CN105858722B - 一种N-掺杂TiO2的制备方法 - Google Patents

一种N-掺杂TiO2的制备方法 Download PDF

Info

Publication number
CN105858722B
CN105858722B CN201610421580.0A CN201610421580A CN105858722B CN 105858722 B CN105858722 B CN 105858722B CN 201610421580 A CN201610421580 A CN 201610421580A CN 105858722 B CN105858722 B CN 105858722B
Authority
CN
China
Prior art keywords
insoluble matter
tio
heating
present
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610421580.0A
Other languages
English (en)
Other versions
CN105858722A (zh
Inventor
谢卫
刘泽春
邓其馨
黄朝章
黄华发
吴清辉
张建平
周培琛
李巧灵
黄延俊
许寒春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Tobacco Fujian Industrial Co Ltd
Original Assignee
China Tobacco Fujian Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Tobacco Fujian Industrial Co Ltd filed Critical China Tobacco Fujian Industrial Co Ltd
Priority to CN201610421580.0A priority Critical patent/CN105858722B/zh
Publication of CN105858722A publication Critical patent/CN105858722A/zh
Application granted granted Critical
Publication of CN105858722B publication Critical patent/CN105858722B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Toxicology (AREA)
  • Hydrology & Water Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种N‑掺杂TiO2的制备方法,其包括以下步骤:(1)将TiO2加入到NaOH溶液中;(2)加热步骤(1)的溶液,加热温度110~130℃,加热时间20~30小时,加热结束后分离不溶物;(3)酸洗步骤(2)得到的不溶物;(4)将酸洗后的不溶物加入到氨水中反应,反应时间优选20~30小时,然后分离不溶物,干燥不溶物;(5)将干燥后的不溶物在惰性气氛中热处理,热处理温度为400~500℃,热处理时间为1~4小时。本发明制备的N‑掺杂TiO2能够在可见光下光催化降解多种芳香胺。

Description

一种N-掺杂TiO2的制备方法
技术领域
本发明属于催化领域,特别是涉及一种N-掺杂TiO2的制备方法。
背景技术
芳香胺化合物是重要的有机中间体,广泛用于生产医药、农药和染料等。芳香胺及其衍生物具有诱变因子,可以通过吸入、食入或透过皮肤吸收而导致中毒,能通过形成高铁血红蛋白,造成人体血液系统损害,也可以直接作用于肝细胞,引起中毒性肝损害。一些芳香胺衍生物还具有致癌和致突变的作用,即使是在低浓度下,对动物和人体都具有致癌活性。近几年我国因芳香胺污染导致的环境事故时有发生,芳香胺废水的治理已成为国内外研究的热点之一。
现有的光催化降解芳香胺的技术主要是通过紫外光照降解,目标物主要是苯胺,光催化剂降解效率也较低。
发明内容
为解决现有技术中的一个或多个问题,本发明的一个目的是提供一种N-掺杂TiO2的制备方法,本发明的再一个目的是提供一种N-掺杂 TiO2,本发明再一个目的是提供一种N-掺杂TiO2作为光催化剂的用途,本发明再一个目的是提供一种降解液体中芳香胺的方法。
发明人制备了一种N-掺杂TiO2,该N-掺杂TiO2作为光催化剂能够实现多种芳香胺的一次性降解,特别地,能够实现多种芳香胺在可见光下一次性降解。
本发明第一方面提供一种N-掺杂TiO2的制备方法,其包括以下步骤:
(1)将TiO2加入到NaOH溶液中;
(2)加热步骤(1)的溶液,加热温度110~130℃,加热时间20~30 小时,加热结束后分离不溶物;
(3)酸洗步骤(2)得到的不溶物;
(4)将酸洗后的不溶物加入到氨水中反应,反应时间优选20~30 小时,然后分离不溶物,干燥不溶物;
(5)将干燥后的不溶物在惰性气氛中热处理,热处理温度为 400~500℃,热处理时间为1~4小时。
在一个实施方案中,本发明任一项的制备方法,其具有以下a)~t) 一项或多项特征:
a)步骤(1)中,每20ml NaOH溶液中加入2~3g TiO2
b)步骤(1)中,NaOH溶液的浓度为8~12M;
c)步骤(1)中,TiO2为无定型TiO2、金红石TiO2或锐钛矿TiO2
d)步骤(1)中,TiO2为粉末状或颗粒状;
e)步骤(2)中,加热温度为120~125℃;
f)步骤(2)中,加热时间为22~26小时;
g)步骤(2)中,加热过程中持续搅拌;
h)步骤(3)中,所述酸洗所用的酸是稀盐酸;
i)步骤(3)中,所述酸洗所用的酸中H+浓度0.1~0.2M;
j)步骤(3)中,反复酸洗直到洗涤后的溶液的pH值为2-3;
k)步骤(4)中,稀氨水的浓度为1~3重量%;
l)步骤(4)中,反应在密闭容器中进行;
m)步骤(4)中,反应过程中搅拌;
n)步骤(4)中,反应时间为22~26小时;
o)步骤(4)中,干燥温度为50~70℃;
p)步骤(4)中,干燥时间为10~15小时;
q)步骤(5)中,惰性气氛为氩气氛;
r)步骤(5)中,热处理温度为440~460℃;
s)步骤(5)中,热处理时间为2~3小时;
t)步骤(5)中,热处理的升温速率为1℃/分钟。
在一个实施方案中,本发明任一项的制备方法,其包括以下一步或多步:
(1)将无定形TiO2加入到10~11M NaOH溶液中,搅拌后得到白色浑浊液,每20mlNaOH溶液中加入2~3g TiO2
(2)将步骤(1)的白色浑浊液用油浴加热,加热温度120~125℃,加热时间24~25小时,加热过程中持续搅拌,然后分离得到的不溶物;
(3)用0.1~0.2M的盐酸酸洗步骤(2)的不溶物,直到洗涤后溶液 pH值为2-3,离心分离得到不溶物;
(4)将步骤(3)的不溶物加入到1~2重量%稀氨水中,在密闭容器中搅拌24~25小时,然后离心分离得到不溶物,将不溶物在60~70℃干燥10~12小时;
(5)将干燥后的不溶物在Ar气氛中热处理,热处理温度为 440~460℃,保温时间为2~3小时,得到产物为N-掺杂TiO2
本发明第二方面提供一种N-掺杂TiO2,其由本发明任一项的制备方法获得。
本发明第三方面提供一种N-掺杂TiO2,该N-掺杂TiO2的傅里叶变换红外光谱谱谱线包括N-O键的振动峰。
在一个实施方案中,本发明任一项的N-掺杂TiO2,所述N-O键的振动峰位于约1390~1410cm-1波长处,例如1401cm-1波长处。
在一个实施方案中,本发明任一项的N-掺杂TiO2,其XRD衍射图谱上在2θ角为约10度、24.5度、27度和48度的位置有衍射峰。
本发明第四方面提供,本发明任一项的N-掺杂TiO2作为光催化剂的用途。
在一个实施方案中,本发明任一项的N-掺杂TiO2作为光催化剂降解芳香胺的用途,优选作为光催化剂在太阳光(例如自然太阳光或 AM1.5G模拟太阳光)或可见光下降解芳香胺的用途。
本发明第五方面提供一种降解液体中芳香胺的方法,其包括在液体中加入本发明任一项的N-掺杂TiO2,以及光照该液体的步骤;
所述液体优选为水,所述光照优选为太阳光(例如自然太阳光或 AM1.5G模拟太阳光)光照或者用可见光光照。
在一个实施方案中,本发明任一项的用途,所述的芳香胺选自以下物质的一种或多种:2,4-二氨基甲苯、邻甲氧基苯胺、邻-甲基苯胺、 4,4‘-二氨基二苯醚、4,4’-二氨基二苯甲烷、2,4-二甲基苯胺、联苯胺、 2-甲氧基-5-甲基苯胺、对氯苯胺、3,3’-二甲基-4,4‘-二氨基二苯甲烷、 2,6-二甲基苯胺、3,3’-二甲氧基联苯胺、2-萘胺、4-氯邻甲苯胺、2-氨基-4-硝基甲苯、4-氨基联苯、4-氨基偶氮苯、3,3’-二氯联苯胺、3,3’- 二氯-4,4‘-二氨基二苯甲烷、邻氨基偶氮甲苯。
