CN104087137A - 一种光热双重固化涂料的亲水铝箔及其制备方法和应用 - Google Patents

一种光热双重固化涂料的亲水铝箔及其制备方法和应用 Download PDF

Info

Publication number
CN104087137A
CN104087137A CN201410267772.1A CN201410267772A CN104087137A CN 104087137 A CN104087137 A CN 104087137A CN 201410267772 A CN201410267772 A CN 201410267772A CN 104087137 A CN104087137 A CN 104087137A
Authority
CN
China
Prior art keywords
aluminium foil
hydrophilic
parts
coating
aluminum foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410267772.1A
Other languages
English (en)
Other versions
CN104087137B (zh
Inventor
涂伟萍
袁腾
周显宏
王�锋
胡剑青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201410267772.1A priority Critical patent/CN104087137B/zh
Publication of CN104087137A publication Critical patent/CN104087137A/zh
Application granted granted Critical
Publication of CN104087137B publication Critical patent/CN104087137B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种光热双重固化涂料的亲水铝箔及其制备方法和应用。本发明将10‐50份单官能UV固化低聚物、60‐80份双官能UV固化低聚物、10‐20份多官能UV固化低聚物、1‐5份光引发剂和1‐5份乳化剂混合均匀得UV固化水性亲水铝箔涂料;掺杂硅氧烷或钛氧烷,加水稀释分散均匀得到杂化亲水铝箔涂料。以硅烷偶联剂水解液作为前处理剂处理打磨清洗好的铝箔表面,然后将上述杂化亲水铝箔涂料在处理好的铝箔表面涂覆,采用光热双重固化法固化成膜得到亲水铝箔。本发明的亲水铝箔表面具有微纳二元粗糙结构,对水的接触角为0‐5°,亲水涂层附着力达0‐1级。本发明的亲水铝箔可应用于各类空调器中,综合性能优异。

Description

一种光热双重固化涂料的亲水铝箔及其制备方法和应用
技术领域
本发明涉及一种铝箔,特别是涉及一种光热双重固化涂料的亲水铝箔及其制备方法和在空调中的应用,属于有机无机杂化纳米功能材料技术领域。
背景技术
亲水铝箔是空调器中换热片的主要原料,被广泛用于家用空调,冷藏柜,汽车空调等制冷设备。国标GB/T3880‐2006中规定厚度在0.2mm以下的铝片称为铝箔,亲水铝箔是对基材铝箔通过特殊工艺进行亲水处理,在其表面涂覆一层亲水涂层。冷凝水在亲水铝箔上会迅速铺展开,不会凝结成水珠,从而增大热交换面积,加快制冷制热速度,还能有效避免冷凝水阻碍空气流动而产生的噪音。亲水铝箔是家用空调换热片的主要原材料,对空调器的效率有着极大影响。与普通空白铝箔相比具有下述优点:可以增加防腐性,防霉菌,无异味的功能;换热片积聚表面的冷凝水均匀地分布在表面上,不会因为水珠形成后造成换热片间的聚集堵塞,影响热交换条件,从而提高了热交换率5%;由于水无珠,相应也减少了震动造成的噪音;可防止空调器氧化粉末吹入室内对人体产生不利影响,符合环保要求;空调器散热片用亲水铝箔应符合YS/T95.2‐2001的规定。
目前制备亲水铝箔普遍存在着因为亲水聚合物与铝片表面的相容性较差,而导致亲水涂层的附着力较差;由于膜的表面光滑平整,导致亲水性提高有限以及由于大量使用亲水聚合物,从而导致膜的耐水性较差的问题。公开号为CN103421015A、CN102876200A、CN102719188A和CN102816516A的中国专利分别公布了四种采用UV固化法制备亲水铝箔的方法,分别采用环氧丙烯酸和丙烯酸类物质作为主要成膜物,但是没有采用硅烷偶联剂进行前处理,由于有机材料与金属无机材料的相容性较差,必然导致亲水涂层在铝箔表面的附着力较差。并且这四个专利申请均没有进行无机亲水纳米粒子掺杂,没有考察膜的表面的平整性对亲水性的影响。
