CN104098126A - 一种含氮半导体纳米材料的制备方法 - Google Patents

一种含氮半导体纳米材料的制备方法 Download PDF

Info

Publication number
CN104098126A
CN104098126A CN201410291131.XA CN201410291131A CN104098126A CN 104098126 A CN104098126 A CN 104098126A CN 201410291131 A CN201410291131 A CN 201410291131A CN 104098126 A CN104098126 A CN 104098126A
Authority
CN
China
Prior art keywords
bismuth
rare earth
solution
nitrogen
nitrogenous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410291131.XA
Other languages
English (en)
Other versions
CN104098126B (zh
Inventor
袁求理
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201410291131.XA priority Critical patent/CN104098126B/zh
Publication of CN104098126A publication Critical patent/CN104098126A/zh
Application granted granted Critical
Publication of CN104098126B publication Critical patent/CN104098126B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开一种含氮半导体纳米材料的制备方法。该方法该方法是利用溶胶-凝胶法制备铋掺杂二氧化钛纳米颗粒,然后采用水热法制备氮、稀土、铋元素共掺杂钛酸纳米管,最后超声波微波协同组合效应切断氮、稀土、铋元素共掺杂钛酸纳米管。本发明方法采用超声波微波协同组合效应对氮、稀土、铋元素共掺杂钛酸纳米管进行切断,获得的氮、稀土、铋元素共掺杂钛酸纳米短管长度均匀,长度最短可达到20nm。

Description

一种含氮半导体纳米材料的制备方法
技术领域
本发明属于纳米材料技术领域,涉及一种含氮半导体纳米材料的制备方法,具体是一种氮、稀土、铋元素共掺杂钛酸纳米短管的制备方法。
背景技术
    具有大的比表面积、中空孔道和层状等结构特征的钛酸纳米管是一种重要的无机功能半导体纳米材料,具有良好的光电、光敏、气敏、压敏等特性,广泛地用作环境污水光催化降解处理、各种传感器、太阳能电池、生物体植人材料等方面。钛酸纳米管的表面通常会带负电荷,这也使钛酸纳米管成为固定催化剂粒子的良好基底或载体。一种通常制备钛酸纳米管的简单方法是将二氧化钛纳米粉体在强碱中进行水热反应,产物经稀酸离子交换可以得到钛酸纳米管,获得的钛酸纳米管管径很小约为10纳米,但纳米管产品的长度很长,纳米管的中空孔道由于输运障碍不能充分利用,有时无序缭绕难以分散,这对它们的应用带来很大的限制。同时钛酸纳米管材料的禁带能级为3.3 eV,只能被波长小于387.5nm 的紫外光和近紫外光所激发,而紫外光仅占太阳光的5%,太阳能中含有的45%可见光无法利用。为了提高可见光的利用率,通常采用元素掺杂技术降低钛酸纳米管材料的禁带宽度,扩大光谱响应范围。Cheng-Ching Hu等[Effect of nitrogen doping on the microstructure and visible light photocatalysis of titanate nanotubes by a facile cohydrothermal synthesis via urea treatment, Applied Surface Science 280 (2013) 171– 178]以尿素为氮源采用水热方法获得了氮掺杂钛酸纳米管并有很好的光催化性能。宋旭春[过渡金属离子置换钛酸纳米管的制备和光催化活性,无机化学学报,2005,2l(12):1897]制备了不同过渡金属离子掺杂的钛酸纳米管,其中过渡金属离子取代的是层间的Na+或H+,而并非取代钛酸晶格中的Ti4+。获得的Cr、Mn、Fe、Co、Ni、Cu过渡金属离子掺杂钛酸纳米管的光催化活性都有提高。V.C.Ferreira [Synthesis and properties of Co-doped titanate nanotubes and their  optical sensitization with methylene blue, Materials Chemistry and Physics 142 (2013) 355-362]以Co掺杂二氧化钛粉为前驱体,采用水热方法获得了Co掺杂钛酸纳米管,其中Co元素取代了钛酸晶格中的Ti4+ ,这些Co掺杂钛酸纳米管在可见光区呈现强的吸收峰。但这些掺杂钛酸纳米管都属于单一元素掺杂,并且获得的钛酸纳米管的长度佷长。长度均匀、多元掺杂钛酸纳米短管不仅由于掺杂能降低禁带宽度提高可见光的利用率,同时由于短的长度能减小其中空孔道的输运障碍使中空孔道得到充分利用,因而具有更广阔的应用前景。
发明内容
     本发明目的在于针对现有技术的不足,提供一种含氮半导体纳米材料的制备方法,具体是一种氮、稀土、铋元素共掺杂钛酸纳米短管的制备方法。
本发明方法包括以下步骤:
步骤(1).溶胶-凝胶法制备铋掺杂二氧化钛纳米颗粒:
1-1.将体积份数为10份的钛酸酯加入到体积份数为20~30份的无水乙醇中,搅拌均匀形成钛酸酯醇溶液;
所述的钛酸酯为钛酸丁酯、钛酸异丙酯或钛酸乙酯中的一种;
1-2.将铋盐加入到体积份数为5~10份的聚乙二醇-200中,溶解形成铋盐溶液;其中铋盐与钛酸酯的摩尔体积比为0.03~0.3:10,单位为mM/mL;
所述的铋盐为硝酸铋、氯化铋或醋酸铋中的一种;
1-3.将体积份数为1~2份的硝酸、体积份数为2~4份的去离子水、体积份数为20份的无水乙醇搅拌均匀,形成酸性溶液;
1-4.将步骤1-2得到的铋盐溶液与步骤1-1得到的钛酸酯醇溶液搅拌混合均匀,然后滴加步骤1-3得到的酸性溶液,常温下进行搅拌2~5小时,形成凝胶,然后再陈化20~40小时;将陈化的凝胶在真空干燥箱中烘干去除乙醇和水分,经醇洗、水洗、干燥和粉碎后在马弗炉中500~600℃下煅烧4~6小时,得到铋掺杂二氧化钛纳米颗粒;
步骤(2).采用水热法制备氮、稀土、铋元素共掺杂钛酸纳米管:
    将铋掺杂二氧化钛纳米颗粒、含氮化合物、稀土化合物加入到装有强碱溶液的塑料容器中搅拌分散,得到混合液;其中铋掺杂二氧化钛颗粒、含氮化合物、稀土化合物与强碱溶液的重量体积比为2~5g:0.01~0.05g:0.01~0.05g:100mL;然后将混合液转入内衬聚四氟乙烯材料的不锈钢反应釜中进行反应,反应温度为100~140℃,反应时间15~30小时;反应结束后冷却至常温,过滤取沉淀物,用0.1M的稀硝酸水溶液洗涤,再用去离子水洗涤,然后置于真空干燥箱中烘干、粉碎得氮、稀土、铋元素共掺杂钛酸纳米管;
所述的含氮化合物为一乙醇胺、二乙醇胺、三乙醇胺中的一种;
所述的稀土化合物为氯化镧、硝酸镧、氯化铈、硝酸铈中的一种;
所述的强碱溶液为氢氧化钠水溶液,浓度为8~15M;
    步骤(3).超声波微波协同组合效应切断氮、稀土、铋元素共掺杂钛酸纳米管:
     将步骤(2)得到的氮、稀土、铋元素共掺杂钛酸纳米管分散在水溶液中,然后置于超声波微波组合反应仪中常温下进行切断处理,沉淀分离、干燥得到氮、稀土、铋元素共掺杂钛酸纳米短管;其中每100mL水溶液分散有2~5g氮、稀土、铋元素共掺杂钛酸纳米管;
所述的超声波微波组合反应仪条件为:超声波频率为25KHz,超声功率控制范围为10~100W;微波频率为2450MHz,微波功率控制范围为10~100W;处理工作时间为1~5分钟。
本发明方法采用超声波微波协同组合效应对氮、稀土、铋元素共掺杂钛酸纳米管进行切断,获得的氮、稀土、铋元素共掺杂钛酸纳米短管长度均匀,长度最短可达到20nm。
具体实施方式
下面结合具体实施例对本发明做进一步的分析。
实施例1.
步骤(1).溶胶-凝胶法制备铋掺杂二氧化钛纳米颗粒:
1-1.将10 mL钛酸丁酯加入到20 mL无水乙醇中,搅拌均匀形成30 mL钛酸丁酯醇溶液; 
1-2.将0.03mM硝酸铋加入到5mL聚乙二醇-200中,溶解形成硝酸铋溶液; 
1-3.将1mL硝酸、2mL去离子水、20 mL无水乙醇搅拌均匀,形成23 mL酸性溶液;
1-4.将步骤1-2得到的硝酸铋溶液与步骤1-1得到的钛酸丁酯醇溶液搅拌混合均匀,然后滴加步骤1-3得到的酸性溶液,常温下搅拌2小时,形成凝胶,然后再陈化20小时;将陈化的凝胶在真空干燥箱中烘干去除乙醇和水分,经醇洗、水洗、干燥、粉碎后在马弗炉中500℃下煅烧6小时,得到铋掺杂二氧化钛纳米颗粒;   
步骤(2).采用水热法制备氮、稀土、铋元素共掺杂钛酸纳米管:
    将2g铋掺杂二氧化钛纳米颗粒、0.01g一乙醇胺、0.01g氯化镧加入到装有100mL 8M氢氧化钠水溶液的塑料容器中搅拌分散,得到混合液;然后将混合液转入内衬聚四氟乙烯材料的不锈钢反应釜中进行反应,反应温度为100℃,反应时间30小时;反应结束后冷却至常温,过滤取沉淀物,用0.1M的稀硝酸水溶液洗涤,再用去离子水洗涤,然后置于真空干燥箱中烘干、粉碎得氮、稀土、铋元素共掺杂钛酸纳米管;
    步骤(3).超声波微波协同组合效应切断氮、稀土、铋元素共掺杂钛酸纳米管:
将步骤(2)得到的2g氮、稀土、铋元素共掺杂钛酸纳米管分散在100mL水溶液中,然后置于超声波微波组合反应仪中常温下进行切断处理,超声波微波组合反应仪条件为:超声波频率为25KHz,超声功率控制范围为10W,微波频率为2450MHz,微波功率控制范围为10W,处理工作时间为5分钟;沉淀分离、干燥得到氮、稀土、铋元素共掺杂钛酸纳米短管。 
实施例2.
步骤(1).溶胶-凝胶法制备铋掺杂二氧化钛纳米颗粒:
1-1.将10 mL钛酸异丙酯加入到30 mL无水乙醇中,搅拌均匀形成40mL钛酸异丙酯醇溶液; 
1-2.将0.3mM氯化铋加入到10 mL聚乙二醇-200中,溶解形成氯化铋溶液; 
1-3.将2mL硝酸、4mL去离子水、20 mL无水乙醇搅拌均匀,形成26 mL酸性溶液;
1-4.将步骤1-2得到的氯化铋溶液与步骤1-1得到的钛酸异丙酯醇溶液搅拌混合均匀,然后滴加步骤1-3得到的酸性溶液,常温下搅拌5小时,形成凝胶,然后再陈化40小时;将陈化的凝胶在真空干燥箱中烘干去除乙醇和水分,经醇洗、水洗、干燥、粉碎后在马弗炉中600℃下煅烧4小时,得到铋掺杂二氧化钛纳米颗粒;   
步骤(2).采用水热法制备氮、稀土、铋元素共掺杂钛酸纳米管:
    将5g铋掺杂二氧化钛纳米颗粒、0.05g二乙醇胺、0.05g硝酸镧加入到装有100mL15M氢氧化钠水溶液的塑料容器中搅拌分散,得到混合液;然后将混合液转入内衬聚四氟乙烯材料的不锈钢反应釜中进行反应,反应温度为140℃,反应时间15小时;反应结束后冷却至常温,过滤取沉淀物,用0.1M的稀硝酸水溶液洗涤,再用去离子水洗涤,然后置于真空干燥箱中烘干、粉碎得氮、稀土、铋元素共掺杂钛酸纳米管;
    步骤(3).超声波微波协同组合效应切断氮、稀土、铋元素共掺杂钛酸纳米管:
将步骤(2)得到的5g氮、稀土、铋元素共掺杂钛酸纳米管分散在100mL水溶液中,然后置于超声波微波组合反应仪中常温下进行切断处理,超声波微波组合反应仪条件为:超声波频率为25KHz,超声功率控制范围为100W,微波频率为2450MHz,微波功率控制范围为100W,处理工作时间为1分钟;沉淀分离、干燥得到氮、稀土、铋元素共掺杂钛酸纳米短管。
实施例3.
步骤(1).溶胶-凝胶法制备铋掺杂二氧化钛纳米颗粒:
1-1.将10 mL钛酸乙酯加入到25 mL无水乙醇中,搅拌均匀形成钛酸乙酯醇溶液; 
1-2.将0.1mM醋酸铋加入到8mL聚乙二醇-200中,溶解形成醋酸铋溶液;其中铋盐与步骤1-1中钛酸酯的摩尔体积比为0.03~0.3:10,单位为mM/mL, 
1-3.将1.5mL硝酸、3mL去离子水、20 mL无水乙醇搅拌均匀,形成24.5 mL酸性溶液;
1-4.将步骤1-2得到的醋酸铋溶液与步骤1-1得到的钛酸乙酯醇溶液搅拌混合均匀,然后滴加步骤1-3得到的酸性溶液,常温下搅拌4小时,形成凝胶,然后再陈化30小时;将陈化的凝胶在真空干燥箱中烘干去除乙醇和水分,经醇洗、水洗、干燥、粉碎后在马弗炉中550℃下煅烧5小时,得到铋掺杂二氧化钛纳米颗粒;   
步骤(2).采用水热法制备氮、稀土、铋元素共掺杂钛酸纳米管:
将3g铋掺杂二氧化钛纳米颗粒、0.03g三乙醇胺、0.03g氯化铈加入到装有100mL 10M氢氧化钠水溶液的塑料容器中搅拌分散,得到混合液;然后将混合液转入内衬聚四氟乙烯材料的不锈钢反应釜中进行反应,反应温度为120℃,反应时间22小时;反应结束后冷却至常温,过滤取沉淀物,用0.1M的稀硝酸水溶液洗涤,再用去离子水洗涤,然后置于真空干燥箱中烘干、粉碎得氮、稀土、铋元素共掺杂钛酸纳米管。
    步骤(3).超声波微波协同组合效应切断氮、稀土、铋元素共掺杂钛酸纳米管:
将步骤(2)得到的3g氮、稀土、铋元素共掺杂钛酸纳米管分散在100mL水溶液中,然后置于超声波微波组合反应仪中常温下进行切断处理,超声波微波组合反应仪条件为:超声波频率为25KHz,超声功率控制范围为50W,微波频率为2450MHz,微波功率控制范围为50W,处理工作时间为4分钟;沉淀分离、干燥得到氮、稀土、铋元素共掺杂钛酸纳米短管。
实施例4.
步骤(1).溶胶-凝胶法制备铋掺杂二氧化钛纳米颗粒:
1-1.将10 mL钛酸乙酯加入到22mL无水乙醇中,搅拌均匀形成钛酸乙酯醇溶液; 
1-2.将0.2mM醋酸铋加入到6mL聚乙二醇-200中,溶解形成醋酸铋溶液; 
1-3.将1mL硝酸、4mL去离子水、20 mL无水乙醇搅拌均匀,形成25mL酸性溶液;
1-4.将步骤1-2得到的醋酸铋溶液与步骤1-1得到的钛酸乙酯醇溶液搅拌混合均匀,然后滴加步骤1-3得到的酸性溶液,常温下搅拌3小时,形成凝胶,然后再陈化35小时;将陈化的凝胶在真空干燥箱中烘干去除乙醇和水分,经醇洗、水洗、干燥、粉碎后在马弗炉中570℃下煅烧4.5小时,得到铋掺杂二氧化钛纳米颗粒;   
步骤(2).采用水热法制备氮、稀土、铋元素共掺杂钛酸纳米管:
将4g铋掺杂二氧化钛纳米颗粒、0.04g三乙醇胺、0.02g硝酸铈加入到装有100mL 12M氢氧化钠水溶液的塑料容器中搅拌分散,得到混合液;然后将混合液转入内衬聚四氟乙烯材料的不锈钢反应釜中进行反应,反应温度为130℃,反应时间20小时;反应结束后冷却至常温,过滤取沉淀物,用0.1M的稀硝酸水溶液洗涤,再用去离子水洗涤,然后置于真空干燥箱中烘干、粉碎得氮、稀土、铋元素共掺杂钛酸纳米管。
    步骤(3).超声波微波协同组合效应切断氮、稀土、铋元素共掺杂钛酸纳米管:
将步骤(2)得到的4g氮、稀土、铋元素共掺杂钛酸纳米管分散在100mL水溶液中,然后置于超声波微波组合反应仪中常温下进行切断处理,超声波微波组合反应仪条件为:超声波频率为25KHz,超声功率控制范围为60W,微波频率为2450MHz,微波功率控制范围为60W,处理工作时间为3分钟;沉淀分离、干燥得到氮、稀土、铋元素共掺杂钛酸纳米短管。
上述实施例并非是对于本发明的限制,本发明并非仅限于上述实施例,只要符合本发明要求,均属于本发明的保护范围。

Claims (7)

1. 一种含氮半导体纳米材料的制备方法,其特征在于该方法包括以下步骤:
步骤(1).溶胶-凝胶法制备铋掺杂二氧化钛纳米颗粒:
1-1.将体积份数为10份的钛酸酯加入到体积份数为20~30份的无水乙醇中,搅拌均匀形成钛酸酯醇溶液;
1-2.将铋盐加入到体积份数为5~10份的聚乙二醇-200中,溶解形成铋盐溶液;其中铋盐与钛酸酯的摩尔体积比为0.03~0.3:10,单位为mM/mL;
1-3.将体积份数为1~2份的硝酸、体积份数为2~4份的去离子水、体积份数为20份的无水乙醇搅拌均匀,形成酸性溶液;
1-4.将步骤1-2得到的铋盐溶液与步骤1-1得到的钛酸酯醇溶液搅拌混合均匀,然后滴加步骤1-3得到的酸性溶液,常温下进行搅拌2~5小时,形成凝胶,然后再陈化20~40小时;将陈化的凝胶在真空干燥箱中烘干去除乙醇和水分,经醇洗、水洗、干燥和粉碎后在马弗炉中500~600℃下煅烧4~6小时,得到铋掺杂二氧化钛纳米颗粒;
步骤(2).采用水热法制备氮、稀土、铋元素共掺杂钛酸纳米管:
将铋掺杂二氧化钛纳米颗粒、含氮化合物、稀土化合物加入到装有强碱溶液的塑料容器中搅拌分散,得到混合液;其中铋掺杂二氧化钛纳米颗粒、含氮化合物、稀土化合物与强碱溶液的重量体积比为2~5g:0.01~0.05g:0.01~0.05g:100mL;然后将混合液转入内衬聚四氟乙烯材料的不锈钢反应釜中进行反应,反应温度为100~140℃,反应时间15~30小时;反应结束后冷却至常温,过滤取沉淀物,用0.1M的稀硝酸水溶液洗涤,再用去离子水洗涤,然后置于真空干燥箱中烘干、粉碎得氮、稀土、铋元素共掺杂钛酸纳米管;
    步骤(3).超声波微波协同组合效应切断氮、稀土、铋元素共掺杂钛酸纳米管:
     将步骤(2)得到的氮、稀土、铋元素共掺杂钛酸纳米管分散在水溶液中,然后置于超声波微波组合反应仪中常温下进行切断处理,沉淀分离、干燥得到氮、稀土、铋元素共掺杂钛酸纳米短管;其中每100mL水溶液分散有2~5g氮、稀土、铋元素共掺杂钛酸纳米管。
2.如权利要求1所述的一种含氮半导体纳米材料的制备方法,其特征在于步骤(1)所述的钛酸酯为钛酸丁酯、钛酸异丙酯或钛酸乙酯中的一种。
3.如权利要求1所述的一种含氮半导体纳米材料的制备方法,其特征在于步骤(1)所述的铋盐为硝酸铋、氯化铋或醋酸铋中的一种。
4.如权利要求1所述的一种含氮半导体纳米材料的制备方法,其特征在于步骤(2) 所述的含氮化合物为一乙醇胺、二乙醇胺、三乙醇胺中的一种。
5.如权利要求1所述的一种含氮半导体纳米材料的制备方法,其特征在于步骤(2) 所述的稀土化合物为氯化镧、硝酸镧、氯化铈、硝酸铈中的一种。
6.如权利要求1所述的一种含氮半导体纳米材料的制备方法,其特征在于步骤(2)所述的强碱溶液为氢氧化钠水溶液,浓度为8~15M。
7.如权利要求1所述的一种含氮半导体纳米材料的制备方法,其特征在于步骤(3)所述的超声波微波组合反应仪条件为:超声波频率为25KHz,超声功率控制范围为10~100W;微波频率为2450MHz,微波功率控制范围为10~100W;处理工作时间为1~5分钟。
CN201410291131.XA 2014-06-26 2014-06-26 一种含氮半导体纳米材料的制备方法 Expired - Fee Related CN104098126B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410291131.XA CN104098126B (zh) 2014-06-26 2014-06-26 一种含氮半导体纳米材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410291131.XA CN104098126B (zh) 2014-06-26 2014-06-26 一种含氮半导体纳米材料的制备方法

Publications (2)

Publication Number Publication Date
CN104098126A true CN104098126A (zh) 2014-10-15
CN104098126B CN104098126B (zh) 2015-09-09

Family

ID=51666724

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410291131.XA Expired - Fee Related CN104098126B (zh) 2014-06-26 2014-06-26 一种含氮半导体纳米材料的制备方法

Country Status (1)

Country Link
CN (1) CN104098126B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105858722A (zh) * 2016-06-14 2016-08-17 福建中烟工业有限责任公司 一种N-掺杂TiO2的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57150477A (en) * 1981-03-10 1982-09-17 Mitsubishi Rayon Co Ltd Treatment of arsenic-containing water
CN102992397A (zh) * 2012-12-13 2013-03-27 上海纳米技术及应用国家工程研究中心有限公司 一种稀土元素掺杂二氧化钛纳米材料的制备方法
CN103555048A (zh) * 2013-10-18 2014-02-05 上海交通大学 一种单分子层氧化钛量子点半导体墨水的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57150477A (en) * 1981-03-10 1982-09-17 Mitsubishi Rayon Co Ltd Treatment of arsenic-containing water
CN102992397A (zh) * 2012-12-13 2013-03-27 上海纳米技术及应用国家工程研究中心有限公司 一种稀土元素掺杂二氧化钛纳米材料的制备方法
CN103555048A (zh) * 2013-10-18 2014-02-05 上海交通大学 一种单分子层氧化钛量子点半导体墨水的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李华基等: "稀土La 掺杂二氧化钛纳米管的微波法制备", 《化工进展》, vol. 29, no. 6, 31 December 2010 (2010-12-31) *
谭艳君等: "纳米TiO2粉体的分散及在织物上的应用", 《染料与染色》, vol. 41, no. 3, 30 June 2004 (2004-06-30) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105858722A (zh) * 2016-06-14 2016-08-17 福建中烟工业有限责任公司 一种N-掺杂TiO2的制备方法
CN105858722B (zh) * 2016-06-14 2018-06-12 福建中烟工业有限责任公司 一种N-掺杂TiO2的制备方法

Also Published As

Publication number Publication date
CN104098126B (zh) 2015-09-09

Similar Documents

Publication Publication Date Title
Srinivasan et al. Synergistic effects of sulfation and co-doping on the visible light photocatalysis of TiO2
CN105195196A (zh) 一种光催化剂Co3O4-CNI及其制备方法和应用
CN102698809A (zh) 一种H3PW12O40/纳米TiO2复合光催化剂的制备方法
CN103861593B (zh) 一种铬银共掺杂纳米TiO2光催化剂及其制备方法和用途
CN101574668A (zh) 一种自然光下光催化降解废水中污染物的复合光催化剂的制备方法
CN104028274A (zh) 一种具有可见光活性的LaFeO3/TiO2复合纳米管及制备方法
CN106492817B (zh) 一种多孔FeVO4纳米棒类芬顿光催化剂及其制备方法和用途
CN104098130B (zh) 一种无机纳米材料的制备方法
Amala et al. Facile tartaric acid assisted microwave synthesis of spherical clusters of S, N, and C doped ZnO for solar photocatalytic applications
CN103721699A (zh) 一种NaInO2光催化剂及其制备方法
CN104098128B (zh) 一种无机复合纳米材料的制备方法
Fang et al. Optical and photocatalytic properties of Er 3+ and/or Yb 3+ doped TiO 2 photocatalysts
CN104098126B (zh) 一种含氮半导体纳米材料的制备方法
CN104098127B (zh) 一种含铋半导体纳米材料的制备方法
CN104971711B (zh) 光催化剂La/TiO2/Bi2O3复合材料的制备方法
CN104096576B (zh) 一种环境光催化纳米材料的制备方法
CN104607174A (zh) 一种钙掺杂β-Bi2O3光催化剂及其制备方法与应用
CN102218316A (zh) 具有可见光光催化活性纳米氧化锌光催化剂的制备方法
Fan et al. Nitrogen doped anatase TiO2 sheets with dominant {001} facets for enhancing visible-light photocatalytic activity
CN104096580B (zh) 一种含稀土元素纳米管的制备方法
CN104098129B (zh) 一种多元素掺杂钛酸纳米短管的制备方法
CN104096582B (zh) 一种含磷元素纳米管的制备方法
Tan et al. Double-layered core–shell structure of NaYF4: Yb, Er@ SiO2@ Zn1− xMnxO for near-infrared-triggered photodegradation and antibacterial application
CN101518545B (zh) 稀土纳米复合材料的合成及表面修饰方法
CN104096583B (zh) 一种钛酸纳米短管的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150909

Termination date: 20170626

CF01 Termination of patent right due to non-payment of annual fee