在一个实施方案中,本发明任一项的方法,所述的芳香胺选自以下物质的一种或多种:2,4-二氨基甲苯、邻甲氧基苯胺、邻-甲基苯胺、 4,4‘-二氨基二苯醚、4,4’-二氨基二苯甲烷、2,4-二甲基苯胺、联苯胺、 2-甲氧基-5-甲基苯胺、对氯苯胺、3,3’-二甲基-4,4‘-二氨基二苯甲烷、 2,6-二甲基苯胺、3,3’-二甲氧基联苯胺、2-萘胺、4-氯邻甲苯胺、2-氨基-4-硝基甲苯、4-氨基联苯、4-氨基偶氮苯、3,3’-二氯联苯胺、3,3’- 二氯-4,4‘-二氨基二苯甲烷、邻氨基偶氮甲苯。
在一个实施方案中,N代表氮元素,N-掺杂TiO2表示氮元素掺杂的TiO2
本发明的有益效果:
本发明具有以下一项或多项有益效果:
1)本发明制备N-掺杂TiO2的方法简单;
2)本发明制备N-掺杂TiO2的方法成本低;
3)本发明制备的N-掺杂TiO2作为光催化剂能够在可见光下实现电子激发;
4)本发明制备的N-掺杂TiO2作为光催化剂能够在可见光下光催化降解多种芳香胺;
5)本发明制备的N-掺杂TiO2作为光催化剂能够一次性降解多种芳香胺,例如实施例2中的20种芳香胺;
6)本发明N-掺杂TiO2作为光催化剂的催化速度快,分解量大;
7)本发明N-掺杂TiO2作为光催化剂用量少,分解量大;
8)本发明的液相色谱-串联质谱-多反应监测(LC-MS/MS-MRM) 检测方法能够一次性检测20种芳香胺。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的限定。在附图中:
图1为掺杂前的TiO2的XRD谱图;
图2为掺杂后获得的N-掺杂TiO2的XRD谱图;
图3为掺杂前和掺杂后的TiO2的傅里叶变换红外光谱图。
具体实施方式
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
实施例1
(1)将2.5g工业级无定形TiO2加入到20mL 10M NaOH溶液中,搅拌后得到白色浑浊液。
(2)将白色浑浊液用油浴加热,加热温度120℃,加热时间24小时,加热过程中持续搅拌,然后分离得到的不溶物。
(3)用0.1M的盐酸洗涤步骤(2)的不溶物,直到洗涤后溶液pH 值为2-3,离心分离得到不溶物。
(4)将步骤(3)的不溶物加入到20mL 2%稀氨水中,在密闭容器中搅拌24小时,然后离心分离得到不溶物(约3-4克)。
(5)将步骤(4)的不溶物在60℃干燥12小时。
(6)将步骤(5)的不溶物在Ar气氛中热处理,热处理温度为450 ℃,保温时间为2.5小时,升温速率为1℃/分钟,得到产物为N-掺杂 TiO2
图1和图2分别为步骤(1)的无定形TiO2(掺杂前)和步骤(6) 的N-掺杂TiO2(掺杂后)的XRD图谱,对比图1和2可知,反应前后样品的XRD图差别不大,都在2θ角为10度、24.5度、27度和48度有衍射峰,属于TiO2的衍射峰。
图3的曲线1和曲线2分别为步骤(1)的无定形TiO2(掺杂前) 和步骤(6)的N-掺杂TiO2(掺杂后)的傅里叶变换红外光谱图,曲线 1和2在1637cm-1波长位置都有峰。此外,与曲线1相比,曲线2在1401 cm-1波长位置有N-O的振动峰,这说明步骤(6)的产物确实为N-掺杂TiO2
光催化实验
将实施例1的1g N-掺杂TiO2加入到20ml含有20种芳香胺的废水中,将废水在AM1.5G模拟太阳光下光照2小时,利用N-掺杂TiO2光催化降解芳香胺。对光催化处理前和处理后的废水分别进行芳香胺含量的检测,检测方法为液相色谱-串联质谱-多反应监测(LC-MS/MS-MRM) 方法,具体参数如下:
色谱柱:Zorbax SB-C3色谱柱(2.1mm×150mm,5μm);
流动相:A.甲醇,B.去离子水;
洗脱梯度:
0~3min,20%A,流速:0.2mL/min;
3~7.5min,80%A,流速:0.5mL/min;
7.5~8min,80%A,流速:0.5mL/min;
8~11min,80%A,流速:0.5mL/min;
11~15min,5%A,流速:0.2mL/min;
柱温:40℃;
进样体积:3μL;
离子源:电喷雾电离源(ESI);
扫描方式:正离子扫描;
检测方式:多反应监测(MRM);
电喷雾电压:5000V;
离子源温度:350℃;
辅助气Gas1压力:413.70kPa(60psi);
辅助气Gas2压力:344.75kPa(50psi);
去簇电压(DP):40V。
检测方法中涉及的目标物、保留时间、定量离子对(m/z)、定性离子对(m/z)、碰撞能和CAS号如表1所示。
光催化处理前和光催化处理后废水中20种芳香胺的含量,以及芳香胺的降低率如表2所示。
由表2可知,实施例1的N-掺杂TiO2作为光催化剂(用量1g),在AM1.5G模拟太阳光下2小时内一次性催化降解了20种芳香胺,降解前芳香胺总量为21.22ng/mL,降解后芳香胺总量为15.89ng/mL,降低率为25.12%。因此,本发明N-掺杂TiO2作为光催化剂催化速度快,芳香胺降解量大。
表2
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制;尽管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本发明技术方案的精神,其均应涵盖在本发明请求保护的技术方案范围当中。

Claims (2)

1.一种N-掺杂TiO2的制备方法,其包括以下步骤:
(1)将无定形TiO2加入到10~11M NaOH溶液中,搅拌后得到白色浑浊液,每20ml NaOH溶液中加入2~3g TiO2
(2)将步骤(1)的白色浑浊液用油浴加热,加热温度120~125℃,加热时间24~25小时,加热过程中持续搅拌,然后分离得到的不溶物;
(3)用0.1~0.2M的盐酸酸洗步骤(2)的不溶物,直到洗涤后溶液pH值为2-3,离心分离得到不溶物;
(4)将步骤(3)的不溶物加入到1~2重量%稀氨水中,在密闭容器中搅拌24~25小时,然后离心分离得到不溶物,将不溶物在60~70℃干燥10~12小时;
(5)将干燥后的不溶物在Ar气氛中热处理,热处理温度为440~460℃,保温时间为2~3小时,得到产物为N-掺杂TiO2
2.根据权利要求1所述的制备方法,其具有以下一项或多项特征:
d)步骤(1)中,TiO2为粉末状或颗粒状;
t)步骤(5)中,热处理的升温速率为1℃/分钟。
CN201610421580.0A 2016-06-14 2016-06-14 一种N-掺杂TiO2的制备方法 Active CN105858722B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610421580.0A CN105858722B (zh) 2016-06-14 2016-06-14 一种N-掺杂TiO2的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610421580.0A CN105858722B (zh) 2016-06-14 2016-06-14 一种N-掺杂TiO2的制备方法

Publications (2)

Publication Number Publication Date
CN105858722A CN105858722A (zh) 2016-08-17
CN105858722B true CN105858722B (zh) 2018-06-12

Family

ID=56649464

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610421580.0A Active CN105858722B (zh) 2016-06-14 2016-06-14 一种N-掺杂TiO2的制备方法

Country Status (1)

Country Link
CN (1) CN105858722B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107986380B (zh) * 2017-12-02 2021-08-27 黄建勇 一种N掺杂包裹型TiO2光催化剂降解废水的工艺
KR20240009482A (ko) * 2021-05-18 2024-01-22 데이까 가부시끼가이샤 산화티탄 분체 및 이의 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104098126A (zh) * 2014-06-26 2014-10-15 杭州电子科技大学 一种含氮半导体纳米材料的制备方法
CN104261469A (zh) * 2014-10-21 2015-01-07 福州大学 一种二氧化钛及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104098126A (zh) * 2014-06-26 2014-10-15 杭州电子科技大学 一种含氮半导体纳米材料的制备方法
CN104261469A (zh) * 2014-10-21 2015-01-07 福州大学 一种二氧化钛及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
氮掺杂二氧化钛粉体的制备及掺杂机理研究;于洋洋等;《无机化学学报》;20130831;第29卷(第8期);1657-1622 *
液相法制备N-TiO2及其光学性能研究;钱余;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20130315;第1、34、45、48页 *

Also Published As

Publication number Publication date
CN105858722A (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
Fuku et al. An electrochemically active green synthesized polycrystalline NiO/MgO catalyst: use in photo-catalytic applications
Liu et al. Boosting O2 reduction and H2O dehydrogenation kinetics: surface N‐hydroxymethylation of g‐C3N4 photocatalysts for the efficient production of H2O2
Fiorenza et al. Preferential removal of pesticides from water by molecular imprinting on TiO2 photocatalysts
Kou et al. Beet juice utilization: Expeditious green synthesis of noble metal nanoparticles (Ag, Au, Pt, and Pd) using microwaves
CN106824246B (zh) 一种TiO2/g-C3N4复合可见光催化剂的制备方法
Doane The abiotic nitrogen cycle
Manjunath et al. Biofabrication of gold nanoparticles using marine endophytic fungus–Penicillium citrinum
Khairol et al. Excellent performance integrated both adsorption and photocatalytic reaction toward degradation of congo red by CuO/eggshell
CN105498783B (zh) Fe3O4/CeO2纳米复合材料、制备方法及其应用
Maham et al. Biosynthesis of the CuO nanoparticles using Euphorbia Chamaesyce leaf extract and investigation of their catalytic activity for the reduction of 4‐nitrophenol
CN105858722B (zh) 一种N-掺杂TiO2的制备方法
Arumugam et al. Effect of operational parameters on the degradation of methylene blue using visible light active BiVO4 photocatalyst
CN113198514A (zh) 一种Bi修饰g-C3N4光催化剂材料及其固氮性能
Buazar et al. Marine carrageenan‐based NiO nanocatalyst in solvent‐free synthesis of polyhydroquinoline derivatives
Gawade et al. Environmentally sustainable synthesis of SnO2 nanostructures for efficient photodegradation of industrial dyes
Routray et al. Photodegradation of rhodamine B over g-C3N4-FeVO4 hetero-structured nanocomposite under solar light irradiation
CN106732535A (zh) 一种光催化剂Bi2Mo3O12及其制备方法
Potbhare et al. Nanomaterials as Photocatalyst
CN103785425A (zh) 一种花状Bi2O(OH)2SO4光催化剂的制备方法及应用
Zhang et al. Investigation of adsorption behavior of Cu2O submicro‐octahedra towards Congo red
Ma et al. Photoreduction of Cr (VI) ions in aqueous solutions by UV/TiO2 photocatalytic processes
Sadek et al. Photocatalytic Degradation of Methylene Blue on Multilayer TiO2 Coatings Elaborated by the Sol-gel Spin-Coating Method
Wanag et al. Photocatalytic performance of thermally prepared TiO2/C photocatalysts under artificial solar light
Das et al. Green synthesis of recyclable reduced graphene oxide-gold nanocatalyst using Alstonia scholaris: Applications in waste water purification and microbial field
CN108479812A (zh) 一种AgInS2/Bi2WO6异质结纳米片的制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant