吸收CO2的反应活化剂,对于饱和吸收量和吸收速率显示出改善的效果。表1中所示的结果表明,实施例1至5的溶液在释放量方面是有利的。
比较例5和6的结果
仅含有TMHA的水溶液在浓度为30重量%时对于释放量没有显示出足够的效果。在浓度为50重量%时,吸收速率大幅下降。表1中所示的结果表明,实施例的溶液是有利的。
比较例7的结果
释放量小于实施例6至9。
比较例8和9的结果
比较例8和9的溶液的释放量均小于实施例10至12。
试验例1
对于实施例1的水溶液实施SS400金属测试件的腐蚀性测试。该测试使用Hastelloy生产的高压釜在130℃下在CO2饱和的气氛中实施48小时。结果是,由实施例1的水溶液对SS400造成的腐蚀是全面腐蚀,计算出腐蚀速率为0.13mm/年。结果表明,实施例1的水溶液具有轻微的腐蚀性。

Claims (5)

1.用于由含有二氧化碳的气体吸收和回收二氧化碳的水溶液,该水溶液含有由式1表示的氨基醇化合物及由式2表示的胺化合物,
其中R代表具有1至5个碳原子的烷基,n等于1或2,
其中X代表–NR1R2;Y代表–NR3R4;R1、R2、R3和R4可相同或不同,各自代表具有1至3个碳原子的烷基;m代表3至7的整数。
2.根据权利要求1的水溶液,其中所述氨基醇化合物和所述胺化合物的总浓度为20至80重量%;所述氨基醇化合物的浓度为10至70重量%;所述胺化合物的浓度为1至50重量%。
3.根据权利要求2的水溶液,其中所述氨基醇化合物的浓度为30至60重量%;所述胺化合物的浓度为1至40重量%。
4.根据权利要求1的水溶液,其中所述氨基醇化合物的R代表具有2至4个碳原子的烷基;胺化合物的m代表5至7的整数。
5.用于吸收和回收二氧化碳的方法,该方法包括以下步骤:
(1)将根据权利要求1的水溶液与含有二氧化碳的气体接触以从所述气体吸收二氧化碳;及
(2)加热在步骤(1)中获得的其中含有吸收的二氧化碳的水溶液以释放二氧化碳,从而回收二氧化碳。
CN201380008732.9A 2012-02-08 2013-02-07 有效吸收和回收废气中二氧化碳的水溶液及用其回收二氧化碳的方法 Expired - Fee Related CN104114259B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012025170 2012-02-08
JP2012-025170 2012-02-08
PCT/JP2013/052860 WO2013118819A1 (ja) 2012-02-08 2013-02-07 排ガス中の二酸化炭素を効率的に吸収及び回収する水溶液、及びそれを用いた二酸化炭素の回収方法

Publications (2)

Publication Number Publication Date
CN104114259A CN104114259A (zh) 2014-10-22
CN104114259B true CN104114259B (zh) 2016-09-07

Family

ID=48947576

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380008732.9A Expired - Fee Related CN104114259B (zh) 2012-02-08 2013-02-07 有效吸收和回收废气中二氧化碳的水溶液及用其回收二氧化碳的方法

Country Status (9)

Country Link
US (1) US9636628B2 (zh)
EP (1) EP2813277B1 (zh)
JP (1) JP6095579B2 (zh)
KR (1) KR101773239B1 (zh)
CN (1) CN104114259B (zh)
BR (1) BR112014019344B1 (zh)
IN (1) IN2014DN05818A (zh)
NO (1) NO2813277T3 (zh)
WO (1) WO2013118819A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5272099B1 (ja) * 2012-07-26 2013-08-28 新日鉄住金エンジニアリング株式会社 二酸化炭素回収方法
FR3011746B1 (fr) * 2013-10-15 2016-09-30 Ifp Energies Now Utilisation d'une solution absorbante dans un procede de desacidification d'un gaz pour limiter la corrosion d'equipements en acier faiblement allie
JP6307279B2 (ja) * 2014-01-09 2018-04-04 新日鉄住金エンジニアリング株式会社 二酸化炭素ガス回収装置及び回収方法
CN105032123B (zh) * 2015-06-30 2018-07-06 中国华能集团清洁能源技术研究院有限公司 一种中低温再生二氧化碳捕集吸收剂的使用方法
JP6607596B2 (ja) * 2015-07-29 2019-11-20 学校法人神戸学院 2−オキサゾリジノン誘導体の製造方法
BR112018071876B1 (pt) * 2016-04-25 2023-04-25 Basf Se Processo para remover gases ácidos e uso de um absorvente
GB2570549B (en) 2017-11-28 2021-12-15 Toshiba Kk Acid gas absorbent, acid gas removal method, and acid gas removal device
WO2019163867A1 (ja) * 2018-02-23 2019-08-29 公益財団法人地球環境産業技術研究機構 二酸化炭素の吸収剤および二酸化炭素の分離回収方法
WO2022129977A1 (en) * 2020-12-17 2022-06-23 Totalenergies Onetech Method for recovering high purity carbon dioxide from a gas mixture
KR102638462B1 (ko) * 2021-01-27 2024-02-21 한국과학기술연구원 이산화탄소 포집용 고성능 흡수제 조성물 및 그 제조 방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1058304A (en) * 1964-03-12 1967-02-08 Shell Int Research Process for the purification of fluids
DE1903065A1 (de) 1969-01-22 1970-08-27 Basf Ag Verfahren zur Entfernung von Kohlendioxid aus Gasgemischen
DE2831040A1 (de) 1977-07-18 1979-02-08 Elf Aquitaine Verfahren zum entsaeuern eines gasgemischs
JP2871334B2 (ja) 1992-02-27 1999-03-17 関西電力株式会社 燃焼排ガス中の二酸化炭素の除去方法
EP0875280B1 (en) * 1993-10-06 2001-08-22 The Kansai Electric Power Co., Inc. Method for removing carbon dioxide from combustion exhaust gas
US5618506A (en) 1994-10-06 1997-04-08 The Kansai Electric Power Co., Inc. Process for removing carbon dioxide from gases
DE19947845A1 (de) 1999-10-05 2001-04-12 Basf Ag Verfahren zum Entfernen von COS aus einem Kohlenwasserstoff-Fluidstrom und Waschflüssikgkeit zur Verwendung in derartigen Verfahren
FR2820430B1 (fr) 2001-02-02 2003-10-31 Inst Francais Du Petrole Procede de desacidification d'un gaz avec lavage des hydrocarbures desorbes lors de la regeneration du solvant
AU2006233153B2 (en) 2005-04-04 2009-04-23 Mitsubishi Heavy Industries, Ltd. Absorbing solution, and method and apparatus for the removal of CO2 or H2S or both
FR2898284B1 (fr) * 2006-03-10 2009-06-05 Inst Francais Du Petrole Procede de desacidification d'un gaz par solution absorbante avec regeneration fractionnee par chauffage.
JP2009006275A (ja) * 2007-06-28 2009-01-15 Research Institute Of Innovative Technology For The Earth 排ガス中の二酸化炭素を効率的に回収する方法
AU2008292143B2 (en) 2007-08-30 2011-12-08 Shell Internationale Research Maatschappij B.V. Process for removal of hydrogen sulphide and carbon dioxide from an acid gas stream
FR2934172B1 (fr) 2008-07-28 2011-10-28 Inst Francais Du Petrole Solution absorbante a base de n,n,n'n'-tetramethylhexane -1,6-diamine et procede d'elimination de composes acides d'un effluent gazeux
FR2936165B1 (fr) 2008-09-23 2011-04-08 Inst Francais Du Petrole Procede de desacidification d'un gaz par solution absorbante avec controle de la demixtion
FR2938452B1 (fr) 2008-11-20 2012-02-03 Inst Francais Du Petrole Procede de desacidification d'un gaz par solution absorbante avec demixtion en cours de regeneration
FR2942729B1 (fr) 2009-03-05 2011-08-19 Inst Francais Du Petrole Procede de desacidification d'un gaz par une solution absorbante, avec section de lavage a l'eau optimisee
JP5662327B2 (ja) 2009-09-24 2015-01-28 株式会社東芝 二酸化炭素吸収液
JP5659128B2 (ja) 2010-12-22 2015-01-28 株式会社東芝 酸性ガス吸収剤、酸性ガス除去方法および酸性ガス除去装置
AU2011254003B2 (en) 2010-12-22 2013-05-16 Kabushiki Kaisha Toshiba Acid gas absorbent, acid gas removal method, and acid gas removal device

Also Published As

Publication number Publication date
JPWO2013118819A1 (ja) 2015-05-11
US9636628B2 (en) 2017-05-02
EP2813277A1 (en) 2014-12-17
KR101773239B1 (ko) 2017-08-31
JP6095579B2 (ja) 2017-03-15
IN2014DN05818A (zh) 2015-05-15
NO2813277T3 (zh) 2018-10-06
CN104114259A (zh) 2014-10-22
WO2013118819A1 (ja) 2013-08-15
BR112014019344B1 (pt) 2021-04-27
BR112014019344A8 (pt) 2017-07-11
KR20140120940A (ko) 2014-10-14
BR112014019344A2 (pt) 2017-06-20
US20150007728A1 (en) 2015-01-08
EP2813277A4 (en) 2015-09-30
EP2813277B1 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
CN104114259B (zh) 有效吸收和回收废气中二氧化碳的水溶液及用其回收二氧化碳的方法
EP2529824B1 (en) Acid gas absorbent and acid gas removal method
JP5452222B2 (ja) ガス中の二酸化炭素を効率的に回収する方法
EP2679296B1 (en) Acid gas absorbent comprising diamine, acid gas removal method, and acid gas removal device
CN103002971B (zh) 高效吸收和回收废气中的二氧化碳的水溶液
JP2008013400A (ja) 排ガス中の二酸化炭素を吸収及び脱離して回収する方法
JP2009006275A (ja) 排ガス中の二酸化炭素を効率的に回収する方法
JP2006240966A (ja) 排ガス中の二酸化炭素を吸収及び脱離して回収する方法
EP2835170A1 (en) Acid gas absorbent, acid gas removal method, and acid gas removal device
EP2959956B1 (en) Liquid for absorbing and recovering carbon dioxide in gas, and method for recovering carbon dioxide with use of same
JP2011194388A (ja) ガス中に含まれる二酸化炭素を効果的に吸収及び回収する水溶液
JP2017035669A (ja) 酸性ガス吸収剤、酸性ガス除去方法および酸性ガス除去装置
AU2016202116B2 (en) Acidic gas absorbing agent, method for removing acidic gas and apparatus for removing acidic gas
JP2015112574A (ja) 酸性ガス吸収剤、酸性ガス除去方法及び酸性ガス除去装置
JP2008168227A (ja) 排ガス中の二酸化炭素の吸収液
JP2008168184A (ja) 排ガス中の二酸化炭素を吸収及び脱離して回収するための組成物及び方法
N Abd et al. Investigation of overall mass transfer coefficient of CO2 absorption in packed Column
KR20170129920A (ko) 이산화탄소를 분리 회수하기 위한 흡수액 및 그것을 사용한 이산화탄소를 분리 회수하는 방법
Abd et al. Al-Qadisiyah Journal for Engineering Sciences
KR20130115927A (ko) 이산화탄소 흡수제 및 이를 이용한 이산화탄소 흡수방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Tokyo, Japan

Patentee after: NIPPON STEEL & SUMITOMO METAL Corp.

Address before: Tokyo, Japan

Patentee before: NIPPON STEEL & SUMITOMO METAL Corp.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160907

Termination date: 20220207