发明内容
本发明的目的在于克服现有技术的缺点,提供一种环保的,便于实现规模化生产的膜的表面形成了微纳粗糙结构,亲水性极好,水的接触角仅0‐5°,亲水涂层附着力极好,达到0‐1级的光热双重固化涂料的亲水铝箔及其制备方法。
本发明另一目的在于提供所述光热双重固化涂料的亲水铝箔在空调中的应用。
本发明的亲水铝箔以铝片作为基材,经打磨和清洗处理后,在其上涂覆亲水铝箔涂料形成亲水涂层得到亲水铝箔。亲水铝箔表面具有微纳粗糙结构,在空气中对水的接触角为0‐5°,亲水涂层的附着力为0‐1级。
本发明以无机纳米亲水粒子进行无机掺杂,从而可以进一步提高膜的表面的亲水性。Wenzel对Young氏方程进行了修正,得到Wenzel方程,即cosθw=rcosθ,式中r为固体表面的粗糙因子,为实际表面积与表观表面积的比值。由Wenzel方程知,亲水膜在增加粗糙度后将更亲水,疏水膜则更疏水。另外,本发明以硅烷偶联剂作为亲水铝箔表面的前处理剂,起到桥梁作用,从而增强了亲水涂层在铝箔表面的附着力。硅烷偶联剂是一类具有特殊结构的物质,其本身相当于一个有机无机杂化分子,在分子链两端都带有活性基团,分子结构为:Y—Si—X3,X为烷氧基团,可以水解形成极性的硅羟基,吸附于金属基材表面并与之反应;Y是另一种较长链的活性基团,如氨基、环氧基、丙烯酰氧基等有机基团,可以与有机涂料体系中的活性基团反应。这样硅烷偶联剂就能够在涂层与金属基材之间形成一种连接纽带,改善涂层与基材的附着力。
本发明目的通过如下技术方案实现:
1、一种光热双重固化涂料的亲水铝箔的制备方法,其特征在于包括如下步骤:
1)将醇和水按质量比1:5‐5:1配制成溶剂,将硅氧烷或钛氧烷与溶剂按质量比1:1‐1:5混合于20‐80℃恒温水浴,搅拌后,滴加催化剂,保温,即得到纳米溶胶;所述硅氧烷或钛氧烷为四乙氧基硅烷、四甲氧基硅烷和四乙氧基钛;所述醇为乙醇、丙醇、异丙醇、正丁醇、仲丁醇和异丁醇中的一种;所述催化剂为盐酸、硝酸、硼酸、硫酸、氨水、碳酸氢钠或氢氧化钠;
2)以质量份数计,将10‐50份单官能UV固化低聚物、60‐80份双官能UV固化低聚物;10‐20份多官能UV固化低聚物、1‐5份光引发剂和1‐5份乳化剂混合均匀得UV固化水性涂料;所述单官能UV固化低聚物为甲氧基聚乙二醇丙烯酸酯或甲氧基聚乙二醇甲基丙烯酸酯;所述双官能UV固化低聚物为聚乙二醇二丙烯酸酯、聚乙二醇二甲基丙烯酸酯、水性丙烯酸酯低聚物、水性聚氨酯丙烯酸酯低聚物、水性聚酯丙烯酸酯低聚物或水性环氧丙烯酸酯低聚物;所述多官能UV固化低聚物为乙氧化三羟甲基丙烷三丙烯酸酯、水性丙烯酸酯低聚物、水性聚氨酯丙烯酸酯低聚物、水性聚酯丙烯酸酯低聚物或水性环氧丙烯酸酯低聚物;所述光引发剂为水性光引发剂Darocur2959、Esacure KIP150、Irgacure891DW、QTX、BTC、BPQ、WB‐4784、WB‐4785、WB‐4789或WB‐4792;所述乳化剂为十二烷基苯磺酸钠;
3)将步骤1)中的纳米溶胶和步骤2)所述的UV固化水性涂料按质量比1:9‐9:1的比例配制成质量浓度为1‐99%的混合溶液,超声分散均匀即得UV固化杂化亲水铝箔涂料;
4)以质量份数计,将100‐200份去离子水,5‐10份硅烷偶联剂,滴入0.5‐2份稀酸催化剂搅拌均匀得到硅烷前处理剂;所述硅烷偶联剂为γ‐氨丙基三乙氧基硅烷、γ‐缩水甘油醚氧丙基三甲氧基硅烷、γ‐甲基丙烯酰氧基丙基三甲氧基硅烷中的一种;所述稀酸催化剂为盐酸、硼酸或磷酸;
5)将铝片打磨后,清洗干净,烘干;
6)将步骤5)中所得干净的铝箔在步骤4)中所得前处理剂中浸泡后,将步骤3)所述的UV固化杂化亲水铝箔涂料涂覆于铝箔表面,放入烘箱中烘干的同时采用紫外光照射固化,即得亲水铝箔。
为进一步实现本发明目的,优选地:所述超声分散的超声频率为20‐40KHz,功率范围为300‐500W。所述滴加催化的速度为1‐10ml/min;所述紫外光固化波长为245‐405nm。步骤1)所述搅拌的时间为5‐10min;保温的时间为4‐5h。:所述打磨是将铝片用300号砂纸打磨。所述浸泡的时间为5‐10min。所述UV固化杂化亲水铝箔涂料涂覆于铝箔表面的涂膜厚度控制为5‐20μm。所述放入烘箱中烘干的同时采用紫外光照射固化的烘干温度控制为80‐120℃,固化的时间为3‐5min。
光热双重固化涂料的亲水铝箔,由上述制备方法制得;所述亲水铝箔表面具有微纳粗糙结构,在空气中对水的接触角为0‐5°,亲水涂层的附着力为0‐1级。
所述的光热双重固化涂料的亲水铝箔在空调中的应用。
相对于现有技术,本发明具有如下优点:
1)经打磨等表面处理后的铝箔表面富含羟基,水解后的硅烷偶联剂具有三个羟基可以在铝箔表面发生缩合反应,以化学键的形式接枝上去,同时硅烷偶联剂的有机链段上含有氨基、环氧基、双键等活性基团,有利于进一步接枝反应。本发明采用硅烷偶联剂对铝箔表面进行前处理,使其接枝于铝箔的表面,从而在铝箔表面形成一层具有环氧基、氨基、双键等活性基团的活化层,在亲水聚合物中同样含丰富的羧基、羟基、双键等活性基团,从而使其在固化过程中发生依靠光或者热引发化学反应,从而使成膜剂,硅烷前处理剂和铝箔以化学键的形式结合在一起,从而极大提高了附着力。另外采用亲水纳米二氧化硅作为无机掺杂剂,有利于在亲水铝箔表面形成微纳二元粗糙结构,从而进一步提高亲水性。
2)本发明亲水铝箔掺杂了无机亲水纳米粒子,从而膜的表面形成了微纳粗糙结构,亲水性极好,水的接触角仅0‐5°,亲水铝箔表面采用硅烷偶联剂进行前处理,得到的亲水涂层附着力极好,达到0‐1级。
3)本发明所制备的亲水铝箔涂料全部采用环保无毒原材料,对环境及施工人员的伤害极小,为环保型涂料。
4)本发明所制备亲水铝箔制备方法简单,操作容易实现,成本较低,能够大规模生产。
附图说明
图1为实施例1所得表面富含羟基纳米SiO2红外光谱图。
图2为实施例1所得亲水铝箔表面的5000倍放大SEM图。
图3为实施例1所得亲水铝箔表面水的接触角测试图。
具体实施方式
为更好地理解本发明,下面结合实施例对本发明作进一步的说明,但本发明的实施方式不限于此。
实施例1
(1)在四口烧瓶中加入50g四乙氧基硅烷、100g无水乙醇和20g去离子水,35℃恒温水浴加热并不断搅拌,待搅拌均匀后,称取0.5g质量浓度为25%的氨水,加入30g去离子水中,用恒流泵以1ml/min的速度滴入四口烧瓶中,保温4h后出料制备得到粒径约10nm的纳米硅溶胶,纳米粒子质量含量为20%。采用傅里叶红外测试仪测试所合成的纳米粒子的结构,由附图1红外光谱图可见,在3400cm‐1处有强的吸收峰,为羟基‐OH的吸收峰,930cm‐1处为硅醇基Si‐OH的伸缩振动峰,1000‐1100cm‐1处强而宽的吸收峰为为Si‐O的伸展振动吸收峰,该处同时还存在着Si‐O‐Si(四环体)的伸展振动吸收峰。说明四乙氧基硅烷已全部水解缩合生成了表面富含羟基的纳米SiO2;
(2)以质量份数计,将10份甲氧基聚乙二醇丙烯酸酯、60份聚乙二醇二甲基丙烯酸酯、10份乙氧化三羟甲基丙烷三丙烯酸酯、1份Esacure KIP150和1份十二烷基苯磺酸钠混合均匀,以圆盘分散机在1000r/min下分散10min;得UV固化水性涂料;
(3)将步骤(1)中的纳米溶胶与步骤(2)所得UV固化水性涂料按溶质质量比为1:1混杂,加水稀释配制成质量浓度为1%的溶液,在500W,40KHz下超声分散10min以保证分散均匀;
(4)硅烷前处理剂的制备,在500ml烧杯中加入100g去离子水,2gγ‐氨丙基三乙氧基硅烷和3gγ‐甲基丙烯酰氧基丙基三甲氧基硅烷,滴入0.5g稀盐酸催化剂搅拌均匀;
(5)将铝片用300号砂纸打磨干净后,清洗干净,烘干;
(6)将步骤(5)中所得干净的铝箔在步骤(4)中所得前处理剂中浸泡5min后,用涂膜器将步骤(3)中所得亲水铝箔涂料涂覆于铝箔表面,控制膜厚为5μm,放入烘箱在120℃下烘干的同时采用紫外光照射固化5min,即得亲水铝箔。
以日立公司S‐3700N型扫描电子显微镜观察亲水铝箔的表面形貌,在亲水铝箔表面具有微纳粗糙结构,如图2所示。在空气中以Dataphysics OCA40Micro型表面接触角测试仪测试步骤(6)中得到的亲水铝箔对3微升水的接触角分别为1°,如图3所示,以网格法测定附着力为0级。
实施例2
(1)在四口烧瓶中加入50g四乙氧基硅烷、100g无水乙醇和20g去离子水,80℃恒温水浴加热并不断搅拌,待搅拌均匀后,称取0.5g质量浓度为25%的盐酸,加入30g去离子水中,用恒流泵以1ml/min的速度滴入四口烧瓶中,保温4h后出料制备得到粒径500nm的纳米硅溶胶,纳米粒子质量含量为35%。采用傅里叶红外测试仪测试所合成的纳米粒子的结构,与图1相似。
(2)将50份甲氧基聚乙二醇甲基丙烯酸酯、80份聚乙二醇二丙烯酸酯、20份乙氧化三羟甲基丙烷三丙烯酸酯、5份Irgacure891DW和5份十二烷基苯磺酸钠混合均匀,以超声分散分散20min,超声频率为20KHz,功率为500W;得UV固化水性涂料;
(3)将步骤(1)中的纳米溶胶与步骤(2)所得UV固化水性涂料按溶质质量比为1:1混杂,加水稀释配制成质量浓度为1%的溶液,在500W,40KHz下超声分散10min以保证分散均匀;
(4)硅烷前处理剂的制备,在500ml烧杯中加入200g去离子水,5gγ‐缩水甘油醚氧丙基三甲氧基硅烷和2gγ‐甲基丙烯酰氧基丙基三甲氧基硅烷,滴入2g稀盐酸催化剂搅拌均匀;
(5)将铝片用300号砂纸打磨干净后,清洗干净,烘干;
(6)将步骤(5)中所得干净的铝箔在步骤(4)中所得前处理剂中浸泡5‐10min后,用涂膜器将步骤(3)中所得亲水铝箔涂料涂覆于铝箔表面,控制膜厚为10μm,放入烘箱在80‐120℃下烘干的同时采用紫外光照射固化4min,即得亲水铝箔。
以日立公司S‐3700N型扫描电子显微镜观察亲水铝箔的表面形貌,在亲水铝箔表面具有微纳粗糙结构,与图2类似。在空气中以Dataphysics OCA40Micro型表面接触角测试仪测试步骤(6)中得到的亲水铝箔对3微升水的接触角分别为1°,与图3类似,以网格法测定附着力为0级。
实施例3
(1)在四口烧瓶中加入50g四甲氧基硅烷、100g无水乙醇和20g去离子水,35℃恒温水浴加热并不断搅拌,待搅拌均匀后,称取0.5g质量浓度为25%的碳酸氢钠,加入30g去离子水中,用恒流泵以1.5ml/min的速度滴入四口烧瓶中,保温5h后出料制备得到粒径200nm的纳米硅溶胶,纳米粒子质量含量为35%。采用傅里叶红外测试仪测试所合成的纳米粒子的结构,与图1相似;
(2)将10份甲氧基聚乙二醇甲基丙烯酸酯、60份水性丙烯酸酯低聚物、10份乙氧化三羟甲基丙烷三丙烯酸酯、1份QTX和1份十二烷基苯磺酸钠混合均匀,以超声分散分散10min,超声频率为40KHz,功率为500W;得UV固化水性涂料;
(3)将步骤(1)中的纳米溶胶与步骤(2)所得UV固化水性涂料按溶质质量比为1:1混杂,加水稀释配制成质量浓度为1%的溶液,在500W,40KHz下超声分散10min以保证分散均匀;
(4)硅烷前处理剂的制备,在500ml烧杯中加入150g去离子水,8gγ‐缩水甘油醚氧丙基三甲氧基硅烷和2gγ‐甲基丙烯酰氧基丙基三甲氧基硅烷,滴入1g稀盐酸催化剂搅拌均匀;
(5)将铝片用300号砂纸打磨干净后,清洗干净,烘干;
(6)将步骤(5)中所得干净的铝箔在步骤(4)中所得前处理剂中浸泡2min后,用涂膜器将步骤(3)中所得亲水铝箔涂料涂覆于铝箔表面,控制膜厚为15μm,放入烘箱在100℃下烘干的同时采用紫外光照射固化5min,即得亲水铝箔。
以日立公司S‐3700N型扫描电子显微镜观察亲水铝箔的表面形貌,在亲水铝箔表面具有微纳粗糙结构,与图2类似。在空气中以Dataphysics OCA40Micro型表面接触角测试仪测试步骤(6)中得到的亲水铝箔对3微升水的接触角分别为1°,与图3类似,以网格法测定附着力为0级。
实施例4
(1)在四口烧瓶中加入50g四乙氧基硅烷、100g无水乙醇和20g去离子水,35℃恒温水浴加热并不断搅拌,待搅拌均匀后,称取0.5g质量浓度为25%的硫酸,加入30g去离子水中,用恒流泵以1.5ml/min的速度滴入四口烧瓶中,保温4h后出料制备粒径约20nm左右的纳米硅溶胶,纳米粒子质量含量为35%。采用傅里叶红外测试仪测试所合成的纳米粒子的结构,与图3相似;
(2)将10份水性丙烯酸酯低聚物、70份水性聚氨酯丙烯酸酯低聚物、10份水性聚酯丙烯酸酯低聚物、2份BTC和3份十二烷基苯磺酸钠混合均匀,以超声分散分散15min,超声频率为30KHz,功率为400W;得UV固化水性涂料;
(3)将步骤(1)中的纳米溶胶与步骤(2)所得UV固化水性涂料按溶质质量比为1:1混杂,加水稀释配制成质量浓度为1%的溶液,在500W,40KHz下超声分散10min以保证分散均匀;
(4)硅烷前处理剂的制备,在500ml烧杯中加入100‐200g去离子水,2gγ‐氨丙基三乙氧基硅烷和3gγ‐甲基丙烯酰氧基丙基三甲氧基硅烷,滴入2g稀磷酸催化剂搅拌均匀;
(5)将铝片用300号砂纸打磨干净后,清洗干净,烘干;
(6)将步骤(5)中所得干净的铝箔在步骤(4)中所得前处理剂中浸泡10min后,用涂膜器将步骤(3)中所得亲水铝箔涂料涂覆于铝箔表面,控制膜厚为20μm,放入烘箱在120℃下烘干的同时采用紫外光照射固化5min,即得亲水铝箔。
以日立公司S‐3700N型扫描电子显微镜观察亲水铝箔的表面形貌,在亲水铝箔表面具有微纳粗糙结构,与图2类似。在空气中以Dataphysics OCA40Micro型表面接触角测试仪测试步骤(6)中得到的亲水铝箔对3微升水的接触角分别为3°,与图3类似,以网格法测定附着力为1级。
实施例5
(1)在四口烧瓶中加入50g四乙氧基硅烷、100g无水乙醇和20g去离子水,35℃恒温水浴加热并不断搅拌,待搅拌均匀后,称取0.5g质量浓度为25%的硝酸,加入30g去离子水中,用恒流泵以1.5ml/min的速度滴入四口烧瓶中,保温4h后出料制备粒径约50nm左右的纳米硅溶胶,纳米粒子质量含量为35%。采用傅里叶红外测试仪测试所合成的纳米粒子的结构,与图3相似;
(2)将50份甲氧基聚乙二醇丙烯酸酯、80份水性聚酯丙烯酸酯低聚物、20份水性环氧丙烯酸酯低聚物、500份步骤(2)所得的纳米溶胶、5份WB‐4784和5份十二烷基苯磺酸钠混合均匀,以圆盘分散机在2000r/min下分散20min;得UV固化水性涂料;
(3)将步骤(1)中的纳米溶胶与步骤(2)所得UV固化水性涂料按溶质质量比为1:1混杂,加水稀释配制成质量浓度为99%的溶液,在500W,40KHz下超声分散10min以保证分散均匀;
(4)硅烷前处理剂的制备,在500ml烧杯中加入200g去离子水,6gγ‐氨丙基三乙氧基硅烷和3gγ‐甲基丙烯酰氧基丙基三甲氧基硅烷,滴入2g稀硼酸催化剂搅拌均匀;
(5)将铝片用300号砂纸打磨干净后,清洗干净,烘干;
(6)将步骤(5)中所得干净的铝箔在步骤(4)中所得前处理剂中浸泡10min后,用涂膜器将步骤(3)中所得亲水铝箔涂料涂覆于铝箔表面,控制膜厚为20μm,放入烘箱在120℃下烘干的同时采用紫外光照射固化5min,即得亲水铝箔。
以日立公司S‐3700N型扫描电子显微镜观察亲水铝箔的表面形貌,在亲水铝箔表面具有微纳粗糙结构,与图2类似。在空气中以Dataphysics OCA40Micro型表面接触角测试仪测试步骤(6)中得到的亲水铝箔对3微升水的接触角分别为5°,与图3类似,以网格法测定附着力为1级。
实施例6
(1)在四口烧瓶中加入50g四乙氧基钛、100g无水乙醇和20g去离子水,35℃恒温水浴加热并不断搅拌,待搅拌均匀后,称取0.5g质量浓度为25%的氢氧化钠加入30g去离子水中,用恒流泵以1.5ml/min的速度滴入四口烧瓶中,保温4h后出料制备粒径约50nm左右的纳米钛溶胶,纳米粒子质量含量为35%。采用傅里叶红外测试仪测试所合成的纳米粒子的结构,与图1相似;
(2)将50份甲氧基聚乙二醇丙烯酸酯、80份水性环氧丙烯酸酯低聚物、20份乙氧化三羟甲基丙烷三丙烯酸酯、500份步骤(2)所得的纳米溶胶、5份WB‐4789和5份十二烷基苯磺酸钠混合均匀,以超声分散20min,超声频率为20KHz,功率为300W;得UV固化水性涂料;
(3)将步骤(1)中的纳米溶胶与步骤(2)所得UV固化水性涂料按溶质质量比为1:1混杂,加水稀释配制成质量浓度为1%的溶液,在500W,40KHz下超声分散10min以保证分散均匀;
(4)硅烷前处理剂的制备,在500ml烧杯中加入200g去离子水,2gγ‐氨丙基三乙氧基硅烷和3gγ‐甲基丙烯酰氧基丙基三甲氧基硅烷,滴入1g稀磷酸催化剂搅拌均匀;
(5)将铝片用300号砂纸打磨干净后,清洗干净,烘干;
(6)将步骤(5)中所得干净的铝箔在步骤(4)中所得前处理剂中浸泡10min后,用涂膜器将步骤(3)中所得亲水铝箔涂料涂覆于铝箔表面,控制膜厚为5μm,放入烘箱在120℃下烘干的同时采用紫外光照射固化5min,即得亲水铝箔。
以日立公司S‐3700N型扫描电子显微镜观察亲水铝箔的表面形貌,在亲水铝箔表面具有微纳粗糙结构,与图2类似。在空气中以Dataphysics OCA40Micro型表面接触角测试仪测试步骤(6)中得到的亲水铝箔对3微升水的接触角分别为1°,与图3类似,以网格法测定附着力为0级。
所得亲水铝箔综合性能检测要求及检测方法与检测结果见下表1。将该类铝箔制成翅片型的空调散热片,取代传统型散热片用于各类空调机中。空调使用时热空气中的水分在换热片上凝结的水珠迅速铺展开,顺着片材向下流走,避免了因换热片之间的水珠搭桥而影响换热器的通风效果,从而使热交换率提高了5~10%。另外,由于无水珠,相应地减少了震动造成的空调噪音,且无任何异味;防止了空调器氧化粉末吹入室内对人体产生不利影响,符合环保要求;改善了热交换器的耐腐蚀性和耐候性,延长了热交换器的使用寿命。
表1

Claims (10)

1.一种光热双重固化涂料的亲水铝箔的制备方法,其特征在于包括如下步骤:
1)将醇和水按质量比1:5‐5:1配制成溶剂,将硅氧烷或钛氧烷与溶剂按质量比1:1‐1:5混合于20‐80℃恒温水浴,搅拌后,滴加催化剂,保温,即得到纳米溶胶;所述硅氧烷或钛氧烷为四乙氧基硅烷、四甲氧基硅烷和四乙氧基钛;所述醇为乙醇、丙醇、异丙醇、正丁醇、仲丁醇和异丁醇中的一种;所述催化剂为盐酸、硝酸、硼酸、硫酸、氨水、碳酸氢钠或氢氧化钠;
2)以质量份数计,将10‐50份单官能UV固化低聚物、60‐80份双官能UV固化低聚物;10‐20份多官能UV固化低聚物、1‐5份光引发剂和1‐5份乳化剂混合均匀得UV固化水性涂料;所述单官能UV固化低聚物为甲氧基聚乙二醇丙烯酸酯或甲氧基聚乙二醇甲基丙烯酸酯;所述双官能UV固化低聚物为聚乙二醇二丙烯酸酯、聚乙二醇二甲基丙烯酸酯、水性丙烯酸酯低聚物、水性聚氨酯丙烯酸酯低聚物、水性聚酯丙烯酸酯低聚物或水性环氧丙烯酸酯低聚物;所述多官能UV固化低聚物为乙氧化三羟甲基丙烷三丙烯酸酯、水性丙烯酸酯低聚物、水性聚氨酯丙烯酸酯低聚物、水性聚酯丙烯酸酯低聚物或水性环氧丙烯酸酯低聚物;所述光引发剂为水性光引发剂Darocur2959、Esacure KIP150、Irgacure891DW、QTX、BTC、BPQ、WB‐4784、WB‐4785、WB‐4789或WB‐4792;所述乳化剂为十二烷基苯磺酸钠;
3)将步骤1)中的纳米溶胶和步骤2)所述的UV固化水性涂料按质量比1:9‐9:1的比例配制成质量浓度为1‐99%的混合溶液,超声分散均匀即得UV固化杂化亲水铝箔涂料;
4)以质量份数计,将100‐200份去离子水,5‐10份硅烷偶联剂,滴入0.5‐2份稀酸催化剂搅拌均匀得到硅烷前处理剂;所述硅烷偶联剂为γ‐氨丙基三乙氧基硅烷、γ‐缩水甘油醚氧丙基三甲氧基硅烷、γ‐甲基丙烯酰氧基丙基三甲氧基硅烷中的一种;所述稀酸催化剂为盐酸、硼酸或磷酸;
5)将铝片打磨后,清洗干净,烘干;
6)将步骤5)中所得干净的铝箔在步骤4)中所得前处理剂中浸泡后,将步骤3)所述的UV固化杂化亲水铝箔涂料涂覆于铝箔表面,放入烘箱中烘干的同时采用紫外光照射固化,即得亲水铝箔。
2.根据权利要求1所述的光热双重固化涂料的亲水铝箔的制备方法,其特征在于:所述超声分散的超声频率为20‐40KHz,功率范围为300‐500W。
3.根据权利要求1所述的光热双重固化涂料的亲水铝箔的制备方法,其特征在于:所述滴加催化的速度为1‐10ml/min;所述紫外光固化波长为245‐405nm。
4.根据权利要求1所述的光热双重固化涂料的亲水铝箔的制备方法,其特征在于:步骤1)所述搅拌的时间为5‐10min;保温的时间为4‐5h。
5.根据权利要求1所述的光热双重固化涂料的亲水铝箔的制备方法,其特征在于:所述打磨是将铝片用300号砂纸打磨。
6.根据权利要求1所述的光热双重固化涂料的亲水铝箔的制备方法,其特征在于:所述浸泡的时间为5‐10min。
7.根据权利要求1所述的光热双重固化涂料的亲水铝箔的制备方法,其特征在于:所述UV固化杂化亲水铝箔涂料涂覆于铝箔表面的涂膜厚度控制为5‐20μm。
8.根据权利要求1所述的光热双重固化涂料的亲水铝箔的制备方法,其特征在于:所述放入烘箱中烘干的同时采用紫外光照射固化的烘干温度控制为80‐120℃,固化的时间为3‐5min。
9.一种光热双重固化涂料的亲水铝箔,其特征在于,其由权利要求1‐8任一项所述制备方法制得;所述亲水铝箔表面具有微纳粗糙结构,在空气中对水的接触角为0‐5°,亲水涂层的附着力为0‐1级。
10.权利要求9所述的光热双重固化涂料的亲水铝箔在空调中的应用。
CN201410267772.1A 2014-06-16 2014-06-16 一种光热双重固化涂料的亲水铝箔及其制备方法和应用 Active CN104087137B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410267772.1A CN104087137B (zh) 2014-06-16 2014-06-16 一种光热双重固化涂料的亲水铝箔及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410267772.1A CN104087137B (zh) 2014-06-16 2014-06-16 一种光热双重固化涂料的亲水铝箔及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN104087137A true CN104087137A (zh) 2014-10-08
CN104087137B CN104087137B (zh) 2016-05-04

Family

ID=51634904

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410267772.1A Active CN104087137B (zh) 2014-06-16 2014-06-16 一种光热双重固化涂料的亲水铝箔及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN104087137B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106867376A (zh) * 2017-01-24 2017-06-20 上海乘鹰新材料有限公司 多官能度亲水性紫外光固化树脂的制备方法及其应用
CN108913023A (zh) * 2018-06-13 2018-11-30 北京化工大学 一种紫外光固化丙烯酸酯聚硅氧烷透明涂层的制备方法
CN108929576A (zh) * 2018-08-06 2018-12-04 浙江画之都文化创意有限公司 一种耐腐蚀抗紫外线老化的包覆改性铝颜料的制备方法
CN110023358A (zh) * 2016-12-07 2019-07-16 Dic株式会社 VaRTM成型用树脂组合物、成型材料、成型品和成型品的制造方法
CN110204936A (zh) * 2019-03-14 2019-09-06 上海丰野表面处理剂有限公司 一种汽车散热器用涂料及对散热器进行处理的工艺方法
CN111234288A (zh) * 2020-01-19 2020-06-05 东华大学 一种亲水性聚合物防雾涂层的制备方法
CN111349377A (zh) * 2020-04-28 2020-06-30 中科院广州化学有限公司 一种有机硅改性水性环氧丙烯酸酯uv固化涂料及制备与应用
CN114520367A (zh) * 2022-01-20 2022-05-20 上海紫江新材料科技股份有限公司 一种内表面含氟的耐电解液腐蚀铝塑膜的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072115A (ja) * 1999-09-03 2001-03-21 Showa Denko Kk イージーピール蓋材
CN101104167A (zh) * 2007-03-29 2008-01-16 横店集团东磁有限公司 亲水铝箔的制造方法
CN102241939A (zh) * 2011-05-17 2011-11-16 华南理工大学 一种有机-无机杂化的超亲水涂料及其制备方法与应用
CN103316507A (zh) * 2013-06-06 2013-09-25 华南理工大学 超亲水及水下超疏油的油水分离网膜及其制备方法和应用
CN103357276A (zh) * 2013-07-22 2013-10-23 华南理工大学 Uv固化超亲水及水下超疏油油水分离膜及制备方法和应用
CN103421415A (zh) * 2012-05-18 2013-12-04 镇江银海铝业有限公司 一种通过紫外光固化的亲水铝箔涂料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072115A (ja) * 1999-09-03 2001-03-21 Showa Denko Kk イージーピール蓋材
CN101104167A (zh) * 2007-03-29 2008-01-16 横店集团东磁有限公司 亲水铝箔的制造方法
CN102241939A (zh) * 2011-05-17 2011-11-16 华南理工大学 一种有机-无机杂化的超亲水涂料及其制备方法与应用
CN103421415A (zh) * 2012-05-18 2013-12-04 镇江银海铝业有限公司 一种通过紫外光固化的亲水铝箔涂料及其制备方法
CN103316507A (zh) * 2013-06-06 2013-09-25 华南理工大学 超亲水及水下超疏油的油水分离网膜及其制备方法和应用
CN103357276A (zh) * 2013-07-22 2013-10-23 华南理工大学 Uv固化超亲水及水下超疏油油水分离膜及制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭婧等: "纳米二氧化硅/聚丙烯酸酯复合双重固化乳液的结构与性能", 《高分子材料科学与工程》, vol. 29, no. 10, 31 October 2013 (2013-10-31), pages 81 - 84 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110023358A (zh) * 2016-12-07 2019-07-16 Dic株式会社 VaRTM成型用树脂组合物、成型材料、成型品和成型品的制造方法
CN106867376A (zh) * 2017-01-24 2017-06-20 上海乘鹰新材料有限公司 多官能度亲水性紫外光固化树脂的制备方法及其应用
CN108913023A (zh) * 2018-06-13 2018-11-30 北京化工大学 一种紫外光固化丙烯酸酯聚硅氧烷透明涂层的制备方法
CN108929576A (zh) * 2018-08-06 2018-12-04 浙江画之都文化创意有限公司 一种耐腐蚀抗紫外线老化的包覆改性铝颜料的制备方法
CN108929576B (zh) * 2018-08-06 2020-08-11 浙江画之都文化创意有限公司 一种耐腐蚀抗紫外线老化的包覆改性铝颜料的制备方法
CN110204936A (zh) * 2019-03-14 2019-09-06 上海丰野表面处理剂有限公司 一种汽车散热器用涂料及对散热器进行处理的工艺方法
CN111234288A (zh) * 2020-01-19 2020-06-05 东华大学 一种亲水性聚合物防雾涂层的制备方法
CN111349377A (zh) * 2020-04-28 2020-06-30 中科院广州化学有限公司 一种有机硅改性水性环氧丙烯酸酯uv固化涂料及制备与应用
CN111349377B (zh) * 2020-04-28 2021-10-19 中科院广州化学有限公司 一种有机硅改性水性环氧丙烯酸酯uv固化涂料及制备与应用
CN114520367A (zh) * 2022-01-20 2022-05-20 上海紫江新材料科技股份有限公司 一种内表面含氟的耐电解液腐蚀铝塑膜的制备方法
CN114520367B (zh) * 2022-01-20 2023-07-18 上海紫江新材料科技股份有限公司 一种内表面含氟的耐电解液腐蚀铝塑膜的制备方法

Also Published As

Publication number Publication date
CN104087137B (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
CN104087137A (zh) 一种光热双重固化涂料的亲水铝箔及其制备方法和应用
CN104087086B (zh) 一种有机无机杂化涂料的亲水铝箔及其制备方法和应用
US9120928B2 (en) Method for preparing white carbon black modified by silane coupling agent
CN101649152B (zh) 一种环保型有机无机杂化涂料及其制备方法与应用
CN107760065A (zh) 一种用于防污闪涂料的超憎水填料粒子的改性方法与应用
CN106492646B (zh) 一种用于优先透醇渗透汽化的介孔二氧化硅杂化膜的制备方法
CN107892748B (zh) 一种室温湿气固化硅树脂的制备方法
CN102585700B (zh) 一种可紫外光固化的耐高温、耐腐蚀的有机硅/二氧化硅杂化涂层的制备方法
CN103965778B (zh) 常温固化高硬度有机-无机杂化涂料及其制备和使用方法
CN106752255A (zh) 一种材料表面防护用超疏水涂层喷剂及其制备和使用方法
CN107629491B (zh) 一种用于柔性衬底的介孔SiO2耐磨增透涂层及制备方法
CN103408762A (zh) 一种可交联氟硅树脂、涂料及其制备的超双疏涂层
WO2019069495A1 (ja) 塗液、塗膜の製造方法及び塗膜
CN113480740B (zh) 硅橡胶用可调节双疏性填料的制备方法及硅橡胶膜的制备
CN109265922A (zh) 一种高韧性自催化环氧树脂及制备方法
CN107880773A (zh) 一种水性环氧改性硅树脂涂料及其制备方法
CN105176394A (zh) 基于溶胶-凝胶技术的有机无机的涂层材料及其制备方法
CN102876200B (zh) 一种亲水铝箔涂料及其制备与固化方法
CN106519941A (zh) 一种疏水耐蚀杂化防护涂料及其制备方法
CN108841325A (zh) 一种高压电器设备用绝缘涂料及其制备方法
Yu et al. Superhydrophilic and superhydrophobic surface from raspberry-like PMMA/M-SiO 2 nanocomposite microspheres with dual-level hierarchical structure
JPH11310411A (ja) 有機−無機複合体および多孔質ケイ素酸化物の製造方法
CN102964983A (zh) 一种硅杂化复合涂覆电子胶及其制备方法
CN102850828A (zh) 一种活性纳米二氧化硅复合物及其制备方法
CN107201173A (zh) 一种可应用于高温高湿气候的岭南地带铁质文物防腐蚀用有机‑无机复合材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant