CN104080805B - gp41中和性抗体及其用途 - Google Patents

gp41中和性抗体及其用途 Download PDF

Info

Publication number
CN104080805B
CN104080805B CN201280065580.1A CN201280065580A CN104080805B CN 104080805 B CN104080805 B CN 104080805B CN 201280065580 A CN201280065580 A CN 201280065580A CN 104080805 B CN104080805 B CN 104080805B
Authority
CN
China
Prior art keywords
antibody
seq
detached
hiv
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201280065580.1A
Other languages
English (en)
Other versions
CN104080805A (zh
Inventor
马克·康纳斯
黄竞荷
利奥·B·劳布
邝达平
嘉里·纳贝尔
约翰·R·玛斯考拉
张宝山
里贝卡·S·里迪塞尔
伊万琳·格奥尔基耶夫
杨永平
朱江
吉拉德·欧费克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Goverment Of United States, AS REPRESENTED BY SECRETARY D
Original Assignee
Goverment Of United States, AS REPRESENTED BY SECRETARY D
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goverment Of United States, AS REPRESENTED BY SECRETARY D filed Critical Goverment Of United States, AS REPRESENTED BY SECRETARY D
Publication of CN104080805A publication Critical patent/CN104080805A/zh
Application granted granted Critical
Publication of CN104080805B publication Critical patent/CN104080805B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1036Retroviridae, e.g. leukemia viruses
    • C07K16/1045Lentiviridae, e.g. HIV, FIV, SIV
    • C07K16/1063Lentiviridae, e.g. HIV, FIV, SIV env, e.g. gp41, gp110/120, gp160, V3, PND, CD4 binding site
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/42Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum viral
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0004Screening or testing of compounds for diagnosis of disorders, assessment of conditions, e.g. renal clearance, gastric emptying, testing for diabetes, allergy, rheuma, pancreas functions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1036Retroviridae, e.g. leukemia viruses
    • C07K16/1045Lentiviridae, e.g. HIV, FIV, SIV
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56966Animal cells
    • G01N33/56972White blood cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • G01N33/56988HIV or HTLV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/10Immunoglobulins specific features characterized by their source of isolation or production
    • C07K2317/14Specific host cells or culture conditions, e.g. components, pH or temperature
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/567Framework region [FR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/005Assays involving biological materials from specific organisms or of a specific nature from viruses
    • G01N2333/08RNA viruses
    • G01N2333/15Retroviridae, e.g. bovine leukaemia virus, feline leukaemia virus, feline leukaemia virus, human T-cell leukaemia-lymphoma virus
    • G01N2333/155Lentiviridae, e.g. visna-maedi virus, equine infectious virus, FIV, SIV
    • G01N2333/16HIV-1, HIV-2
    • G01N2333/161HIV-1, HIV-2 gag-pol, e.g. p55, p24/25, p17/18, p.7, p6, p66/68, p51/52, p31/34, p32, p40

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Organic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • AIDS & HIV (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Oncology (AREA)
  • General Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Toxicology (AREA)
  • Rheumatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Mycology (AREA)
  • Zoology (AREA)
  • Diabetes (AREA)
  • Endocrinology (AREA)

Abstract

本发明公开了特异性结合于HIV‑1gp41的膜近端外部区域(MPER)的单克隆中和性抗体。本发明还公开了包含所公开的特异性结合gp41的抗体的组合物、编码这些抗体的核酸、包含所述核酸的表达载体以及表达所述核酸的分离的宿主细胞。本文公开的抗体和组合物可用于在生物样品中检测HIV‑1的存在或在对象中检测HIV‑1感染或诊断AIDS。此外,所公开的抗体的宽的中和广度使它们理想地用于治疗患有HIV感染的对象。因此,本发明公开了治疗和/或预防HIV感染的方法。

Description

gp41中和性抗体及其用途
与相关申请的交叉引用
本申请要求2012年9月18日提交的美国临时申请号61/702,703、2012年9月7日提交的美国临时申请号61/698,480、2012年7月17日提交的美国临时申请号61/672,708和2011年11月7日提交的美国临时申请号61/556,660的权益。每个这些在先申请以其全部内容通过参考并入本文。
技术领域
本发明涉及单克隆中和性抗体的鉴定,所述单克隆中和性抗体例如但不限于结合于HIV-1gp41的近膜区的抗体。
背景技术
有效的1型人免疫缺陷病毒(HIV-l)疫苗可能需要诱导阻断HIV-1进入人类细胞的中和性抗体(NAb)。为了有效,疫苗诱导的抗体必须有活性对抗大多数HIV-l循环株。不幸的是,目前的HIV-l疫苗不能诱导强效并具有广泛反应性的NAb。设计更好的疫苗的一个主要障碍是对NAb识别HIV-l包膜糖蛋白例如gp120和gp41的哪个区域的理解有限。已从HIV-1感染的个体分离到数种中和性单克隆抗体(mAb),并且这些mAb确定了病毒上对NAb易感的特定区域(表位)。
尽管包膜糖蛋白是免疫原性的并且诱导各种抗体,但被诱导的中和性抗体是株特异性的,并且大部分的免疫应答被转向非中和性决定簇(Weiss,R.A.等,Nature,1985.316(6023):p.69-72;Wyatt,R.和J.Sodroski,Science,1998.280(5371):p.1884-8)。仅仅从自然HIV感染分离到很少的广泛中和性抗体。结合gp41的广泛中和性抗体的三个实例是2F5、4E10和Z13E1。这些gp41中和性抗体识别HIV-1gp41糖蛋白的近膜区(MPER)。不幸的是,这些抗体在其株交叉反应性或效价方面受限,因此不能为治疗性干预提供可行的选择。因此,对于制备能够针对感染因子例如HIV提供保护的单克隆广泛中和性抗体的方法,存在着需求。
发明内容
本文中提供了特异性结合gp41的分离的人类单克隆中和性抗体。在某些实施例中,对这些抗体的结合和/或中和能力进行了优化。在本文中还公开了包含所公开的特异性结合gp41的抗体的组合物、编码这些抗体的核酸、包含所述核酸的表达载体、以及表达所述核酸的分离的宿主细胞。还提供了所述分离的抗体的抗原结合片段。
在某些实施方式中,分离的人类单克隆抗体或其抗原结合片段包括重链和轻链,其中所述重链包括与SEQ ID NO:1所示的氨基酸序列具有至少约80%同一性的氨基酸序列。在数种这样的实施方式中,所述抗体或其抗原结合片段特异性结合于gp41并接触LWNWFDITNWLWYIR(SEQ ID NO:26,第14-28位残基)所示的氨基酸序列中的L、WF、LW和R,并且是中和性的。在其他实施方式中,所述抗体或其抗原结合片段特异性结合于gp41并接触NWFDITNWLWYIR(SEQ ID NO:13,第7-19位残基)所示的氨基酸序列中的NWF、T和R,并且是中和性的。在其他实施方式中,提供了一种分离的单克隆抗体或抗原结合片段,其包括重链和轻链,其中所述重链包括SEQ ID NO:11的第26-33位(重链互补决定区1(HCDR1))、第51-60位(HCDR2)或第99-120位(HCDR3)氨基酸,其中X1是Q或R,X2是V或A,X3是S或Y,并且X4是T或I。所述抗体或抗原结合片段特异性结合HIV-1的gp41,并且是中和性的。在某些这样的实施方式中,分离的人类单克隆抗体或抗原结合片段包括重链,所述重链包含SEQ ID NO:1、3、5、147-149、189-192或200-204之一的第26-33位(HCDR1)、第51-60位(HCDR2)和第99-120位(HCDR3)氨基酸中的一个或多个。在某些这样的实施方式中,所述分离的人类单克隆抗体的重链包括与SEQ ID NO:1、3、5、147-149、189-192或200-204之一所示的氨基酸序列具有至少90%同一性的氨基酸序列。在其他实施方式中,所述分离的人类单克隆抗体或其抗原结合片段的重链包括SEQ ID NO:1、3、5、147-149、189-192或200-204之一所示的氨基酸序列。
在其他实施方式中,分离的人类单克隆抗体或其抗原结合片段包括与SEQ ID NO:2所示的氨基酸序列具有至少约80%同一性的轻链。在其他实施方式中,所述轻链包括SEQID NO:12的第26-31位(轻链互补决定区1(LCDR1))、第49-51位(LCDR2)和第88-99位(LCDR3)氨基酸,其中X4是E或D,X5是Y或H,X6是K或I,X7是V或I,X8是S或T,X9是D或E,X10是E或D,并且X11是T或I。在其他实施方式中,所述轻链包括SEQ ID NO:2、4、6、12、150-152或164-186之一的第26-31位(LCDR1)、第49-51位(LCDR2)或第88-99位(LCDR3)氨基酸。在某些实施方式中,所述分离的人类单克隆抗体或抗原结合片段的轻链包括与SEQ ID NO:2、4、6、12、150-152或164-186之一所示的氨基酸序列具有至少90%同一性的氨基酸序列。在一种实施方式中,所述分离的人类单克隆抗体或抗原结合片段的轻链包括SEQ ID NO:2、4、6、12、150-152或164-186之一所示的氨基酸序列。
在某些实施方式中,提供了一种分离的人类单克隆抗体或其抗原结合片段,其中重链包括SEQ ID NO:1所示的氨基酸序列,并且轻链包括SEQ ID NO:2所示的氨基酸序列。所述抗体特异性结合HIV-1的gp41,并且是中和性的。在其他实施方式中,提供了一种分离的人类单克隆抗体或其抗原结合片段,其中重链包括SEQ ID NO:154所示的氨基酸序列,并且轻链包括SEQ ID NO:152所示的氨基酸序列。所述抗体特异性结合HIV-1的gp41,并且是中和性的。在其他实施方式中,提供了一种分离的人类单克隆抗体或其抗原结合片段,其中重链包括SEQ ID NO:192所示的氨基酸序列,并且轻链包括SEQ ID NO:152所示的氨基酸序列。所述抗体特异性结合HIV-1的gp41,并且是中和性的。
本文公开的抗体和组合物可用于各种目的,例如用于检测生物样品中HIV-1的存在或诊断AIDS。这些方法可以包括:将来自于对象的样品与特异性结合gp41的人类单克隆抗体相接触,以及检测所述抗体与所述样品的结合。相对于所述抗体与对照样品的结合,所述抗体与所述样品的结合的增加将所述对象鉴定为具有HIV-1感染和/或AIDS的对象。在某些非限制性实施例中,相对于所述抗体与对照样品的结合,所述抗体与所述样品的结合的增加,检测到HIV-1的存在。
还公开了用于治疗具有HIV感染的对象的方法,所述具有HIV感染的对象例如但不限于患有AIDS的对象。所述方法包括向对象施用治疗有效量的如上所述的单克隆抗体。
从下面参考附图进行的数种实施方式的详细描述,本公开的上述和其他特征和优点将变得更加显而易见。
附图说明
图1A-1C是示出了10E8抗体序列和中和的分析的一组表和图。(A)推断的编码10E8、7H6和7N16的可变区的种系基因。(B)抗体针对181种分离株的HIV-1包膜蛋白(Env)-假病毒小组的中和活性。树状图指示了HIV-1原代分离株的Env的gp160蛋白的距离。(C)树状图下方的数据显示了所测试的病毒的数目、被中和的病毒的百分率和IC50<50μg/ml的被中和病毒的IC50的几何平均值。滴度中位数是基于所测试的所有病毒,包括IC50>50ug/ml的病毒,这样的病毒被指派100的值。
图2A和2B示出了10E8的结合特异性。(A)mAb 10E8或4E10与gp140、gp120、gp41或4E10肽的酶联免疫吸附测定法(ELISA)结合。误差线表示平均值的一个标准误差(SEM)。(B)4E10丙氨酸扫描肽抑制mAb 10E8或4E10对C1HIV-2/HIV-1MPER病毒的中和。在感染TZM-bl细胞之前将肽与mAb 4E10或10E8温育1小时。Y-轴示出了每种条件的中和百分数。W672、F673、T676和R683残基是丙氨酸突变体肽不阻断中和的位置(R683仅仅适用于10E8抗体)。示出了SEQID NO:26的第16-28位残基。
图3A和3B是示出了10E8自体反应性的分析的一组表和一组数字图像。(A)10E8与阴离子型磷脂的结合的表面等离子体共振(SPR)分析。将10E8注射到固定在L1传感器芯片上的PC-CLP脂质体或PC-PS脂质体上。使用4E10和2F5作为阳性对照,并使用13H1、17b和抗RSV F蛋白抗体作为阴性对照。(B)10E8与HEP-2上皮细胞的反应性。对照如上所述,并添加VRC01作为另外的阴性对照。抗体浓度为25μg/ml。所有图片以400x放大倍数示出。
图4A-4H是示出了与其gp41MPER表位复合的10E8抗体的晶体结构的一组条带图。(A)10E8识别高度保守的gp41螺旋以中和HIV-1。用条带表示法示出了Fab 10E8(深灰色阴影表示重链,浅灰色表示轻链),其与涵盖MPER(Asn656-Arg683;NEQELLELDKWASLWNWFDITNWLWYIR(SEQ ID NO:26))的gp41肽(深灰色)复合。(B)10E8与gp41之间的界面,其中所选的10E8侧链和gp41侧链用条棒表示法显示。用手类比,铰链可以被视为被拇指(用CDR H2表示)握住,C-端螺旋被视为沿着相应的伸长的食指(用CDR H3表示)悬挂,并且起始C-端螺旋的残基被视为被拇指与食指之间的裂缝(用CDR环的接合处表示)捉住。(C-D)埋置的接触表面和表位保守性。gp41上埋置的接触表面(灰色;C)的检查揭示出在2870个被检查的病毒株中,被10E8直接接触的表位残基(标记的,D)是高度保守的(保守百分率被提供在括号中;也参见图26-28)。E-H,互补位(paratope)和表位的丙氨酸突变。10E8CDR H3环的尖端处和疏水裂缝内的残基对于gp41的识别和病毒中和来说是关键的(图31-32),正如在埋置的10E8接触表面上所作图的(E,G)。这些结果反映出10E8表位的丙氨酸扫描突变的影响(图18-19),正如在埋置的10E8接触表面上所作图的(F,H)。互补位和表位的丙氨酸突变的影响的比较,揭示出对10E8识别和中和来说最关键的表位的残基也是保守性最高的(D)。
图5A和5B是示出了gp41易感性位点的表、一组图和示意图。(A)序列变异对10E8中和的影响。示出了三种10E8抗性病毒和患者病毒的10E8结合表位内的预测的氨基酸序列。10E8结合区及其与JR2病毒相比的序列差异用浅灰色标出。比JR2野生型假病毒高20倍以上的IC50和IC80值用浅灰色突出。误差线表示SEM。(B)被中和性抗体识别的gp41的高度保守区域的结构定义。与10E8进行直接接触的高度保守残基的原子采用中等灰色阴影并用条棒表示法示出,被10E8埋置的原子采用深灰色阴影,主链接触原子采用浅灰色阴影。gp41MPER的半透明的表面按照位于下方的原子画上阴影。示出了90°的视图,其中右侧图中是结合的抗体10E8。10E8CDR H3与高度保守的疏水性残基相互作用,而CDR H2接触N-端与C-端螺旋之间的接合处的主链原子。MPER的许多未结合的残基(灰色),特别是C-端螺旋内的未结合的残基是疏水的。在晚期融合中间体的结构中(图16),这些残基面朝螺旋的卷曲螺旋的外部;在病毒刺突的融合前构象中,它们可能与病毒膜或与Env的其他疏水区相互作用。
图6A和6B描绘了gp41抗体10E8(SEQ ID NO:1和2)、7H6(SEQ ID NO:3和4)、7N16(SEQ ID NO:5和6)、IGHV3-15*05(SEQ ID NO:7)和IGLV3-19*01的种系序列(SEQ ID NO:8)的重链和轻链的序列比对。浅灰色残基表示相对于种系序列的置换。点符号表示残基缺失。示出并使用Kabat和IMGT编号系统来识别10E8重链和轻链中的特定残基。
图7是示出了N152供体血清与抗体10E8之间的中和效价的相关性的图。示出了针对20种假病毒的小组评估的N152供体血清的中和ID50相对于10E8的中和IC50的图。使用非参数Spearman相关性来评估10E8的IC50与N152的ID50之间的相关性。
图8A-8C是示出了10E8的结合特异性的图和一组表。(A)所指示的mAb与MPER、2F5、Z13e1、4E10和4E10.19肽的ELISA结合。还示出了肽的氨基酸序列(降序,N-端和C-端带有3个赖氨酸的SEQ ID NO:26,SEQ ID NO:26的第1-16位残基,C-端带有3个赖氨酸的SEQ IDNO:26的第11-21位残基,C-端带有3个赖氨酸的SEQ ID NO:26的第16-24位残基,和N-端带有半胱氨酸并且C-端带有3个赖氨酸的SEQ ID NO:26的第16-28位残基。(B-C)通过添加MPER、2F5、Z13e1、4E10和4E10.19肽抑制C1HIV-2/HIV-1MPER嵌合病毒的mAb中和。倍率效应被计算为对于指定的肽来说,模拟肽的中和IC50/IC50的比率(B),或模拟肽的中和IC80/IC80的比率(C)。>5的值采用浅灰色阴影。
图9A和9B示出了10E8、2F5和4E10抗体与gp41MPER肽的结合的表面等离子体共振分析。(A)将包含gp41的第656-683位残基的生物素化的MPER肽固定在链霉亲和素SA芯片(GE Healthcare)上,并将作为被分析物的抗体Fab以3.9-125nM(10E8)、0.49-31.25nM(2F5)和0.25nM至62.5nM(4E10)范围内的2倍连续增加的浓度在其上流过。分别使用3分钟和5分钟的结合期和解离期,流速为30μl/分钟,每种被分析物浓度进行三份平行试验。(B)通过将传感图用1:1的Langmuir模型进行拟合,获得所列出的结合常数。示出了SEQ ID NO:26的氨基酸序列。
图10是示出了HIV-1+具有给定特异性的血清的频率的饼图。在本测定法中使用了来自于78位健康的HIV-1感染的供体的血清。通过患者血清中和含有MPER的部分的HIV-2/HIV-1嵌合体的能力来测量频率,并使用肽阻断来验证。血清的中和ID50被报告在图21中。肽阻断后ID50的倍率变化被报告在图22中。血清含有10E8样抗体的6位患者与其余的72位患者,在病毒载量(含有10E8时的6748个拷贝/ml相比于不含10E8时的5446个拷贝/ml;p>0.05)、CD4计数(437个细胞/μl相比于557个细胞/μl;p>0.05)、从诊断起的年数(20年相比于13年;p>0.05)或中和滴度中位数(302相比于156;p>0.05)方面没有差异。
图11A-11C示出了10E8对MPER的可接近性。(A)通过流式细胞术测量的10E8、4E10和2F5与表达在293T细胞表面上的全长HIVJR-FL包膜刺突、4E10突变体(Phe673Ser)或2F5突变体(Lys665Glu)的结合。将连续稀释的抗体与细胞温育1小时。将2G12和b12抗体用作阳性对照,F105用作阴性对照。在JR-FL转染的细胞上将VRC01用作附加对照。相对结合百分数被计算为平均荧光强度(MFI)除以阳性对照2G12的最大MFI X 100。(B)通过在感染TZM-bl细胞之前洗涤抗体-毒粒混合物来确定MPER的可接近性。将假病毒与抗体在37℃温育30分钟,并且在感染靶细胞之前对抗体-毒粒混合物进行洗涤或不洗涤。(C)通过曲线下面积(AUC)或IC80来度量洗涤对抗体中和的影响。对于BaL和JRFl来说,在无洗涤的条件下没有获得IC80,因此使用最高的抑制浓度(分别为IC60和IC75)。
图12A和12B是示出了晶体不对称单元中gp41MPER的两个拷贝的比较的示意图。(A)用条棒表示法示出了来自于晶体不对称单元中的两种10E8-gp41复合物的gp41肽(复合物1,深灰色;复合物2,中灰色),其被它们的2fo-fc电子密度在1σ处的轮廓线(深灰色)所包围。示出的图像相对于彼此旋转180°,并且采取与图4C和4D中相同的取向。(B)两种结晶复合物中肽的比对。在第671-683位残基的所有原子的比对的基础上,在90°视图中示出了不对称单元中的两个肽的重叠。在该比对中,复合物2中的N-端螺旋相对于复合物1中的相应螺旋变化45°。尽管两种复合物中N-端螺旋的不同取向表明了一定程度的结构可塑性,但两种复合物中铰链和C-端螺旋的残基是高度保守的,并参与与抗体的最关键的相互作用。
图13A-13C是示出了10E8互补位丙氨酸变体的表面等离子体共振分析的一组图。示出了MPER肽与25种10E8互补位变体以及野生型(wt)10E8的结合传感图。将变体IgG捕获在抗人类IgG抗体偶联的生物传感器芯片上至表面密度为1000-2000个响应单位,并将MPER肽(列出的)以从500nM开始(例外的是HC D30A、W100bA、S100cA、P100fA,它们从250nM开始)的连续的两倍稀释液流过被分析物。使用分别为3分钟和5分钟的结合期和解离期,流速为30μl/min。使用 软件(GE Healthcare)将传感图用1:1Langmuir模型拟合。结合常数被报告在图31中。SEQ ID NO:26的氨基酸序列被示出在图13C中。
图14示出的图显示了10E8变体的结合和中和的相关性。将10E8丙氨酸互补位变体的结合KD对它们的中和IC50和IC80的平均值作图。使用非参数Spearman相关性来评估结合与中和之间的关系。KD以及中和IC50和IC80被报告在图31-32中。
图15A-15H示出了结构上保守的C-端MPER螺旋被10E8和4E10的识别。10E8和4E10使用明显不同的识别模式来结合位于gp41MPER的C-端处的结构上保守的螺旋。(A)中和性抗体10E8、2F5(蛋白质数据库(PDB)ID No.1TJI,以2012年10月22日在数据库中存在的形式通过参考并入本文)、Z13e1(PDB ID No.3FN0,以2012年10月22日在数据库中存在的形式通过参考并入本文)和4E10(PDB ID No.2FX7,以2012年10月22日在数据库中存在的形式通过参考并入本文)的MPER构象和埋置表面。示出了被每种抗体结合的gp41MPER的Cα-条带图,其中条形图显示了每个残基的埋置表面的量。在每个条形图的下方示出了SEQ ID NO:26的氨基酸序列。结晶化表位的序列用大写字母示出。(B)以90°取向显示的在10E8结合(深灰色)构象和4E10结合(浅灰色)构象中的MPER C-端螺旋的重叠。示出了Cα-条带图,其中侧链显示为条棒。(C-F)C-端MPER螺旋的10E8和4E10识别的比较,其中分子用Cα-条带图显示。(C)与MPER复合的10E8可变结构域,按照图4A着色。(D)与MPER复合的4E10可变结构域(PDBID No.2FX7,以2012年10月22日在数据库中存在的形式通过参考并入本文),采取基于(B;左图)中描述的gp41C-端螺旋的比对的取向。gp41被着色为灰白色,4E10重链为深灰色,4E10轻链为中灰色。(E-F)(C)和(D)的90°视图,从保守的MPER C-端螺旋的C-端向N-端俯视。(G,H)10E8和4E10结合的MPER C-端螺旋的螺旋轮状图,反映出在(B;右图)中显示的取向。被突出的抗体接触面是基于在抗体与gp41之间观察到的直接接触,如图35中所述。
图16示出的条带图显示了在gp41的“晚期中间体”构象上作图的gp41易感性位点。示出了由抗体10E8在gp41上的接触足迹所定义的gp41易感性位点,其被作图在10E8结合的MPER肽结构(左侧,与图6B相似的取向)和gp41的晚期中间体6螺旋束构象(PDB ID No.2XR7(右侧),以2012年10月22日在数据库中存在的形式通过参考并入本文)上。被抗体10E8识别的原子被着色为深灰色,并用条棒表示法示出。抗体2F5、Z13e1和4E10专有的原子或残基接触被示出为条棒,着色为浅灰或中灰色。10E8定义的易感性位点面朝外,远离束的核心轴,并且在这种构象中显得具有大的可接近性。第674位处的可能的N-连接糖基化位点与晚期中间体构象不相容,因为第674位残基的侧链面朝6螺旋束的内部。
图17A-17F是示出了10E8的中和性质的一组表。(A)10E8和7H6针对5种分离株的Env-假病毒小组的中和。小于1μg/ml的IC50值用灰色突出。(B)患者N152血清和单克隆抗体的中和分布情况(profile)。a N152的数据显示出血清针对每种病毒的ID50(50%感染所需的病毒剂量)。ID50>1000用深灰色突出,500<ID50<1000为中灰色,100<ID50<500为浅灰色。单克隆抗体的数据显示了IC50。<1μg/ml的IC50用中灰色突出;1-10μg/ml的IC50用浅灰色突出;10-50μg/ml的IC50用深灰色突出。(C-F)针对181种HIV-1Env-假病毒的抗体中和数据。<1μg/ml的IC50用中灰色突出;1-10μg/ml的IC50用浅灰色突出;10-50μg/ml的IC50用深灰色突出。
图18是示出了通过ELISA检测到的10E8和4E10与gp41MPER丙氨酸扫描肽的结合的表。倍率变化被计算为肽的IC50/模拟肽的IC50。>10的倍率变化值用浅灰色突出。
图19是列出了10E8对假型HIV-1JR2MPER丙氨酸突变体的中和数据的表。浓度为μg/ml。与JR2野生型相比,对于10E8来说>20倍或对于4E10来说>100倍的IC50和IC90值,用浅灰色突出。
图20是列出了用于中和测定法的HIV-2/HIV-1嵌合体的序列的表。示出了7312A、C1、C1C、C3、C7、C6、C4、C4GW和C8的序列(分别为SEQ ID NO:15-22)。对应于HIV-1MPER的序列的MPER序列片段带有下划线。
图21是示出了使用HIV-2/HIV-1嵌合体对抗MPER中和性抗体/血清进行作图的表。a示出了IC50(μg/ml)。b示出了ID50值。如果HIV-2/HIV-1嵌合体的ID50比HIV-2野生型对照高3倍并且>100,则数字被加粗并用浅灰色突出。“-”表示没有中和。“ND”表示血清分类不能确定。
图22是示出了使用突变体MPER肽阻断HIV-2/HIV-1嵌合体C1的mAb和血清介导的中和的表。阻断性肽的序列被示出在图8A中。bIC50的倍率变化是指(肽的IC50)/(模拟肽的IC50)。cID50的倍率变化是指(模拟肽的ID50)/(肽的ID50)。浅灰色突出表示相对于对照肽的IC50/ID50的3倍变化。
图23是示出了10E8与自体抗原的反应性的表。10E8与自体抗原的反应性通过Luminex测定法来检测。使用抗RSV单克隆抗体Synagis(MedImmune,Gaithersburg,MD)作为阴性对照。还测试了4E10、2F5、VRC01和17b抗体用于比较。SSA是指Sjogren综合征抗原A;SSB是指Sjogren综合征抗原B;Sm是指Smith抗原;RNP是指核糖核蛋白;Scl 70是指硬皮病70;Jo1是指抗原;CentrB是指着丝点B。
图24是列出了10E8晶体结构研究的数据收集和细化统计学的表。在括号中示出了最高分辨率层。示出的数据集从一个晶体收集。
图25是列出了抗体结合的gp41肽的Phi-Psi角的表。a对于4E10:gp41复合物来说,使用PDB ID No.2FX7的结构(以2012年10月22日在数据库中存在的形式通过参考并入本文)。b对于Z13e1:gp41复合物来说,使用PDB ID No.3FN0的结构(以2012年10月22日在数据库中存在的形式通过参考并入本文)。
图26是列出了10E8和gp41上的总埋置表面积的表。所有相互作用使用PISA来进行(ebi.ac.uk/msd-srv/prot_int/cgi-bin/piserver)。§BSA是指埋置表面积
图27是逐个残基列出了在10E8重链与gp41之间的界面处的埋置表面积的表。所有相互作用使用PISA来进行(ebi.ac.uk/msd-srv/prot_int/cgi-bin/piserver)。在保藏于Los Alamos HIV序列数据库(直至12/2011)中的2870种HIV株的分析中该残基的同一性百分数。是指可接近表面积§BSA是指埋置表面积§§条棒表示埋置面积百分率,一个条棒表示10%。ΔiG是指溶剂化能量效果kcal/mol。
图28是逐个残基列出了在10E8轻链与gp41之间的界面处的埋置表面积的表。所有相互作用使用PISA来进行(ebi.ac.uk/msd-srv/prot_int/cgi-bin/piserver)。在保藏于Los Alamos HIV序列数据库(直至12/2011)中的2870种HIV株的分析中该残基的同一性百分数。ASA是指可接近表面积。BSA是指埋置表面积。条棒表示埋置面积百分率,一个条棒表示10%。ΔiG是指溶剂化能量效果kcal/mol。
图29是列出了10E8与gp41之间的氢键和盐桥的表。氢键使用程序Ligplot来确定(McDonald等,J Mol Biol 238,777-793,1994)。H链是指重链复合物1;B链是指重链复合物2;P链是指gp41肽复合物1;F链是指gp41肽复合物2。
图30是列出了10E8与gp41之间的范德华接触的表。范德华接触使用程序Ligplot来确定(McDonald等,J Mol Biol 238,777-793,1994)。H链和L链分别是指复合物1的重链和轻链;P链是指复合物1的gp41肽。B链和D链分别是指复合物2的重链和轻链;F链是指复合物2的gp41肽。
图31是示出了10E8丙氨酸变体对可溶性MPER肽的结合亲和性的表。SE是指标准误差;nb是指在所使用的浓度范围下微弱至不可检测的结合。^倍数被定义为相对于在与变体平行进行的个体野生型试验的倍率变化。$3个个体野生型10E8试验的平均值。#只有产生超过10倍的效果的突变被作图在图4E中的10E8埋置表面上(中灰色,>100x;浅灰色,50x<100x;深灰色,10x<50x)。重链残基Y99AHC和G100hAHC显示出几乎不结合于可溶性肽,而CDRH3的其他残基的突变(F100aAHC、G100dAHC、P100fAHC、P100gAHC、E100iAHC和E100jAHC)使亲和性降低50-120倍(使用Kabat编号系统来识别10E8重链和轻链中的特定残基)。存在于疏水裂缝中的CDR H1环和构架区2突变W33AHC和R50AHC也分别消除了与MPER肽的结合,并且裂缝内的CDR H2突变E53AHC使对MPER肽的亲和性降低60倍。位于疏水裂缝底部处并与CDR H3的残基形成直接相互作用的轻链残基R91LC,当突变成丙氨酸时,可能通过使裂缝本身不稳定而消除了结合。
图32是列出了10E8丙氨酸扫描变体的中和IC50和IC80的表。在最高抗体浓度下没有达到中和IC50或IC80的情况下,在平均值的计算中使用该最高浓度。^平均倍率效应被定义为针对每种病毒株观察到的各个倍率效应的平均值。&突变Y99AHC、F100aAHC、W100bAHC和G100hAHC都对中和具有有害效应,使效价降低超过1000倍。其他突变也对中和具有强烈影响,包括CDR H3的P100gAHC和E100iAHC以及疏水裂缝内的W33AHC和R50AHC。轻链突变R91ALC,与它对肽的结合的影响相似,使中和效价降低超过1000倍。
图33是示出了抗体结合的gp41结构的均方根偏差(RMSD)的表。使用程序LSQKAB进行比对(Winn,M.D.等,Acta Crystallogr D Biol Crystallogr,67,235-242,2011)。对于4E10:gp41复合物来说,使用PDB ID No.2FX7的结构(以2012年10月22日在数据库中存在的形式通过参考并入本文)。对于Z13e1:gp41复合物来说,使用PDB ID No.3FN0的结构(以2012年10月22日在数据库中存在的形式通过参考并入本文)。对于2F5:gp41复合物来说,使用PDB ID No.1TJI的结构。
图34是示出了gp41上的MPER特异性抗体埋置表面的比较的表。相互作用研究使用PISA来进行(ebi.ac.uk/msd-srv/prot_int/cgi-bin/piserver)。括号中的值对应于复合物2。对于4E10:gp41复合物来说,使用PDB ID No.2FX7的结构(以2012年10月22日在数据库中存在的形式通过参考并入本文)。对于Z13e1:gp41复合物来说,使用PDB ID No.3FN0的结构(以2012年10月22日在数据库中存在的形式通过参考并入本文)。对于2F5:gp41复合物来说,使用PDB ID No.1TJI的结构(以2012年10月22日在数据库中存在的形式通过参考并入本文)。尽管识别更广泛的残基范围,但是10E8与4E10相比具有更小的gp41足迹。如果比较局限于重叠的肽范围,即第671-683位残基,则足迹的差异甚至更显著,其中10E8与4E10相比在gp41上埋置少约25%的表面积。
图35是示出了抗体10E8和4E10与gp41的直接接触的比较的表。直接接触使用程序Ligplot来确定(McDonald等,J Mol Biol 238,777-793,1994)。H是指氢键;N是指范德华接触。
图36是示出了使用10E8和4E10抗体中和假型COT6.15(进化枝C)包膜MPER突变体得到的结果的一组表。
图37是示出了使用10E8、7H6和7N16重链和轻链的交叉互补的中和测定法的结果的表。
图38是与gp41肽复合的抗体10E8的晶体结构的示意图,示出了抗体的静电表面电荷。
图39是与gp41肽复合的抗体10E8的晶体结构的示意图,示出了肽的静电表面电荷。
图40是与gp41肽复合的抗体10E8的晶体结构的示意图,示出了10E8变体抗体7H6和7N16中的残基变化的位置。
图41是与gp41肽复合的2F5、4E10和Z13E1抗体的晶体结构的数字图像和gp41的示意图,示出了2F5、4E10、Z13E1和10E8抗体的相对结合位点。示出了SEQ ID NO:26的氨基酸序列。
图42A和42B是示出了从PBMC样品进行CD19+IgA-IgD-IgM-B细胞的FACS分离的结果的散点图。
图43是示出了如实施例1和8中所描述的指定10E8残基(Kabat位置)的丙氨酸扫描的表和一组条带图。
图44A和44B是示出了为增强与gp41的疏水性相互作用而进行的基于结构的10E8突变的一系列条带图。
图45是示出了使用图44A和44B以及实施例8(参考Kabat编号系统)中所描述的基于结构的10E8突变体对一组HIV-1病毒进行的中和测定的结果的表。
图46是示出了部分回复的抗体变体的设计的示意图。
图47是序列比对和条带图,其示出了10E8重链和轻链的部分种系回复突变体。示出的序列是SEQ ID NO:7(10E8_germ_H)、SEQ ID NO:147(10E8gH01)、SEQ ID NO:148(10E8gH02)、SEQ ID NO:149(10E8gH03)、SEQ ID NO:1(10E8_HEAVY)、SEQ ID NO:8(10E8_germ_L)、SEQ ID NO:150(10E8gL01)、SEQ ID NO:151(10E8gL02)、SEQ ID NO:152(10E8gL03)、SEQ ID NO:2(10E8_LIGHT)。
图48是示出了使用如图47和实施例8中所描述的10E8抗体的部分种系回复突变体对一组HIV-1病毒进行的中和测定的结果的一组表。“10E8-R1”是指与10E8gL01轻链(SEQID NO:150)配对的10E8gH01重链(SEQ ID NO:147)。“10E8-R3”是指与10E8gL03轻链(SEQID NO:152)配对的10E8gH03重链(SEQ ID NO:149)。
图49是示出了使用如图47中所示并且在实施例8中所描述的10E8gH03重链背景(SEQ ID NO:149)或10E8gL03背景(SEQ ID NO:152)上的一系列10E8突变体对一组HIV-1病毒进行的中和测定的结果的一组表。
图50A-50F是示出了通过深度测序和网格取样鉴定抗体10E8的体细胞变体的一系列图。(A)供体N152重链抗体组的10E8同一性/趋异性(divergence)图(左侧)和网格取样(右侧)。与10E8的同一性被示出在竖直轴上,与种系V-基因起源的趋异性被作图在水平轴上,抗体的频率被显示为热图。示出了网格取样,空心圆圈中是所选的不表达或结合于MPER的抗体,实心圆圈中是所选的结合的抗体,按照(C)中它们与10E8的系统发育距离进行着色。(B)供体N152轻链抗体组的10E8同一性/趋异性图(左侧)和网格取样(右侧)。轴和着色与(A)中相同。(C/D)重链(C)和轻链(D)的网格鉴定的变体的系统发育树。(E-F)对于重链变体(E)和轻链变体(F)来说,在6种HIV-1分离株上进行两份平行试验所评估的10E8和10E8变体的中和。gVRC-H1dN152:10E8L和gVRC-H11dN152:10E8L的平均IC50与原始模板10E8相比提高约6倍。变体按照它们与10E8的遗传距离进行排列和命名,并且相对于它们的系统发育距离进行着色。
图51A-51D是一系列序列比对和条带图,其示出了中和HIV-1的10E8变体的序列和模型化结构。(A)重链序列(SEQ ID NO:1和153-163,降序;gVRC-H1dN152(SEQ ID NO:153);gVRC-H2dN152(SEQ ID NO:154);gVRC-H3dN152(SEQ ID NO:155);gVRC-H4dN152(SEQ ID NO:156);gVRC-H5dN152(SEQ ID NO:157);gVRC-H6dN152(SEQ ID NO:158);gVRC-H7dN152(SEQ IDNO:159);gVRC-H8dN152(SEQ ID NO:160);gVRC-H9dN152(SEQ ID NO:161);gVRC-H10dN152(SEQID NO:162);gVRC-H11dN152(SEQ ID NO:163))。序列按照与10E8的遗传距离进行排列,与10E8的序列变化带有下划线。构架和CDR残基被突出,与gp41MPER表位相互作用的残基也是如此(空心圆圈,主链相互作用;带有射线的空心圆圈,侧链相互作用;实心圆圈,主链和侧链相互作用两者)。(B)与gp41表位复合的重链变体的模型化结构。将识别增强的10E8变体(其中重链按照如图1B中的系统发育距离画上阴影)模型化在带有HIV-1gp41的整个MPER区域(灰白色)的10E8的结构上。结构被显示为Cα-条带,其中与10E8相比变化的氨基酸侧链用条棒表示法突出为深灰色。(C)轻链序列(SEQ ID NO:2和164-182,降序;gVRC-L1dN152(SEQID NO:164);gVRC-L2dN152(SEQ ID NO:165);gVRC-L3dN152(SEQ ID NO:166);gVRC-L4dN152(SEQ ID NO:167);gVRC-L5dN152(SEQ ID NO:168);gVRC-L6dN152(SEQ ID NO:169);gVRC-L7dN152(SEQ ID NO:170);gVRC-L8dN152(SEQ ID NO:171);gVRC-L9dN152(SEQ ID NO:172);gVRC-L10dN152(SEQ ID NO:173);gVRC-L11dN152(SEQ ID NO:174);gVRC-L12dN152(SEQ ID NO:175);gVRC-L13dN152(SEQ ID NO:176);gVRC-L14dN152(SEQ ID NO:177);gVRC-L15dN152(SEQID NO:178);gVRC-L16dN152(SEQ ID NO:179);gVRC-L17dN152(SEQ ID NO:180);gVRC-L18dN152(SEQ ID NO:181);gVRC-L19dN152(SEQ ID NO:182))。序列按照与10E8的遗传距离进行排列,与10E8的序列变化带有下划线。构架和CDR残基被突出,与gp41MPER表位相互作用的残基也是如此(如(A)中所述)。(D)与gp41表位复合的轻链变体的模型化结构。将识别增强的10E8变体(其中轻链按照如图1C中的系统发育距离画上阴影)模型化在带有HIV-1gp41的整个MPER区域(灰白色)的10E8的结构上。结构被显示为Cα-条带,其中与10E8相比变化的氨基酸侧链用条棒表示法突出为深灰色。
图52A-52D是表和一组图,其示出了10E8的重链和轻链变体的系统发育分支匹配。(A)系统发育分支匹配。从网格鉴定的抗体(图1C、D)的系统发育树,分支根据与10E8的距离来命名,对于含有10E8的分支来说,b1-H为重链并且b1-L为轻链,并且以降序命名为b2-H(b2-L)、b3-H(b3-L)以及最远的分支b4-H。选择来自于每个分支的表现出与10E8野生型配偶体的最强中和的变体,并且重建12种抗体的完全矩阵。(B)HIV-1中和。对于来自于匹配和错配的分支配对的10E8变体,在5种分离株上评估中和。(C)Hep2染色。对于来自于匹配和错配的分支配对的10E8变体,使用Hep2细胞染色来评估自体反应性。
图53的表根据当与10E8野生型互补链互补时指定变体的中和效价,示出了由指定的重链和轻链变体构成的10E8单克隆抗体。
图54的表示出了由通过系统发育分析配对的指定重链和轻链变体构成的10E8抗体。
图55A-55C示出了一组表,其示出了使用如图53和54中所示并且如实施例8中所描述的通过中和效价配对或通过系统发育分析配对的一系列10E8变体对一组HIV-1病毒进行的中和测定的结果。
图56是一组表,其示出了使用如图53和54中所示并且如实施例8中所描述的通过中和效价配对或通过系统发育分析配对的一系列10E8变体对一组HIV-1病毒进行的自体反应性测定的结果。
图57是一组表,其示出了使用如图53和54中所示并且如实施例8中所描述的通过中和效价配对或通过系统发育分析配对的一系列10E8变体对一组HIV-1病毒进行的中和测定的结果。
图58A和58B是一组图,其示出了对含有10E8重链和轻链或10E8重链和轻链的变体的一系列指定抗体在一组20种HIV病毒上的中和性质进行测试的中和测定法的结果。
图59是示出了某些10E8抗体变体的重链和轻链的命名和SEQ IDNO的表。
图60A和60B是示出了10E8重链变体的概况的一组表。“种系回复突变体”、“454”、“丙氨酸扫描”、“基于结构的”和“其他”突变体是指实施例8中示出的10E8重链置换。
图61A和61B是示出了10E8轻链变体的概况的一组表。“种系回复突变体”和“454”是指实施例8中示出的10E8轻链置换。
序列表
在随附的序列表中列出的核酸和氨基酸序列,使用如37C.F.R.1.822中所定义的核苷酸碱基的标准字母缩写和氨基酸的三字母编码来显示。每个核酸序列仅仅示出一条链,但是应该理解对所显示的链的任何引用均包含了互补链。序列表以文件名为“142159SEQ.txt”(~160kb)的形式作为ASCII文本文件提交,所述文件创建于2012年11月27日,并通过参考并入本文。在随附的序列表中:
SEQ ID NO:1是gp41特异性抗体10E8的重链的氨基酸序列。
SEQ ID NO:2是gp41特异性抗体10E8的轻链的氨基酸序列。
SEQ ID NO:3是gp41特异性抗体7H6的重链的氨基酸序列。
SEQ ID NO:4是gp41特异性抗体7H6的轻链的氨基酸序列。
SEQ ID NO:5是gp41特异性抗体7N16的重链的氨基酸序列。
SEQ ID NO:6是gp41特异性抗体7N16的轻链的氨基酸序列。
SEQ ID NO:7是IGHV3-15*05的重链的氨基酸序列。
SEQ ID NO:8是IGLV3-19*01的轻链的氨基酸序列。
SEQ ID NO:9和10是gp41MPER内的表位。
SEQ ID NO:11是gp41特异性抗体的重链的氨基酸序列。
SEQ ID NO:12是gp41特异性抗体的轻链的氨基酸序列。
SEQ ID NO:13是特异性结合10E8和10E8样抗体的gp41表位的氨基酸序列。
SEQ ID NO:14-25是突变体gp41MPER序列的氨基酸序列。
SEQ ID NO:26是gp41MPER的区域的氨基酸序列。
SEQ ID NO:27-34是测序引物的核酸序列。
SEQ ID NO:35-115是示例性的10E8样抗体重链的核酸序列。
SEQ ID NO:116-145是示例性的10E8样抗体轻链的核酸序列。
SEQ ID NO:146是gp41特异性抗体的重链的共有氨基酸序列。
SEQ ID NO:147-149是10E8单克隆抗体的种系回复突变体的重链的氨基酸序列。
SEQ ID NO:150-152是10E8单克隆抗体的种系回复突变体的轻链可变区的氨基酸序列。
SEQ ID NO:153-163是gp41特异性抗体的重链可变区的氨基酸序列。
SEQ ID NO:164-186是gp41特异性抗体的轻链可变区的氨基酸序列。
SEQ ID NO:187是gp41特异性抗体的重链可变区的共有氨基酸序列。
SEQ ID NO:188是gp41特异性抗体的重链可变区的共有氨基酸序列。
SEQ ID NO:189-192是gp41特异性抗体的重链可变区的氨基酸序列。
SEQ ID NO:193-196是引物的核酸序列。
SEQ ID NO:197-199是gp41特异性抗体的轻链可变区的氨基酸序列。
SEQ ID NO:200-205是gp41特异性抗体的重链可变区的氨基酸序列。
SEQ ID NO:205-209是gp41特异性抗体的轻链可变区的氨基酸序列。
具体实施方式
I.术语概述
除非另有指明,否则技术术语按照常规用法使用。分子生物学中常用术语的定义可以在Benjamin Lewin的《基因VII》(Genes VII,Oxford University Press出版,1999)、Kendrew等主编的《分子生物学百科全书》(The Encyclopedia of Molecular Biology,Blackwell Science Ltd.出版,1994)和Robert A.Meyers主编的《分子生物学和生物技术:详尽桌面参考书》(Molecular Biology and Biotechnology:a Comprehensive DeskReference,VCH Publishers,Inc.出版,1995)和其他类似的参考文献中找到。
当在本文中使用时,没有具体数量的指称是指单数以及复数形式两者,除非上下文明确指明不是如此。例如,术语“抗原”包括单个或多个抗原,并且可以被当作等同于短语“至少一个抗原”。
当在本文中使用时,术语“包含”是指“包括”。因此,“包含抗原”是指“包括抗原”并且不排除其他要素。
还应该理解,除非另有指明,否则为核酸或多肽给出的任何和所有碱基大小或氨基酸大小以及所有分子量或分子质量值都是近似值,并且是出于描述的目的而提供的。尽管可以使用与本文中所描述的相似或等同的许多方法和材料,但在下面描述了特别适合的方法和材料。在有冲突的情况下,以本说明书、包括术语的解释为准。此外,材料、方法和实施例仅仅是说明性的,而不打算是限制性的。
为了便于各种实施方式的评阅,提供了下面的术语解释:
施用:通过所选途径将组合物导入到对象中。施用可以是局部或全身的。例如,如果所选途径是静脉内,则通过将组合物导入到对象的静脉中来施用组合物。在某些实施例中,将所公开的特异性针对HIV gp41多肽的抗体或其抗原结合片段施用于对象。
药剂(agent):可用于实现目标或结果的任何物质或物质的任何组合;例如,可用于在对象中抑制HIV感染的物质或物质的组合。药剂包括蛋白质、核酸分子、化合物、小分子、有机化合物、无机化合物或其他目标分子。药剂可以包括治疗药剂(例如抗反转录病毒药剂)、诊断药剂或制药剂。在某些实施方式中,药剂是多肽药剂(例如HIV中和性抗体)或抗病毒药剂。本领域技术人员将会理解,特定药剂可能可用于实现一种以上的结果。
氨基酸置换:将多肽中的一个氨基酸用不同的氨基酸替换。
扩增:增加核酸分子(例如RNA或DNA)的拷贝数的技术。扩增的实例是聚合酶链反应,其中将生物样品与一对寡核苷酸引物在允许引物与样品中的核酸模板杂交的条件下相接触。引物在适合的条件下延伸,从模板解离,然后重新退火、延伸并解离,以扩大核酸的拷贝数。扩增的产物可以使用标准技术,通过电泳、限制性内切酶切割图案、寡核苷酸杂交或连接和/或核酸测序来表征。扩增的其他实例包括如美国专利号5,744,311中所公开的链置换扩增,如美国专利号6,033,881中所公开的无转录等温扩增,如WO 90/01069中所公开的修复链反应扩增,如EP-A-320308中所公开的连接酶链反应扩增,如美国专利号5,427,930中所公开的间隙填充连接酶链反应扩增,以及如美国专利号6,025,134中所公开的NASBATMRNA无转录扩增。
动物:一类活的多细胞有脊椎的生物体,其包括例如哺乳动物和鸟类。术语哺乳动物包括人类和非人类哺乳动物两者。类似地,术语“对象”包括人类和兽医对象两者。
抗体:基本上由一个或多个免疫球蛋白基因编码的多肽或其抗原结合片段,其特异性结合并识别被分析物(抗原),例如gp41或gp41的免疫原性片段,例如gp41的近膜区。免疫球蛋白基因包括κ、λ、α、γ、δ、ε和μ恒定区基因以及无数的免疫球蛋白可变区基因。
抗体作为例如完整的免疫球蛋白和许多通过用各种肽酶消化而产生的经良好表征的抗原结合片段存在。例如,特异性结合于gp41或gp41的片段的Fab、Fv、scFv是gp41特异性结合药剂。scFv蛋白是一种融合蛋白,其中将免疫球蛋白的轻链可变区与免疫球蛋白的重链可变区通过连接物相连,而在dsFv中,所述链已被突变以引入二硫键,以使链的结合稳定。该术语还包括遗传工程改造的形式例如嵌合抗体和异源结合的抗体例如双特异性抗体。也参见,《Pierce目录和手册》(Pierce Catalog and Handbook),1994-1995(PierceChemical Co.,Rockford,IL);Kuby《免疫学》(Immunology),第三版,W.H.Freeman&Co.,NewYork,1997。
抗体片段包括但不限于下列片段:(1)Fab,该片段含有通过用木瓜蛋白酶消化整个抗体以得到完整轻链和一条重链的一部分而产生的抗体分子的单价抗原结合片段;(2)Fab',通过用胃蛋白酶处理整个抗体然后进行还原以得到完整轻链和一部分重链而获得的抗体分子片段;每个抗体分子获得两个Fab'片段;(3)(Fab')2,通过用胃蛋白酶处理整个抗体并且不进行随后的还原而获得的抗体片段;(4)F(ab')2,由两个二硫键保持在一起的两个Fab'片段的二聚体;(5)Fv,含有作为两条链表达的轻链可变区和重链可变区的遗传工程改造的片段;以及(6)单链抗体(“SCA”),含有通过适合的多肽连接物连接的轻链可变区和重链可变区的遗传工程改造的分子,是遗传融合的单链分子。
当在本文中使用时,术语“抗体”还包括通过整个抗体的修饰产生的抗体片段或使用重组DNA方法从头合成的抗体片段。在某些实施例中,术语抗体包括嫁接在支架上的来自于抗体的一个或多个CDR的氨基酸序列。
通常,天然存在的免疫球蛋白具有通过二硫键互连的重(H)链和轻(L)链。存在两种类型的轻链,即λ和κ。存在5种主要的重链类别(或同种型),其决定抗体分子的功能活性:IgM,IgD,IgG,IgA和IgE。本公开的抗体可以进行类别转换。
每条重链和轻链含有恒定区和可变区(所述区也被称为“结构域”)。在数种实施方式中,重链和轻链可变结构域相组合以特异性结合抗原。在其他实施方式中,只需要重链可变结构域。例如,仅由重链构成的天然存在的骆驼抗体在不存在轻链的情况下是有功能和稳定的(参见例如Hamers-Casterman等,Nature,363:446-448,1993;Sheriff等,Nat.Struct.Biol.,3:733-736,1996)。轻链和重链可变结构域含有被3个也称为“互补决定区”或“CDR”的超变区打断的“构架”区(参见例如Kabat等,《免疫学重要的蛋白的序列》(Sequences of Proteins of Immunological Interest),U.S.Department of Healthand Human Services,1991)。在种内,不同轻链或重链的构架区的序列相对保守。作为组成轻链和重链的组合构架区的抗体构架区起到在三维空间中定位和对齐CDR的作用。
CDR主要负责结合于抗原的表位。给定CDR的氨基酸序列边界可以使用多种公知的方案中的任一种容易地确定,所述方案包括下述文献中描述的方案:Kabat等(《免疫学重要的蛋白的序列》(Sequences of Proteins of Immunological Interest),第5版,PublicHealth Service,National Institutes of Health,Bethesda,MD,1991;“Kabat”编号系统方案),Al-Lazikani等(JMB 273,927-948,1997;“Chothia”编号系统方案)和Lefranc等,(“用于免疫球蛋白和T细胞受体可变结构域和Ig超家族V样结构域的IMGT独特编号系统”(IMGT unique numbering for immunoglobulin and T cell receptor variabledomains and Ig superfamily V-like domains),Dev.Comp.Immunol.,27:55-77,2003;“IMGT”编号系统方案)。
每条链的CDR通常被称为CDR1、CDR2和CDR3(从N-端至C-端),并且通常也通过特定CDR所位于的链来识别。因此,VH CDR3位于其所存在的抗体的重链的可变结构域中,而VLCDR1是来自于其所存在的抗体的轻链的可变结构域的CDR1。轻链CDR有时被称为CDRL1、CDRL2和CDR L3。重链CDR有时被称为CDR H1、CDR H2和CDR H3。
对“VH”或“VH”的指称是指免疫球蛋白重链的可变区,包括抗体片段例如Fv、scFv、dsFv或Fab的重链可变区。对“VL”或“VL”的指称是指免疫球蛋白轻链的可变区,包括Fv、scFv、dsFv或Fab的轻链可变区。
“单克隆抗体”是由B-淋巴细胞的单一克隆或由转染有单一抗体的轻链和重链基因的细胞产生的抗体。单克隆抗体通过本领域技术人员已知的方法,例如通过从骨髓瘤细胞与免疫脾细胞的融合制造形成杂交抗体的细胞来生产。这些融合的细胞和它们的后代被称为“杂交瘤”。单克隆抗体包括人源化单克隆抗体。在某些实施例中,单克隆抗体从对象分离。这样的分离的单克隆抗体的氨基酸序列可以被测定。
“人源化”免疫球蛋白是包含人类构架区和来自于非人类(例如小鼠、大鼠或合成的)免疫球蛋白的一个或多个CDR的免疫球蛋白。提供CDR的非人类免疫球蛋白被称为“供体”,提供构架的人类免疫球蛋白被称为“受体”。在一种实施方式中,人源化免疫球蛋白中的所有CDR来自于供体免疫球蛋白。恒定区不必定存在,但是如果存在的话,它们必须与人类免疫球蛋白恒定区基本上相同,例如同一性为至少约85-90%,例如约95%或更高。因此,可能除了CDR之外,人源化免疫球蛋白的所有部分与天然的人类免疫球蛋白序列的相应部分基本上相同。“人源化抗体”是包含免疫球蛋白的人源化轻链和人源化重链的抗体。人源化抗体与提供CDR的供体抗体结合相同的抗原。人源化免疫球蛋白或抗体的受体构架可能具有从供体构架获取的有限数量的氨基酸置换。人源化或其他单克隆抗体可以具有对抗原结合或其他免疫球蛋白功能没有显著影响的其他保守的氨基酸置换。人源化免疫球蛋白可以利用遗传工程来构建(例如参见美国专利号5,585,089)。
抗体自体反应性:抗体的一种性质,抗体借助所述性质与自体表位反应,所述自体表位是由对象产生的蛋白质和/或脂质的表位。例如,不具有自体反应性的抗体例如10E8不结合来自于对象的细胞例如被HIV感染的细胞和/或在其表面上表达gp41的细胞的膜上存在的脂质。确定抗体是否与自体表位反应的方法对于本领域普通技术人员来说是已知的,并且被描述在本文中(例如在实施例1和8中)。在一个实施例中,使用抗心磷脂测定法或抗核抗原(ANA)测定法来评估抗体的自体反应性。
抗体支架:是指在其表面上嫁接有来自于目标抗体的一个或多个CDR的异源蛋白质。CDR的移植可以在计算机上,以保留其相关结构和构象的方式进行。为了容纳CDR嫁接物,在受体支架内制造突变。
抗体组(antibodyome):个体中表达的抗体重链和轻链序列的整个组成成分(repertoire)。个体可以是被病原体例如HIV感染的个体。
抗原:能够在动物中刺激抗体产生或T细胞应答的多肽,包括被注射或吸收到动物中的多肽。抗原与特异性体液免疫或细胞免疫的产物反应,所述产物包括由异源抗原例如本公开的抗原诱导的产物。“表位”或“抗原决定簇”是指B和/或T细胞对其作出应答的抗原区域。在一种实施方式中,当表位与MHC分子联合递呈时,T细胞对所述表位作出应答。表位可以由毗连氨基酸或通过蛋白质的三级折叠而并置的非毗连氨基酸两者形成。由毗连氨基酸形成的表位在暴露于变性溶剂后通常得以保留,而由三级折叠形成的表位在用变性溶剂处理后通常丢失。表位通常包括采取独特空间构象的至少3个、更通常至少5个、约9个或约8-10个氨基酸。确定表位的空间构象的方法包括例如x-射线晶体学和核磁共振。
免疫原性多肽和免疫原性肽是抗原的非限制性实例。在某些实施例中,抗原包括源自于目标病原体例如病毒的多肽。可以在对象中刺激产生针对病毒表达的多肽的抗体或T细胞应答的抗原是病毒抗原。“HIV抗原”可以在对象中刺激产生针对HIV表达的多肽的抗体或T细胞应答。在某些实施方式中,HIV抗原是由HIV表达的多肽例如gp160或其片段,例如gp145、gp140、gp120或gp41。
“靶表位”是特异性结合目标抗体例如单克隆抗体的抗原上的特定表位。在某些实施例中,靶表位包括接触目标抗体的氨基酸残基,使得可以通过被确定为与目标抗体发生接触的氨基酸残基来选择靶表位。
抗反转录病毒药剂:特异性抑制反转录病毒复制或感染细胞的药剂。抗反转录病毒药物的非限制性实例包括进入抑制剂(例如恩夫韦地)、CCR5受体拮抗剂(例如aplaviroc、维立韦罗((vicriviroc)、马拉维若)、反转录酶抑制剂(例如拉米夫定、齐多夫定、阿巴卡韦、替诺福韦、恩曲他滨、依法韦仑)、蛋白酶抑制剂(例如lopivar、利托那韦、雷特格韦、达芦那韦、阿扎那韦)、成熟抑制剂(例如α干扰素、贝韦立马(bevirimat)和vivecon)。
抗反转录病毒疗法(ART):用于HIV感染的治疗性治疗,包括在疗程期间向HIV感染的个体施用至少一种抗反转录病毒药剂(例如1、2、3或4种抗反转录病毒药剂)。抗反转录病毒药剂的非限制性实例包括进入抑制剂(例如恩夫韦地)、CCR5受体拮抗剂(例如aplaviroc、维立韦罗(vicriviroc)、马拉维若)、反转录酶抑制剂(例如拉米夫定、齐多夫定、阿巴卡韦、替诺福韦、恩曲他滨、依法韦仑)、蛋白酶抑制剂(例如lopivar、利托那韦、雷特格韦、达芦那韦、阿扎那韦)、成熟抑制剂(例如α干扰素、贝韦立马(bevirimat)和vivecon)。ART方案的一个实施例包括用替诺福韦、恩曲他滨和依法韦仑的组合进行治疗。在某些实施例中,ART包括高活性抗反转录病毒疗法(HAART)。
原子坐标或结构坐标:源自于与在X-射线的单色光束被例如抗原或与抗体复合的抗原的原子(散射中心)衍射后获得的图案相关的数学方程的数学坐标。在某些实施例中,所述抗原可以是处于晶体状态的gp41、gp41:抗体复合物或其组合。使用衍射数据来计算晶体的重复单元的电子密度图。使用电子密度图来建立晶体的单元晶胞内各个原子的位置。在一个实施例中,术语“结构坐标”是指源自于与在X-射线的单色光束被例如采取晶体形式的gp41的原子衍射后获得的图案相关的数学方程的笛卡尔坐标。
本领域普通技术人员理解,由X-射线晶体学确定的一组结构坐标不是没有标准误差的。出于本公开的目的,使用骨架原子,在叠加时蛋白质骨架原子(N、Cα、C和O)的均方根偏差小于约1.0埃、例如约0.75或约0.5或约0.25埃的任一组结构坐标应该(在不存在与其相反的明确陈述的情况下)被认为是相同的。
B细胞和记忆性B细胞:B细胞是作为白血细胞(白细胞)的淋巴细胞的一个亚类。成熟的B细胞分化成产生抗体的浆细胞和记忆性B细胞。“B细胞祖细胞”是可以发育成成熟B细胞的细胞。B细胞祖细胞包括干细胞、早期原B细胞、晚期原B细胞、大前B细胞、小前B细胞和未成熟B细胞和过渡B细胞。一般来说,早期原B细胞(其表达例如CD43或B220)经历免疫球蛋白重链重排而变成晚期原B细胞和前B细胞,并进一步经历免疫球蛋白轻链重排而变成未成熟B细胞。在人类中,未成熟B细胞(例如未成熟的外周过渡B细胞)包括CD38hi、IgD+、CD10+、CD24hi、CD44lo、CD23lo和CD1lo细胞。因此,未成熟B细胞包括其中轻链和重链免疫球蛋白基因被重排的B220(CD45R)表达细胞。在一种实施方式中,未成熟B细胞表达CD45R、II类、IgM、CD19和CD40。未成熟B细胞可以发育成成熟B细胞,成熟B细胞可以产生免疫球蛋白(例如IgA、IgG或IgM)。成熟B细胞具有获得的表面IgM和IgD,能够对抗原作出应答,并表达特征性标志物例如CD21和CD23(CD23hiCD21hi细胞)。浆细胞是终末分化的B细胞,其是主要的抗体分泌细胞。
在用抗原刺激B细胞祖细胞(例如前定向小淋巴细胞)后,它分化成母细胞,母细胞分化成未成熟浆细胞,未成熟浆细胞可以分化成成熟浆细胞或记忆性B细胞。“成熟浆细胞”对特定抗原作出应答而分泌免疫球蛋白。
B细胞可以被药剂例如脂多糖(LPS)或IL-4和针对IgM的抗体活化。B细胞和B细胞祖细胞的常见生物来源包括骨髓、外周血、脾脏和淋巴结。
“记忆性B细胞”是经历同种型转换和体细胞超变的B细胞,其一般在二次免疫应答(在初次暴露之后的后续抗原暴露)期间被发现,但是也可以在初次抗原应答期间被检测到。记忆性B细胞的产生通常需要辅助性T细胞。记忆性B细胞的发育在淋巴滤泡的生发中心(GC)中发生,在那里,据推测在辅助性T细胞的影响下,抗原驱动的淋巴细胞经历体细胞超变和亲和性选择。通常,记忆性B细胞在其细胞表面上表达高亲和性的抗原特异性免疫球蛋白(B细胞受体)。在一种实施方式中,记忆性B细胞包括表达CD19但是不表达IgA、IgD或IgM的细胞(CD19+IgA-IgD-IgM-细胞)。
双特异性抗体:由两个不同的抗原结合结构域构成并因此结合于两个不同的抗原性表位的重组分子。双特异性抗体包括两个抗原结合结构域以化学或遗传方式连接的分子。抗原结合结构域可以使用连接物连接。抗原结合结构域可以是单克隆抗体、抗原结合片段(例如Fab、scFv)、eAd、双特异性单链抗体或其组合。双特异性抗体可以包括一个或多个恒定结构域,但是不必定包括恒定结构域。双特异性抗体的实例是一种双特异性单链抗体,其包括与特异性结合于gp41之外的抗原的scFv联结(通过肽连接物联结)的特异性结合于gp41的scFv。另一个实例是一种双特异性抗体,其包括与特异性结合于gp41之外的抗原的scFv联结的特异性结合于gp41的Fab。
B细胞全部组成成分:样品中或对象中特异性针对目标抗原的B细胞。
CD40:抗原递呈细胞中存在的其活化所需的一种共刺激蛋白。也称为CD154的CD40配体(CD40L)与CD40的结合活化抗原递呈细胞。已发现该受体在介导广泛的各种免疫和炎性应答中是必不可少的,所述免疫和炎性应答包括T细胞依赖性免疫球蛋白类别转换、记忆性B细胞发育和生发中心形成。CD40的示例性氨基酸序列和编码CD40的示例性mRNA序列可以在登记号NM_001250(2012年6月10日)中找到,其通过参考并入本文。
CD40配体(CD40L):一种也被称为CD154的配体,其在活化的T细胞上表达,并且是肿瘤坏死分子超家族的成员。它结合于抗原递呈细胞上的CD40,取决于靶细胞类型而引起许多效应。总的来说,CD40L发挥共刺激分子的作用,并与抗原递呈细胞上MHC分子对T细胞受体的刺激相结合而在抗原递呈细胞中引起活化。总的来说,CD40L具有三个结合配偶体:CD40,α5β1整合蛋白和αIIbβ3。CD154表达在T细胞的表面上。它通过结合B细胞表面上的CD40来调控B细胞的功能。CD40的示例性氨基酸序列和编码CD40的示例性mRNA序列可以在登记号NM_000074.2(2012年6月10日)中找到,其通过参考并入本文。
嵌合抗体:包括源自于两种不同抗体的序列的抗体,所述两种不同抗体通常是不同物种的。在某些实施例中,嵌合抗体包括来自于一种人类抗体的一个或多个CDR和/或构架区以及来自于另一种人类抗体的CDR和/或构架区。在某些实施例中,嵌合抗体通过将一个或多个CDR嫁接到抗体支架中而产生。
克隆变体:在存在与种系相比具有相同的突变、相同的VDJ或VJ基因用法以及相同的D和J长度的V区的情况下,具有一个或多个核苷酸或氨基酸差异的任何序列。“种系”序列意欲是指不含突变例如体细胞突变的抗体/免疫球蛋白(或其任何片段)的编码序列。同源性百分数表示在与抗原接触后任何类型的重链部分所经历的突变事件的指示。
计算机可读存储介质:可以被计算机直接读取和访问以使其适用于计算机系统的任一种或多种介质。这样的介质包括但不限于:磁存储介质例如软盘、硬盘存储介质和磁带;光存储介质例如光盘或CD-ROM;电存储介质例如RAM和ROM;以及这些类型的混合体例如磁/光存储介质。
计算机系统:可用于分析原子坐标数据和/或使用原子坐标数据设计抗原或分析氨基酸或核酸序列例如比较两个或更多个序列以计算序列相似性和/或趋异性的硬件。基于计算机的系统的最少硬件通常包括中央处理器(CPU),输入装置例如鼠标、键盘等,输出装置和数据存储装置。理想情况下,提供监视器以将结构数据可视化。数据存储装置可以是RAM或用于访问计算机可读介质的其他机构。这样的系统的实例是可以从SiliconGraphics Incorporated和Sun Microsystems获得的运行基于Unix的Windows NT或IBMOS/2操作系统的微型计算机工作站。
偶联物:连接在一起例如通过共价键连接在一起的两个分子的复合物。在一种实施方式中,将抗体连接到效应子分子;例如,将特异性结合于gp41的抗体共价连接到效应子分子或毒素。连接可以通过化学或重组手段来实现。在一种实施方式中,连接是化学的,其中抗体部分与效应子分子之间的反应产生在这两个分子之间形成的共价键,以形成一个分子。在抗体与效应子分子之间可以任选地包含肽连接物(短的肽序列)。由于偶联物可以从具有独立的官能团的两个分子例如抗体和效应子分子来制备,因此它们有时也被称为“嵌合分子”。在一种实施方式中,连接到效应子分子的抗体被进一步联结到脂质或其他分子如蛋白质或肽,以增加它在体内的半衰期。
接触:置于直接物理结合之下;包括以固体和液体两种形式,其可以在体内或体外发生。接触包括一种分子与另一种分子之间的接触,例如一种多肽例如抗原的表面上的氨基酸接触另一种多肽例如抗体。多肽之间的接触可以包括两种或更多种多肽的氨基酸之间的直接接触(例如多肽之间的氢键或范德华力相互作用),以及在多肽之间产生具有降低的溶剂可进入性的界面的其他多肽间相互作用(不是界面的所有氨基酸都必需形成直接结合)。在某些实施方式中,直接接触是指具体地与序列中的一个或多个指定残基但是不与序列中的其他残基形成氢键或范德华相互作用。本领域的普通技术人员熟悉确定多肽之间的接触的方法(参见例如实施例1)。接触还可以包括例如通过将抗体放置成与细胞直接物理结合来接触细胞。在某些实施方式中,抗体(例如10E8)仅接触抗原上的表位例如本文中所描述的gp41上的10E8表位的特定残基。
对照:参比标准品。在某些实施方式中,对照是从健康患者获得的样品。在其他实施方式中,对照是从被诊断患有HIV感染的患者获得的组织样品。在其他实施方式中,对照是历史对照或标准参比值或值的范围(例如以前测试的对照样品,例如具有已知预后或结果的HIV患者组,或者代表基线或正常值的样品组)。
受试样品与对照之间的差异可以是增加,或者相反是减小。所述差异可以是定性差异或定量差异,例如统计学显著的差异。在某些实施例中,差异是相对于对照增加或减少至少约5%,例如至少约10%、至少约20%、至少约30%、至少约40%、至少约50%、至少约60%、至少约70%、至少约80%、至少约90%、至少约100%、至少约150%、至少约200%、至少约250%、至少约300%、至少约350%、至少约400%、至少约500%或超过500%。
细胞因子/白介素(IL):在纳摩尔至皮摩尔浓度下起到体液调控物的作用并且在正常或病理条件下调节个体细胞和组织的功能活性的一组多样性的可溶蛋白和肽的通用名称。这些蛋白还直接介导细胞之间的相互作用,并调控在细胞外环境中发生的过程。许多生长因子和细胞因子通过防止程序性细胞死亡而起到细胞存活因子的作用。细胞因子和白介素包括天然存在的肽和保留了全部或部分生物活性的变体两者。尽管在本说明书中描述了特定的细胞因子/白介素,但它们不限于具体公开的肽。
细胞毒性:分子例如免疫毒素对意欲靶向的细胞而不是生物体的其余细胞的毒性。相反,在一种实施方式中,术语“毒性”是指免疫毒素对意欲通过免疫毒素的靶向部分来靶向的细胞之外的细胞的毒性,并且术语“动物毒性”是指通过免疫毒素对意欲被免疫毒素靶向的细胞之外的细胞的毒性而引起的免疫毒素对动物的毒性。
可检测标志物:与第二分子例如抗体直接或间接偶联以便于第二分子的检测的可检测分子(也被称为标记物)。例如,可检测标志物可能能够通过ELISA、分光光度法、流式细胞术、显微术或诊断成像技术(例如CT扫描、MRI、超声、光纤检查和腹腔镜检查)来检测。可检测标志物的具体的非限制性实例包括荧光团、荧光蛋白、化学发光剂、酶连接、放射活性同位素和重金属或化合物(例如用于通过MRI检测的超顺磁氧化铁纳米晶体)。在一个实施例中,“标记的抗体”是指在抗体中掺入另一个分子。例如,标记物是可检测标志物,例如掺入放射性标记的氨基酸或附连于可以通过标记的亲和素(例如,含有可以通过光学或比色方法检测的荧光标志物或酶活性的链霉亲和素)检测的生物素基部分的多肽。标记多肽和糖蛋白的各种方法在本领域中是已知的,并且可以使用。用于多肽的标记物的实例包括但不限于下列:放射性同位素或放射性核素(例如35S或131I),荧光标记物(例如荧光素异硫氰酸酯(FITC)、罗丹明、镧系元素磷光体),酶标记物(例如辣根过氧化物酶、β-半乳糖苷酶、荧光素酶、碱性磷酸酶),化学发光标志物,生物素基团,被第二报告物识别的预定的多肽表位(例如亮氨酸拉链对序列、第二抗体的结合位点、金属结合结构域、表位标签)或磁性试剂例如钆螯合物。在某些实施方式中,通过各种长度的间隔臂来附连标记物,以降低潜在的空间位阻。在例如Sambrook等(《分子克隆实验指南》(Molecular Cloning:A LaboratoryManual),Cold Spring Harbor,New York,1989)和Ausubel等(《分子生物学现代方法》(Current Protocols in Molecular Biology),John Wiley&Sons,New York,1998)中讨论了使用可检测标志物的方法和适合于各种目的的可检测标志物的选择指南。
检测:鉴定某物的存在、出现或事实。检测的一般性方法对于本领域技术人员来说是已知的,并且可以用本文中公开的方案和试剂来补充。例如,本文中包含了在对象中检测表达gp41的细胞的方法。
DNA测序:测定给定DNA分子的核苷酸顺序的过程。“深度测序”的一般性特征是例如通过聚合酶链反应扩增遗传物质,然后将扩增产物连接到固体表面。然后平行地进行被扩增的靶遗传物质的测序,并通过计算机捕获序列信息。一般来说,测序可以使用自动化Sanger测序(AB13730xl基因组分析仪)、固体支持物上的焦磷酸测序(454测序,Roche)、使用可逆终止的通过合成的测序(基因组分析仪)、通过连接的测序(ABI)或使用虚拟终止物的通过合成的测序()来进行。
在某些实施方式中,DNA测序使用由Frederick Sanger开发的并因此被称为“基于Sanger的测序”或“SBS”的链终止法来进行。这种技术使用修饰的核苷酸底物,利用DNA合成反应的序列特异性终止。使用在特定区域处与模板互补的短的寡核苷酸引物,在模板DNA上的该特定位点处开始延伸。使用DNA聚合酶,在四种脱氧核苷酸碱基(DNA结构单元)以及低浓度的链终止核苷酸(最常见为双脱氧核苷酸)的存在下延伸寡核苷酸引物。链终止核苷酸被DNA聚合酶的有限掺入产生了一系列仅在存在该特定核苷酸的位置处终止的相关DNA片段。然后将所述片段在聚丙烯酰胺凝胶上或在填充有粘稠聚合物的细玻璃管(毛细管)中通过电泳按尺寸进行分离。使用标记的引物的一种可替选方案是使用标记的终止物来代替;这种方法通常被称为“染料终止物测序”。
“焦磷酸测序”是一种基于阵列的方法,其已被454Life Sciences(Branford,CT)商业化。在基于阵列的方法的某些实施方式中,将单链DNA退火到珠子,并通过进行扩增。然后将这些结合DNA的珠子与在ATP存在下产生光的酶一起置于光纤芯片上的孔中。当将游离核苷酸在该芯片上洗过时,随着PCR扩增的发生以及当核苷酸与它们的互补碱基对联结时ATP的产生,产生了光。一种(或多种)核苷酸的添加引起反应,其产生被例如仪器内的电荷耦合器件(CCD)相机记录的光信号。信号强度与单次核苷酸流动中掺入的核苷酸的数目、例如同聚物的跨度成正比。
有效量:药剂(例如CD40L、IL-21或IL-2)单独或与一种或多种其他药剂一起引起所需响应的量。
效应子分子:嵌合分子中旨在对所述嵌合分子所靶向的细胞具有所需效应的部分。效应子分子也被称为效应子部分、治疗药剂或诊断药剂或类似术语。
表位:抗原决定簇。它们是分子上具有抗原性的特定化学基团或肽序列,以使它们引发特异性免疫应答,例如表位是B和/或T细胞对其作出应答的抗原区域。在某些实施例中,所公开的抗体特异性结合于来自于HIV的gp41的表面上的表位。
表位可以由毗连氨基酸或通过蛋白质的三级折叠而并置的非毗连氨基酸两者形成。由毗连氨基酸形成的表位在暴露于变性溶剂之后通常得以保留,而由三级折叠形成的表位在用变性溶剂处理后通常丢失。表位通常包括采取独特空间构象的至少3个、更通常至少5个、约9个或约8-10个氨基酸。确定表位的空间构象的方法包括例如x-射线晶体学和核磁共振。
Fc多肽:包含抗体的恒定区而不包含第一恒定区免疫球蛋白结构域的多肽。Fc区通常是指IgA、IgD和IgG的最后两个恒定区免疫球蛋白结构域,以及IgE和IgM的最后三个恒定区免疫球蛋白结构域。Fc区还可以包括在这些结构域N-端的一部分或全部柔性铰链。对于IgA和IgM来说,Fc区可以包括或可以不包括尾片,并且可以被J链结合或者可以不被J链结合。对于IgG来说,Fc区包括免疫球蛋白结构域Cγ2和Cγ3以及Cγ1与Cγ2之间的铰链的下方部分。尽管Fc区的边界可以变化,但人类IgG重链Fc区通常被定义为在其羧基端包括残基C226或P230,其中编号系统是根据Kabat中的EU索引。对于IgA来说,Fc区包括免疫球蛋白结构域Cα2和Cα3以及Cα1与Cα2之间的铰链的下方部分。在Fc区的定义中涵盖Fc区的功能上等同的类似物和变体。Fc区的功能上等同的类似物可以是变体Fc区,其相对于野生型或天然存在的Fc区而言包括一个或多个氨基酸修饰。变体Fc区与天然存在的Fc区具有至少50%的同源性,例如约80%和约90%或至少约95%的同源性。Fc区的功能上等同的类似物可以包括向蛋白的N-端或C-端添加或从其缺失的一个或多个氨基酸残基,例如不超过30个或不超过10个氨基酸残基的添加和/或缺失。Fc区的功能上等同的类似物包括可操作地连接到融合配偶体的Fc区。Fc区的功能上等同的类似物必须包括如上所定义的构成Fc区的所有Ig结构域的绝大部分;例如,本文中所定义的IgG和IgA Fc区必须包括编码CH2的序列的绝大部分和编码CH3的序列的绝大部分。因此,CH2结构域自身或CH3结构域自身不被认为是Fc区。Fc区可以是指分离的该区域或在Fc融合多肽(免疫粘附素,参见下文)的背景中的该区域。
构架区:位于CDR之间的氨基酸序列。包括可变轻链和可变重链构架区。构架区起到以适合于抗原结合的取向容纳CDR的作用。
gp41:一种特定的HIV蛋白。HIV-1的包膜蛋白最初被合成为大小为845-870个氨基酸的较长的前体蛋白,该前体蛋白被命名为gp160。gp160形成同源三聚体并在高尔基体内经历糖基化。在体内,它随后被细胞的蛋白酶切割成gp120和gp41。gp41的实例的氨基酸序列被显示在登记号CAD20975中(在2009年10月16日可获得的),其通过参考并入本文。应该理解,gp41的序列可以不同于登记号CAD20975中给出的序列。gp41含有跨膜结构域并通常保持三聚体构型;它以非共价方式与gp120相互作用。
HIV包膜蛋白(Env):HIV包膜蛋白最初被合成为大小为845-870个氨基酸的较长的前体蛋白,该前体蛋白被命名为gp160。gp160形成同源三聚体并在高尔基体内经历糖基化。在体内,它随后被细胞的蛋白酶切割成gp120和gp41。gp120含有HIV包膜糖蛋白复合物的大多数外部的、表面暴露的结构域,并且正是gp120结合于细胞CD4受体和细胞趋化因子受体(例如CCR5)两者。gp41含有跨膜结构域并保持三聚体构型;它以非共价方式与gp120相互作用。
宿主细胞:载体可以在其中繁殖并且它的DNA可以在其中表达的细胞,例如,本公开的抗体可以在宿主细胞中表达。细胞可以是原核或真核的。该术语还包括对象宿主细胞的任何后代。应该理解,由于可能存在在复制期间发生的突变,因此所有后代不一定与亲代细胞相同。然而,当使用术语“宿主细胞”时,这样的后代被包括在内。
人免疫缺陷病毒(HIV):在人类中引起免疫抑制(HIV疾病)并产生被称为获得性免疫缺陷综合征(AIDS)的疾病复合群的一种反转录病毒。“HIV疾病”是指在通过抗体或蛋白质免疫印迹研究所确定的被HIV病毒感染的人中公认的一系列征兆和症状(包括机会感染的发生)。与这种疾病相关的实验室结果包括T细胞的进行性减少。HIV包括1型HIV(HIV-1)和2型HIV(HIV-2)。被用作动物模型的相关病毒包括猿猴免疫缺陷病毒(SIV)和猫免疫缺陷病毒(FIV)。用HAART治疗HIV-1有效地降低病毒载量并在被感染的个体中改善HIV-1感染的影响。
HXB2编号系统:一种用于HIV蛋白和核酸序列的参比编号系统,其使用HIV-1HXB2株的序列作为所有其他HIV株的序列的参比。本领域普通技术人员熟悉HXB2编号系统,并且在“HIV中相对于HXB2CG的编号位置”(Numbering Positions in HIV Relative toHXB2CG),Bette Korber等,《人类反转录病毒和AIDS 1998:核酸和氨基酸序列的汇编和分析》(Human Retroviruses and AIDS,1998:A Compilation and Analysis of NucleicAcid and Amino Acid Sequences),Korber B,Kuiken CL,Foley B,Hahn B,McCutchan F,Mellors JW和Sodroski J主编,Theoretical Biology and Biophysics Group,LosAlamos National Laboratory,Los Alamos,NM中描述了这种系统,该文献以其全部内容通过参考并入本文。HXB2也被称为:HXBc2,表示HXB克隆2;HXB2R,在Los Alamos HIV数据库中,其中R表示修订,因为它相对于原始的HXB2序列略有修订;以及GENBANKTM中的HXB2CG,表示HXB2完整基因组。在本文公开的gp41多肽中使用的编号系统是相对于HXB2编号系统方案而言的。
IgA:属于基本上由公认的免疫球蛋白α基因编码的抗体类型的一种多肽。在人类中,这一类型或同种型包括IgA1和IgA2。IgAn抗体可以作为单体、以二聚体形式为主的聚合体(被称为pIgA)和分泌型IgA存在。野生型IgA的恒定链在其C-端处包含被称为尾片(tp)的18个氨基酸的延长部。聚合的IgA由浆细胞分泌,其带有被称为J链的15-kDa的肽,所述J链将两个IgA单体通过尾片中保守的半胱氨酸残基相连。
IgG:属于基本上由公认的免疫球蛋白γ基因编码的抗体类型或同种型的一种多肽。在人类中,这一类型包括IgG1、IgG2、IgG3和IgG4
免疫复合物:抗体与可溶性抗原的结合形成免疫复合物。免疫复合物的形成可以通过本领域技术人员已知的常规方法例如免疫组织化学、免疫沉淀、流式细胞术、免疫荧光显微术、ELISA、免疫印迹(例如蛋白质免疫印迹)、磁共振成像、CT扫描、X-射线和亲和层析来检测。所选的抗体的免疫结合性质可以使用本领域中公知的方法来定量。
免疫粘附素:蛋白质与免疫球蛋白的Fc区的分子融合体,其中所述免疫球蛋白保留特定性质例如Fc受体结合和增加的半衰期。Fc融合体组合了免疫球蛋白的Fc区与融合配偶体,所述配偶体一般可以是任何蛋白、多肽、肽或小分子。在一个实施例中,免疫粘附素包括免疫球蛋白γ1重链恒定区的铰链、CH2和CH3结构域。在另一个实施例中,免疫粘附素包括IgG的CH2和CH3结构域。
免疫原:能够在哺乳动物例如被病原体感染或具有病原体感染的风险的哺乳动物中诱导免疫应答的化合物、组合物或物质(例如蛋白质或其部分)。免疫原的施用可以引起针对目标病原体的保护性免疫和/或前瞻性免疫。在某些实施例中,免疫原是HIV抗原。免疫原的实例包括但不限于肽、脂质、多糖、其组合,以及含有抗原决定簇例如被免疫细胞所识别的抗原决定簇的核酸。在某些实施例中,免疫原包括源自于目标病原体的肽。示例性的病原体包括细菌、真菌、病毒和寄生虫。在特定实施例中,免疫原源自于HIV,例如源自于HIV的gp41多肽或其抗原性片段。
免疫探针:可用于从血清、包括从人类患者血清中筛选针对特定表位的抗体的分子。表位支架以及相关的点突变体可以在针对表位嫁接物的抗体的正和负筛选两者中用作免疫探针。在某些实施例中,免疫探针是gp120的工程化改造的变体。
免疫反应性条件:包括对下述条件的指称,所述条件允许针对特定表位产生的抗体以与基本上所有其他表位的结合相比可检测地更高的程度结合于所述特定表位,和/或基本上排除与基本上所有其他表位的结合。免疫反应性条件依赖于抗体结合反应的形式,并且通常是在免疫测定法流程中使用的条件或在体内遇到的条件。对于免疫测定法的形式和条件的描述,参见Harlow&Lane,同上。在方法中使用的免疫反应性条件是“生理条件”,其包括对通常存在于活的哺乳动物或哺乳动物细胞内的条件(例如温度、摩尔渗透压浓度和pH)的指称。尽管认识到某些器官经受极端条件,但器官内和细胞内环境一般在pH 7左右(例如从pH 6.0至pH 8.0,更通常为pH 6.5至7.5),含有水作为主要溶剂,并在高于0℃并低于50℃的温度下存在。摩尔渗透压浓度在支持细胞存活和增殖的范围内。
抑制或治疗疾病:在例如具有疾病例如获得性免疫缺陷综合征(AIDS)的风险的对象中抑制疾病或病症的完全发展。“治疗”是指在疾病或病理状况开始发展后改善疾病或病理状况的征兆或症状的治疗性干预。对于疾病或病理状况来说,术语“改善”是指治疗的任何可观察到的有益效果。所述有益效果可以表现为例如在易感对象中疾病的临床症状的延迟发作、疾病的一些或所有临床症状的严重性的降低、疾病的较缓慢进展、病毒载量的降低、对象的总体健康和安康的改进,或表现为本领域中公知的特异性针对特定疾病的其他参数。“预防性”治疗是出于降低发生疾病的风险的目的而向未表现出疾病征兆或仅仅表现出早期征兆的对象施用的治疗。
白介素-2(IL-2):IL-2是T细胞的生长和功能所必需的一种细胞因子。结合于T细胞受体(TCR)的抗原刺激IL-2的分泌以及IL-2受体IL-2R的表达。随后,IL-2/IL-2R的相互作用通过激活特定基因的表达来刺激抗原选择的细胞毒性T细胞的生长、分化和存活。因此,IL-2是T细胞免疫记忆的发生所必需的,所述免疫记忆依赖于抗原选择的T细胞克隆的数量扩增和功能。在胸腺中的T细胞发育期间,IL-2对于被称为调节性T细胞的T细胞亚类的成熟来说也是必需的。人类IL-2的示例性的氨基酸序列被提供在登记号NM_000586(2012年6月10日)中,其通过参考并入本文。
白介素-21(IL-21):从源自于活化的CD3+T细胞的cDNA文库克隆到的一种细胞因子(Parrish-Novak等,Nature 408:57-63,2000)。IL-21cDNA编码与IL-2和IL-15最密切相关的131个氨基酸的蛋白的分泌蛋白。IL-21基因已被作图在人类染色体4q26-q27中IL-2基因附近。
已证实,IL-21mRNA在活化的CD4+细胞中表达,但不在其他T细胞、B细胞或单核细胞中表达(Parrish-Novak等,Nature 408:57-63,2000)。然而,已证实,IL-21刺激受到CD40抗原的交联所刺激的B细胞的增殖以及除了抗IgM抗体之外还受到IL-4刺激的B细胞的增殖。据显示,IL-21还刺激由CD3的结合所介导的幼稚型(CD45RA(+))细胞的增殖。还已显示,IL-21刺激骨髓祖细胞向细胞的增殖,并在IL-15存在下提高NK细胞标志物CD56的表达。(对于综述来说,参见Horst Ibelgaufts的COPE:Cytokines Online PathfinderEncyclopedia,可以在因特网上获得)。示例性的人类IL-21的氨基酸序列在已公布的美国专利申请号2003/0003545中被显示为SEQ ID NO:1,所述专利申请通过参考并入本文。含有IL-21的全部或大部分序列的代表性克隆(被命名为HTGED19)于1998年3月5日保藏于美国典型培养物保藏中心(American Type Culture Collection)(“ATCC”),并被给予ATCC保藏号209666(参见例如已公布的美国专利申请号2003/0003545)。
已分离到IL-21受体,并发现它由CD23+B细胞、B细胞系、T细胞白血病系和NK细胞系表达。该受体基因已被作图于人类染色体16p12(参见Parrish-Novak等,Nature 408:57-63,2000;Ozaki等,Proc.Natl.Acad.Sci.USA 97:11439-11444,2000)。
白介素15(IL-15):一种与IL-2具有结构相似性的细胞因子。IL-15结合于IL-2/IL-15β链(CD122)和共同的γ链(γ-C,CD132)并通过它们传导信号。IL-15在病毒感染后由单核吞噬细胞(和某些其他细胞)分泌。这种细胞因子诱导主要功能是杀死病毒感染的细胞的先天免疫系统的细胞、自然杀伤细胞的细胞增殖。
分离的:“分离的”生物组分(例如抗体如特异性结合gp41的抗体、核酸、肽、蛋白质或抗体)已与天然存在所述组分的生物体细胞中的其他生物组分基本上分离开,脱离开所述其他生物组分而被生产出来,或从所述其他生物组分中纯化出来,所述其他生物组分例如为其他染色体DNA和RNA以及染色体外DNA和RNA以及蛋白质。因此,已被“分离的”核酸、肽和蛋白质包括通过标准的纯化方法纯化的核酸和蛋白质。该术语还涵盖通过在宿主细胞中重组表达而制备的核酸、肽和蛋白质,以及化学合成的核酸或多肽。在某些实施例中,抗体例如特异性针对gp41的抗体可以被分离,例如从HIV感染的对象分离。
“分离的”细胞是已从组织的其他细胞组分中纯化出来的细胞。细胞可以通过机械(例如使用FACS)和/或酶方法来分离。在数种实施方式中,分离的细胞群体(例如B细胞全部组成成分)包含高于约80%、约85%、约90%、约95%或高于约99%的目标细胞。在另一种实施方式中,分离的细胞群体是其中不能检测到不同表型的其他细胞的群体。在其他实施方式中,分离的细胞群体是包含少于约20%、约15%、约10%、约5%或少于约1%的目标细胞之外的不同表型细胞的细胞群体。
KD:给定的相互作用例如多肽配体相互作用或抗体抗原相互作用的解离常数。例如,对于抗体(例如本文中公开的抗体)与抗原(例如gp41)的生物分子相互作用来说,它是生物分子相互作用的各个组分的浓度除以复合物的浓度。
连接物:可用于将两个分子连接成一个连续分子,例如将效应子分子连接到抗体的一种双功能分子。在某些实施方式中,偶联物包括效应子分子或可检测标志物与抗体之间的连接物。在某些实施方式中,连接物在细胞内条件下是可切割的,使得在细胞内环境中连接物的切割将效应子分子或可检测标志物从抗体上释放出来。在其他实施方式中,连接物是不可切割的,效应子分子或可检测标志物可以例如通过抗体降解来释放。在某些情况下,连接物是抗体结合片段(例如Fv片段)内起到将可变重链间接键合到可变轻链的作用的肽。
术语“偶联”、“联结”、“键合”或“连接”是指使两个多肽成为一个连续的多肽分子,将放射性核素或其他分子共价附连到多肽,例如特异性结合gp41的抗体或其抗体结合片段。在特定情况下,该术语包括对将配体例如抗体部分联结到效应子分子的指称。连接可以通过化学或重组手段进行。“化学手段”是指抗体部分与效应子分子之间的反应,使得在两个分子之间存在形成的共价键,以形成一个分子。
gp41的膜近端外部区域(MPER):紧邻gp41的跨膜区的N-端的区域。MPER是高度疏水的(50%的残基是疏水的),并且在许多HIV进化枝中是高度保守的(Zwick,M.B.等,JVirol,75(22):p.10892-905,2001)。HIV-1gp41的保守的MPER是两种中和性人类单克隆抗体2F5和4E10的靶标。已显示,2F5表位的核心是ELDKWAS(SEQ ID NO:9)。对于该表位来说,发现残基D、K和W对于2F5的识别来说是最关键的。4E10表位的核心NWFDIT(SEQ ID NO:10)作图于紧邻gp41胞外结构域上2F5表位的C-端。
中和性抗体:通过与感染因子上的特异性抗原结合来降低感染因子的感染滴度的一种抗体。在某些实施例中,感染因子是病毒。在某些实施例中,特异性针对gp41的抗体中和HIV的感染滴度。“广泛中和性抗体”是结合相关抗原并抑制所述相关抗原的功能的一种抗体,所述相关抗原例如为与抗原的抗原性表面具有至少85%、90%、95%、96%、97%、98%或99%同一性的抗原。对于来自于病原体例如病毒的抗原来说,抗体能够结合来自于超过一个类型和/或亚类的病原体的抗原,并抑制所述抗原的功能。例如,对于人免疫缺陷病毒来说,抗体可以结合抗原例如来自于超过一个进化枝的gp41,并抑制所述抗原的功能。在一种实施方式中,针对HIV的广泛中和性抗体与针对HIV的其他抗体的区别在于它们中和循环中的高百分率的许多类型的HIV。
核酸:由通过磷酸二酯键、其相关的天然存在的结构变体及其合成的非天然存在的类似物相连的核苷酸单元(核糖核苷酸、脱氧核糖核苷酸、其相关的天然存在的结构变体及其合成的非天然存在的类似物)所构成的聚合物。因此,该术语包括其中核苷酸以及它们之间的连键包括非天然存在的合成类似物的核苷酸聚合物,所述非天然存在的合成类似物例如并且不限于硫代磷酸酯、氨基磷酸酯、甲基膦酸酯、手性甲基膦酸酯、2-O-甲基核糖核苷酸、肽-核酸(PNA)等。这样的多核苷酸可以例如使用自动化DNA合成仪来合成。术语“寡核苷酸”通常是指短的多核苷酸,一般不超过约50个核苷酸。应该理解,当核苷酸序列用DNA序列(即A、T、G、C)表示时,这也包括RNA序列(即A、U、G、C),其中“U”代替“T”。
在本文中使用常规标注法来描述核苷酸序列:单链核苷酸序列的左手末端是5'-末端;双链核苷酸序列的左手方向被称为5'-方向。核苷酸向新生RNA转录本的5’至3’添加方向被称为转录方向。具有与mRNA相同的序列的DNA链被称为“编码链”;在具有与从该DNA转录的mRNA相同的序列的DNA链上并且位于RNA转录本的5’-末端的5’方向的序列被称为“上游序列”;在具有与RNA相同的序列的DNA链上并且位于编码RNA转录本的3’末端的3’方向的序列被称为“下游序列”。
“cDNA”是指单链或双链形式的与mRNA互补或相同的DNA。
“编码”是指多核苷酸例如基因、cDNA或mRNA中的核苷酸的特定序列的固有性质,所述特定序列用作生物过程中其他聚合物和大分子的合成模板,所述聚合物和大分子具有确定的核苷酸序列(即rRNA、tRNA和mRNA)或确定的氨基酸序列以及由此产生的生物学性质。因此,如果由基因产生的mRNA的转录和翻译在细胞或其他生物系统中产生蛋白质,则该基因编码蛋白质。编码链和非编码链两者可以被称为编码蛋白质或者基因或cDNA的其他产物,所述编码链的核苷酸序列与mRNA序列相同并且通常被提供在序列表中,所述非编码链被用作所述基因或cDNA的转录模板。除非另有规定,否则“编码氨基酸序列的核苷酸序列”包括互为简并形式并且编码同一氨基酸序列的所有核苷酸序列。编码蛋白质和RNA的核苷酸序列可能包括内含子。
“重组核酸”是指具有在天然情况下不联结在一起的核苷酸序列的核酸。这包括包含扩增或组装的核酸并且可用于转化适合的宿主细胞的核酸载体。包含重组核酸的宿主细胞被称为“重组宿主细胞”。然后基因在重组宿主细胞中表达,以产生例如“重组多肽”。重组核酸也可以起到非编码功能(例如启动子、复制起点、核糖体结合位点等)。
如果序列为第一序列的多核苷酸与序列为第二序列的多核苷酸特异性杂交,则相对于所述第二序列来说,所述第一序列是“反义的”。
可操作地连接:当第一核酸序列被放置成与第二核酸序列功能上相关时,所述第一核酸序列是与所述第二核酸序列可操作地连接的。例如,如果启动子例如CMV启动子影响编码序列的转录或表达,则所述启动子是与所述编码序列可操作地连接的。一般来说,可操作地连接的DNA序列是毗连的,并且在需要时将两个蛋白质编码区联结在同一阅读框中。
药剂(pharmaceutical agent):当适合地施用于对象或细胞时能够引起所需的治疗或预防效果的化学化合物或组合物。在某些实施例中,药剂包括一种或多种本公开的抗体。
药学可接受的载体:所使用的药学可接受的载体是常规的。《雷明顿制药学》(Remington’s Pharmaceutical Sciences,E.W.Martin,Mack Publishing Co.,Easton,PA,第19版,1995)描述了适合于本文所公开的抗体的药物递送的组合物和制剂。
一般来说,载体的性质取决于所使用的具体施用方式。例如,肠胃外制剂通常包括可注射的流体作为介质,所述可注射的流体包括药学和生理上可接受的流体例如水、生理盐水、平衡盐溶液、葡萄糖水溶液、甘油等。对于固体组合物(例如粉剂、丸剂、片剂或胶囊形式)来说,常规的无毒性固体载体可以包括例如药用级甘露糖醇、乳糖、淀粉或硬脂酸镁。除了生物学中性载体之外,待施用的药物组合物还可以含有少量无毒性辅助物质,例如润湿剂或乳化剂、防腐剂和pH缓冲剂等,例如乙酸钠或失水山梨糖醇单月桂酸酯。
多肽:任何氨基酸链,不论长度如何或是否具有翻译后修饰(例如糖基化或磷酸化)。在一种实施方式中,多肽是gp41多肽。在一种实施方式中,多肽是本公开的抗体或其片段。“残基”是指通过酰胺键或酰胺键模拟物而被掺入到多肽中的氨基酸或氨基酸模拟物。多肽具有氨基端(N-端)末端和羧基端(C-端)末端。
启动子:启动子是指导核酸转录的一组核酸控制序列。启动子包括转录起始位点附近的必需核酸序列,例如在聚合酶II型启动子的情况下的TATA元件。启动子还任选地包括可以位于距转录起始位点多达数千碱基对处的远端增强子或抑制子元件。组成型和诱导型两种启动子都被包括在内(参见例如Bitter等,Methods in Enzymology 153:516-544,1987)。
启动子的具体的非限制性实例包括源自于哺乳动物细胞基因组的启动子(例如金属硫蛋白启动子),或者可以使用源自于哺乳动物病毒的启动子(例如反转录病毒长末端重复序列、腺病毒晚期启动子、痘苗病毒7.5K启动子)。还可以使用通过重组DNA或合成技术产生的启动子。可以将多核苷酸插入到含有启动子序列的表达载体中,所述启动子序列促进宿主中所插入的遗传序列的有效转录。表达载体通常含有复制起点、启动子以及允许被转化的细胞的表型选择的特定核酸序列。
纯化的:术语纯化的不要求绝对纯度;相反,它旨在作为相对术语。因此,例如,纯化的肽制备物是其中的肽或蛋白质(例如抗体)比所述肽或蛋白质在细胞内其天然环境中更加富集的制备物。在一种实施方式中,制备物是纯化的,以致所述蛋白质或肽占所述制备物中总肽或蛋白质内含物的至少50%。
重组的:重组的核酸是具有非天然存在的序列或具有通过两个原本分开的序列区段的人工组合而制造的序列的这种核酸。这种人工组合通常通过化学合成,或者更通常通过分离的核酸区段的人工操作、例如通过遗传工程技术来实现。
序列同一性:氨基酸序列之间的相似性根据序列之间的相似性来表示,序列之间的相似性也被称为序列同一性。序列同一性通常根据同一性(或相似性或同源性)百分率来度量;百分率越高,两个序列越相似。当使用标准方法比对时,多肽的同源物或变体具有相对高的序列同一性程度。
用于比较的序列比对方法在本领域中是公知的。各种程序和比对算法被描述在下列文献中:Smith和Waterman,Adv.Appl.Math.2:482,1981;Needleman和Wunsch,J.Mol.Biol.48:443,1970;Pearson和Lipman,Proc.Natl.Acad.Sci.U.S.A.85:2444,1988;Higgins和Sharp,Gene 73:237,1988;Higgins和Sharp,CABIOS 5:151,1989;Corpet等,Nucleic Acids Research 16:10881,1988;以及Pearson和Lipman,Proc.Natl.Acad.Sci.U.S.A.85:2444,1988。Altschul等,Nature Genet.6:119,1994提出了序列比对方法和同源性计算的详细考虑。
NCBI的基本局部比对检索工具(Basic Local Alignment Search Tool)(BLAST)(Altschul等,J.Mol.Biol.215:403,1990)可以从数个来源获得,包括国家生物技术信息中心(National Center for Biotechnology Information)(NCBI,Bethesda,MD)和英特网上,其用于与序列分析程序blastp、blastn、blastx、tblastn和tblastx相结合使用。关于如何使用这一程序来确定序列同一性的描述可以在英特网上的NCBI网址上获得。
特异性结合多肽的抗体的VL或VH的同源物和变体的特征通常在于,在与目标氨基酸序列进行全长比对时计算得到具有至少约75%,例如至少约80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%的序列同一性。当通过这种方法评估时,与参比序列具有甚至更高的相似性的蛋白将显示出更高的同一性百分率,例如至少80%、至少85%、至少90%、至少95%、至少98%或至少99%的序列同一性。当将小于整个的序列进行比较以获得序列同一性时,同源物和变体通常在10-20个氨基酸的短窗口内具有至少80%的序列同一性,并且取决于它们与参比序列的相似性,可能具有至少85%或至少90%或95%的序列同一性。用于在这样的短窗口内确定序列同一性的方法可以在英特网上的NCBI网址处获得。本领域技术人员将会认识到,提供这些序列同一性的范围仅仅是为了指导,完全可能获得落在所提供的范围之外的非常显著的同源物。
特异性结合:当指称抗体时,是指在存在蛋白质和其他生物物质的非均质群体的条件下确定靶蛋白、肽或多糖的存在的结合反应。因此,在指定条件下,抗体优先结合于特定的靶蛋白、肽或多糖(例如病原体表面上存在的抗原,例如gp41),并且不以显著的量结合于样品或对象中存在的其他蛋白或多糖。特异性结合可以通过本领域中已知的方法来确定,例如通过测量抗体对抗原的亲和性。在一种实施方式中,亲和性通过由Frankel等,Mol.Immunol.,16:101-106,1979所描述的Scatchard方法的改良方法来计算。在另一种实施方式中,结合亲和性通过抗原/抗体解离速率来度量。在又一种实施方式中,高结合亲和性通过竞争性放射免疫测定法来测量。对于抗体抗原复合物来说,抗原与抗体的特异性结合具有低于约10-6M、例如低于约10-6M、10-7M、10-8M、10-9或甚至低于约10-10M的Kd
基本上纯化的:术语基本上纯化的表示对象基本上不含天然与其相伴的其他分子或细胞组分。因此,基本上纯化的细胞(例如B细胞、B细胞祖细胞、成熟B细胞、记忆性B细胞、浆细胞等)群体基本上不含天然存在所述细胞的组织中的其他细胞组分,所述组织例如为骨髓、外周血、脾、淋巴结等。例如,基本上纯的B细胞(例如B细胞祖细胞、未成熟B细胞、成熟B细胞、记忆性B细胞、浆细胞等)群体摒除至少50%、例如至少约80%或者至少约90%的其他细胞组分。在实施方式中,B细胞群体摒除至少约95%的其他细胞。例如,从组织例如外周血获得的纯化的B细胞群体基本上不含外周血中通常存在的红细胞、T细胞、血小板和其他细胞。
T细胞:一种对免疫应答来说关键的白细胞。T细胞包括但不限于CD4+T细胞和CD8+T细胞。CD4+T淋巴细胞是在其表面上携带被称为“分化簇4”(CD4)的标志物的免疫细胞。这些细胞也被称为辅助性T细胞,帮助协调免疫应答,包括抗体应答以及杀伤性T细胞应答。CD8+T细胞携带“分化簇8”(CD8)标志物。在一种实施方式中,CD8T细胞是细胞毒性T淋巴细胞。在另一种实施方式中,CD8细胞是抑制性T细胞。
治疗剂:在通称的意义上使用时,它包括治疗药剂、预防药剂和置换药剂。治疗剂被用于改善患有疾病或障碍的对象中的一组特定病症。
治疗有效量或有效量:足以在被治疗对象中实现所需效果的特定物质、例如本公开的抗体的量。例如,它可以是抑制HIV复制或治疗AIDS所必需的量。在数种实施方式中,治疗有效量是减轻AIDS的征兆或症状和/或降低对象中的病毒滴度所必需的量。当施用于对象时,一般使用能够获得目标组织浓度的剂量,所述目标组织浓度已被显示能够实现所需体外效果。
毒素:当与细胞接触时引起细胞毒性的效应子分子。毒素的具体的非限制性实例包括但不限于相思豆毒素、篦麻毒素、auristatin类(例如单甲基auristatin E(MMAE;参见例如Francisco等,Blood,102:1458-1465,2003))和单甲基auristatin F(MMAF;参见例如Doronina等,Bioconjugate Chem.,17:114-124,2006)、美登木素类(例如DM1;参见例如Phillips等,Cancer Res.,68:9280-9290,2008)、假单胞菌外毒素(PE,例如PE35、PE37、PE38和PE40)、白喉毒素(DT)、肉毒杆菌毒素、皂草素、局限曲菌素或白树毒素或其改良的毒素,或者直接或间接抑制细胞生长或杀死细胞的其他有毒药剂。例如,PE和DT是通常通过肝毒性引起死亡的高度有毒的化合物。然而,PE和DT可以通过去除毒素的天然靶向组分(例如PE的结构域Ia以及DT的B链)并用不同的靶向部分例如抗体替换,而被修改成用作免疫毒素的形式。
在足以……的条件下:该短语被用于描述允许获得所需活性的任何环境。在一个实施例中,所需活性是免疫复合物的形成。在特定实施例中,所需活性是肿瘤的治疗。
载体:被导入到宿主细胞中并由此产生转化的宿主细胞的核酸分子。载体可以包括允许它在宿主细胞中复制的核酸序列,例如复制起点。载体也可以包括一个或多个可选择标志物基因和本领域中已知的其他遗传元件。
病毒:在活细胞内繁殖的微型感染性生物体。病毒基本上由被蛋白质外壳包围的单一核酸的核心构成,并且具有只能在活细胞内复制的能力。“病毒复制”是通过至少一个病毒生命周期的出现来产生附加的病毒。病毒可以破坏宿主细胞的正常功能,使细胞以由病毒决定的方式运转。例如,病毒感染可能导致细胞产生细胞因子或对细胞因子做出响应,而未被感染的细胞一般不会如此。
“反转录病毒”是其中病毒基因组是RNA的RNA病毒。当宿主细胞被反转录病毒感染时,基因组RNA被反转录成DNA中间体,所述DNA中间体被非常有效地整合到被感染细胞的染色体DNA中。整合的DNA中间体被称为前病毒。术语“慢病毒”以其常规意义使用,用于描述含有反转录酶的一个病毒属。慢病毒包括“免疫缺陷病毒”,其包括1型和2型人免疫缺陷病毒(HIV)(HIV-I和HIV-II)、猿猴免疫缺陷病毒(SIV)和猫免疫缺陷病毒(FIV)。
下面描述了适合用于本公开的实践或试验的方法和材料。这样的方法和材料仅仅是说明性的而不是限制性的。可以使用与本文中描述的方法和材料相似或等同的其他方法和材料。例如,本公开的发明所属技术领域中公知的常规方法被描述在各种综合和更具体的参考文献中,包括例如Sambrook等,《分子克隆实验指南》(Molecular Cloning:ALaboratory Manual)第二版,Cold Spring Harbor Laboratory Press,1989;Sambrook等,《分子克隆实验指南》(Molecular Cloning:A LaboratoryManual)第三版,Cold SpringHarbor Press,2001;Ausubel等,《分子生物学现代方法》(Current Protocols inMolecular Biology),Greene Publishing Associates,1992(和2012年的补充材料);Ausubel等,《分子生物学简短方案:来自于分子生物学现代方法的方法汇编》(ShortProtocols in Molecular Biology:A Compendium of Methods from Current Protocolsin Molecular Biology),第4版,Wiley&Sons,1999;Harlow和Lane,《抗体实验指南》(Antibodies:A Laboratory Manual),Cold Spring Harbor Laboratory Press,1990;以及Harlow和Lane《使用抗体实验指南》(Using Antibodies:A Laboratory Manual),ColdSpring Harbor Laboratory Press,1999。
II.数种实施方式的描述
A.中和性单克隆抗体
本文中公开了特异性结合gp41的分离的人类单克隆抗体。所公开的抗体特异性结合gp41的近膜细胞外区域(MPER)。本文中还公开了包含这些人类单克隆抗体和药学可接受的载体的组合物。还提供了编码这些抗体的核酸、包含这些核酸的表达载体以及表达所述核酸的分离的宿主细胞。
包含特异性针对gp41的人类单克隆抗体的组合物可用于研究、诊断和治疗目的。例如,本文中公开的人类单克隆抗体可用于检测生物样品中的HIV-1或干扰HIV-1活性,以例如诊断或治疗患有HIV-1感染和/或AIDS的对象。例如,抗体可用于确定对象中的HIV-1滴度。本文中公开的抗体还可用于研究人免疫缺陷病毒的生物学。
所公开的特异性结合gp41的抗体在以前未表征的表位处结合gp41的近膜细胞外区域(MPER),所述表位被命名为10E8表位,是所发现的这类抗体(10E8样抗体)的第一个成员。在与gp41肽的复合物中解析了10E8抗体的晶体结构(参见实施例1),这允许详细地分析这类10E8抗体与gp41的结合,并在原子水平上描述10E8样抗体(例如10E8)与10E8表位的结合。这个表位以及因此这一类抗体(10E8样抗体),可以利用它们与10E8表位的结合与其他结合gp41的抗体区分开。在数种实施方式中,10E8表位例如KWASLWNWFDITNWLWYIR(SEQ IDNO:13)在gp41胞外结构域上的2F5表位的C-端(尽管存在一些重叠)延伸,并且通过将结合扩展到以前被认为不可接近的C-端残基(例如,这些残基据信被埋置在脂质双层中)而与4E10和Z13E1表位区分开。本领域普通技术人员将会理解,10E8抗体可以特异性结合到在上述序列的N-端延伸的gp41MPER残基。在某些实施方式中,所公开的10E8样抗体特异性结合于包括SEQ ID NO:26的第1-28、2-28、3-28、4-28、5-28、6-28、7-28、8-28、9-28、10-28、11-28、12-28、13-28或14-28位残基所示的氨基酸序列的多肽,所述残基分别对应于gp41的第656-683、657-683、658-683、659-683、660-683、661-683、662-683、663-683、664-683、665-683、666-683、667-683、668-683或669-683位残基(HXB2编号系统)。
在某些实施方式中,据信与10E8抗体发生接触的残基包括在上面用粗体示出的K、SLWNWF、TN、LW和IR。因此,在某些实施方式中,10E8样抗体特异性结合于SEQ ID NO:13的K、SLWNWF、TN、LW和IR中的一个或多个残基,例如至少1个、至少2个、至少3个、至少4个、至少5个、至少6个、至少7个、至少8个、至少9个、至少10个、至少11个、至少12个或甚至所有13个这些残基。在某些实施例中,10E8样抗体结合于下列序列NWFDITNWLWYIR(SEQ ID NO:13的第7-19位残基)中用粗体示出的NWF、T和R残基。
在其他实施方式中,抗体或抗原结合片段接触LWNWFDITNWLWYIR(SEQ ID NO:26,第14-28位残基)所示的氨基酸序列中用粗体示出的L、WF、LW和R。在其他实施方式中,所公开的抗体接触LWNWFDITNWLWYIR(SEQ ID NO:26,第14-28位残基)所示的氨基酸序列中用粗体示出的LW、WF、LW和R。在其他实施方式中,所公开的抗体接触SLWNWFDITNWLWYIR(SEQIDNO:26,第13-28位残基)所示的氨基酸序列中用粗体示出的SLW、WF、LW和R。在其他实施方式中,所公开的抗体接触LELDKWASLWNWFDITNWLWYIR(SEQ ID NO:26,第6-28位残基)所示的氨基酸序列中用粗体示出的L、DK、SLWNWF、TN、LW和IR。在其他实施方式中,所公开的抗体接触NWFDITNWLWYIR(SEQ ID NO:13,第7-19位残基)所示的氨基酸序列中用粗体示出的NWF、T和R。在其他实施方式中,所公开的抗体接触KWASLWNWFDITNWLWYIR(SEQ ID NO:13)所示的氨基酸序列中用粗体示出的K、SLNWF、T和IR。在其他实施方式中,所公开的抗体特异性结合于NWFDITNWLWYIR(SEQ ID NO:13,第7-19位残基)所示的氨基酸序列中用粗体示出的残基NWF、T和R。在其他实施方式中,所公开的抗体特异性结合于KWASLWNWFDITNWLWYIR(SEQ IDNO:13)所示的氨基酸序列中用粗体示出的残基K、SLNWF、T和IR。在数种这样的实施方式中,当抗体通过例如氢键接触和/或范德华接触而特异性结合于gp41时,抗体在指定残基处直接接触gp41MPER。在其他实施方式中,当抗体通过例如氢键接触、范德华接触和/或引起抗体与gp41之间(即埋置表面积)的溶剂进入减少的相互作用而特异性结合于gp41时,抗体在指定残基处接触gp41MPER。如图27和28中所示,10E8和10E8样抗体中对于结合10E8表位来说重要的残基包括重链的28、31、33、50、52、52B、52C、53、56、58和97-100JKabat残基和轻链的91和95B Kabat残基。这些残基对应于重链的第28、31、33、50、52、54、55、56、59、61、103-116位残基(残基编号相对于SEQ ID NO:1给出)和轻链的第91和97位残基(残基编号相对于SEQ ID NO:2给出)。在某些实施方式中,10E8样抗体特异性结合于gp41,并且来自于重链的第28、31、33、50、52、54、55、56、59、61和/或103-116位残基(相对于SEQ ID NO:1)中的一个或多个残基,例如至少1个、至少2个、至少3个、至少4个、至少5个、至少6个、至少7个、至少8个、至少9个、至少10个、至少11个、至少12个、至少13个、至少14个、至少15个、至少16个、至少17个、至少18个、至少19个、至少20个、至少21个、至少22个、至少23个、至少24个、至少25个、至少26个或甚至所有27个这些残基接触gp41。在某些实施方式中,10E8样抗体特异性结合于gp41,并且来自于轻链的第91和97位残基(相对于SEQ ID NO:2)中的至少一个残基接触gp41。
在某些实施方式中,10E8样抗体类型不表现出自体反应性,即它们不结合自体抗原例如人类蛋白质。不受理论限制,在与MPER gp41肽的复合物中的10E8的晶体结构的检查显示,10E8以可能不需要与膜的任何疏水性相互作用的方式结合于MPER。结合gp41的MPER的其他已知中和性抗体例如2F5和4E10在CDR H3中包括不接触表位并且据信与gp41所位于的脂质膜发生特异性接触的疏水性残基。
尽管不受理论限制,但据信10E8样抗体的中和广度可以容忍表位的保守变化并同时仍维持结合。例如,尽管C-端残基被示出为精氨酸,但这类抗体可以容忍在这一位点处的赖氨酸置换,并仍维持高结合亲和性。此外,本领域普通技术人员可以使用图17B或图17C-17F中列出的HIV分离株的所有HIV gp41变异的序列,为10E8表位制定共有序列。在某些实施方式中,这一类别中的抗体(10E8样抗体)也可以通过中和广度区分开。在某些实施方式中,10E8样抗体能够以低于50μg/ml的IC50中和图17B或图17C-17F中列出的至少95%(例如至少96%、至少97%、至少98%或至少99%)的HIV-1分离株。在某些实施方式中,10E8样抗体能够以低于1μg/ml的IC50中和图17B或图17C-17F中列出的至少65%(例如至少66%、至少67%、至少68%、至少69%、至少70%、至少71%、至少72%、至少73%、至少74%、至少75%或至少80%)的HIV-1分离株。在特定实施方式中,10E8样抗体不是Z13E1、4E10或2F5抗体。
下面的单克隆抗体的讨论针对包含重链和轻链可变结构域的分离的单克隆抗体,所述可变结构域包括CDR1、CDR2和CDR3。本领域普通技术人员将会理解,可以使用各种CDR编号系统方案(例如Kabat、Chothia或IMGT编号系统方案)来确定CDR位置。根据Kabat和IMGT编号系统方案的10E8单克隆抗体的重链CDR位置被示出在图6A(Kabat)和图6B(IMGT)中。在数种实施方式中,对所公开抗体的重链或轻链中的特定氨基酸置换的指称是根据Kabat或IMGT编号系统方案做出的。例如,本文中提到的10E8中的氨基酸置换S74W参照的是Kabat编号系统方案。使用IMGT编号系统方案,这一置换被称为S82W。在这两种情形中,该位置是指置换SEQ ID NO:1的第77位处的丝氨酸残基。本领域技术人员将容易地理解在指称本文中公开的抗体的特定氨基酸时各种CDR编号系统方案的使用。
在某些实施方式中,特异性结合gp41的分离的抗体包括具有SEQ ID NO:11:EVX1LX2ESGGGLVKPGGSLRLSCSASGFDFDNAWMTWVRQPPGKGLEWVGRITGPGEGWSVDYAAPVEGRFTISRLNX3INFLYLEMNNLRMEDSGLYFCARTGKYYDFWSGYPPGEEYFQDWGRGTLVX4VSS(SEQ ID NO:11)的第26-33位氨基酸(互补决定区1(CDR1))、第51-60位氨基酸(CDR2)和/或第99-120位氨基酸(CDR3)中的一个或多个区域的重链,其中X1是Q或R,X2是V或A,X3是S或Y,并且X4是T或I。在某些实施方式中,特异性结合gp41的分离的人类单克隆抗体包括具有SEQ ID NO:11的第26-33位(CDR1)、第51-60位(CDR2)和第99-120位(CDR3)氨基酸的重链。在特定实施例中,所述人类单克隆抗体的重链包括SEQ ID NO:11。
在某些实施方式中,特异性结合gp41的分离的抗体包括具有SEQ ID NO:146:EVX1LX2ESGGGLVKPGGSLRLSCSASGFX3FX4X5AWMTWVRQPPGKGLEWVGRITGPGEX6WSVDYAAPVEGRFTISRLNSINFLYLEMNNLRMEDSGLYFCARTGKYYDFWSGYPPGEEYFQDWGRGTLVX7VSS(SEQ ID NO:146)的第26-33位氨基酸(互补决定区1(CDR1))、第51-60位氨基酸(CDR2)和/或第99-120位氨基酸(CDR3)中的一个或多个区域的重链,其中X1是Q或R,X2是V或A,X3是D或W,X4是D或W,X5是N或W,X6是G或W并且X7是T或I。在某些实施方式中,特异性结合gp41的分离的人类单克隆抗体包括具有SEQ ID NO:146的第26-33位(CDR1)、第51-60位(CDR2)和第99-120位(CDR3)氨基酸的重链。在特定实施例中,所述人类单克隆抗体的重链包括SEQ ID NO:146。
在某些实施方式中,特异性结合gp41的分离的抗体包括具有SEQID NO:187的第26-33位氨基酸(互补决定区1(CDR1))、第51-60位氨基酸(CDR2)和/或第99-120位氨基酸(CDR3)中的一个或多个区域的重链。SEQ ID NO:187如EX1X2LX3ESGGX4LVX5PGGSLRLSCX6ASGFX7FX8X9X10WMTWVRQX11PGKGLEWVGRIX12-GX13GX14X15WX16X17X18YAX19X20VX21GRFX22ISRX23X24X25X26X27X28X29YLX30MNX31X32X33X34X35DX36X37X3 8YX39CX40X41TX42KX43YX44FWX45GX46PPGEEYX47X48X49WGX50GTX51VX52VX53S所示,其中X1是V或I;X2是Q或R;X3是V或A;X4是G、R或D;X5是K或R;X6是S或A;X7是D、N、S、A或W;X8是D、K、W或A;X9是N、S、D、A、W、F或Y;X10是A、T或Q;X11是P或A;X12是T、S或A;X13是P或W;X14是E、A、F、L、M、V或W;X15是G或W;X16是S、T、A或H;X17是V或S;X18是D、G或A;X19是A或E;X20是P、S或T;X21是E、K或Q;X22是T或I;X23是L、D、M、I或N;X24是N或D;X25是S、M、W、F、L或M;X26是I或K;X27是N或D;X28是F、T或M;X29是L或F;X30是E或Q;X31是N、S或R;X32是L或V;X33是R或K;X34是M、T、I或P;X35是E或D;X36是S、T或W;X37是G、A或W;X38是L、V、S或Y;X39是F或Y;X40是A、T或V;X41是R、T或H;X42是G或E;X43是Y或H;X44是D、A或N;X45是S、G或R;X46是Y或A;X47是F或L;X48是Q或E;X49是D或H;X50是R或Q;X51是L或Q;X52是T或I;并且X53是S或P。在某些实施方式中,特异性结合gp41的分离的人类单克隆抗体包括具有SEQ ID NO:187的第26-33位(CDR1)、第51-60位(CDR2)和第99-120位(CDR3)氨基酸的重链。在其他实施方式中,特异性结合gp41的分离的抗体包括包含SEQ IDNO:187所示的氨基酸序列的重链可变区。
在数种实施方式中,特异性结合gp41的分离的抗体是中和性的,并且包括包含按照Kabat、IMGT或Clothia编号系统如SEQ ID NO:1、3、5、11、146、147-149、187、189-192和200-204所示的重链可变区序列之一的一个或多个重链互补决定区(CDR)的重链。在某些实施方式中,特异性结合gp41的分离的抗体是中和性的,并且包括包含按照Kabat、IMGT或Clothia编号系统如SEQ ID NO:1、3、5、11、146、147-149、187、189-192或200-204所示的重链可变区序列之一的CDR1、CDR2和CDR3的重链。
因此,在某些实施方式中,特异性结合gp41的分离的抗体包括SEQ ID NO:1、3、5、11、146、147-149、187、189-192和200-204之一的第26-33位氨基酸(CDR1)、第51-60位氨基酸(CDR2)和/或第99-120位氨基酸(CDR3)中的一个或多个区域。在某些实施方式中,特异性结合gp41的分离的人类单克隆抗体包括具有SEQ ID NO:1、3、5、11、146、147-149、187、189-192和200-204之一的第26-33位(CDR1)、第51-60位(CDR2)和第99-120位(CDR3)氨基酸的重链。在特定实施例中,所述人类单克隆抗体的重链包括SEQ ID NO:1、3、5、11、146、147-149、187、189-192和200-204之一。
例如,在某些实施方式中,特异性结合gp41的分离的抗体包括包含来自于gp41抗体10E8、7H6和/或7N16的一个或多个重链互补决定区(CDR)的重链。gp41抗体10E8的重链如SEQ ID NO:1所示。在某些实施方式中,特异性结合gp41的分离的抗体包括SEQ ID NO:1的第26-33位氨基酸(图6B中的第27-38位)(CDR1)、第51-60位氨基酸(图6B中的第56-65位)(CDR2)和/或第99-120位氨基酸(图6B中的第105-126位)(CDR3)中的一个或多个区域。在某些实施方式中,特异性结合gp41的分离的人类单克隆抗体包括具有SEQ ID NO:1的第26-33位(CDR1)、第51-60位(CDR2)和第99-120位(CDR3)氨基酸的重链。在特定实施例中,所述人类单克隆抗体的重链包括SEQID NO:1。gp41抗体7H6的重链如SEQ ID NO:3所示。因此,在某些实施方式中,特异性结合gp41的分离的抗体包括SEQ ID NO:3的第26-33位(CDR1)、第51-60位(CDR2)和/或第99-120位(CDR3)氨基酸中的一个或多个区域。在某些实施方式中,特异性结合gp41的分离的人类单克隆抗体包括具有SEQ ID NO:3的第26-33位(CDR1)、第51-60位(CDR2)和第99-120位(CDR3)氨基酸的重链。在特定实施例中,所述人类单克隆抗体的重链包括SEQ ID NO:3。gp41抗体7N16的重链如SEQ ID NO:5所示。因此,在某些实施方式中,特异性结合gp41的分离的抗体包括SEQ ID NO:5的第26-33位(CDR1)、第51-60位(CDR2)和/或第99-120位(CDR3)氨基酸中的一个或多个区域。在某些实施方式中,特异性结合gp41的分离的人类单克隆抗体包括具有SEQ ID NO:5的第26-33位(CDR1)、第51-60位(CDR2)和第99-120位(CDR3)氨基酸的重链。在特定实施例中,所述人类单克隆抗体的重链包括SEQ IDNO:5。
在其他实施方式中,特异性结合gp41的分离的抗体包括包含本文中公开的任一10E8样重链的氨基酸序列并进一步在第77位处(根据Kabat编号系统为第74位处)包含氨基酸置换例如S77Y置换(根据Kabat编号系统为S74Y)的重链。在其他实施方式中,特异性结合gp41的分离的抗体包括包含来自于本文中公开的任一10E8样重链的一个或多个重链互补决定区(CDR)并进一步在第77位处(根据Kabat编号系统为第74位处)包含氨基酸置换例如S77Y置换(根据Kabat编号系统为S74Y)的重链。在其他实施方式中,特异性结合gp41的分离的抗体包括包含来自于gp41抗体gVRC-H2dN152或gVRC-H2dN152之一的一个或多个重链互补决定区(CDR)并在第77位处(根据Kabat编号系统为第74位处)具有氨基酸置换的重链。在某些实施例中,所述氨基酸置换是丝氨酸向酪氨酸的置换。gp41抗体gVRC-H2dN152的重链如SEQ ID NO:154所示。因此,在某些实施方式中,特异性结合gp41的分离的抗体包括SEQID NO:154的第26-33位(CDR1)、第51-60位(CDR2)和/或第99-120位(CDR3)氨基酸中的一个或多个区域。在某些实施方式中,特异性结合gp41的分离的人类单克隆抗体包括具有SEQID NO:154的第26-33位(CDR1)、第51-60位(CDR2)和第99-120位(CDR3)氨基酸的重链。在特定实施例中,所述人类单克隆抗体的重链包括SEQ ID NO:154。在第77位处(根据Kabat编号系统为第74位处)具有丝氨酸向酪氨酸的置换的gp41抗体gVRC-H2dN152的重链如SEQ IDNO:192所示。因此,在某些实施方式中,特异性结合gp41的分离的抗体包括SEQ ID NO:192的第26-33位(CDR1)、第51-60位(CDR2)和/或第99-120位(CDR3)氨基酸中的一个或多个区域。在某些实施方式中,特异性结合gp41的分离的人类单克隆抗体包括具有SEQ ID NO:192的第26-33位(CDR1)、第51-60位(CDR2)和第99-120位(CDR3)氨基酸的重链。在特定实施例中,所述人类单克隆抗体的重链包括SEQ ID NO:192。
在某些实施方式中,特异性结合gp41的分离的抗体包括SEQ ID NO:12:SYELTQX1TGVSVALGRTVVTITCRGDSLRSHX2ASWYQKKPGQAPX3LLFYGKNNRPSGX4PDRFSGSASGNRASLTIX5GAQAEDX6AX7YYCSSRDKSGSRLSVFGGGTKLX8VL(SEQ ID NO:12)的第26-31位(CDR1)、第49-51位(CDR2)和/或第88-99位(CDR3)氨基酸的一个或多个轻链互补决定区(CDR),其中X1是E或D,X2是Y或H,X3是V或I,X4是V或I,X5是S或T,X6是D或E,X7是E或D,并且X8是T或I。在某些实施方式中,特异性结合gp41的分离的人类单克隆抗体包括具有SEQ ID NO:12的第26-31位(CDR1)、第49-51位(CDR2)和第88-99位(CDR3)氨基酸的轻链。在特定实施例中,所述人类单克隆抗体的轻链包括SEQ ID NO:12。
在某些实施方式中,特异性结合gp41的分离的抗体包括SEQ ID NO:188:X1X2X3LTQX4X5X6VSVAX7X8X9TVX10ITCX11GDSLRX12X13YX14X15WYQX16X17X18X19QAPX20-LX21X22YX23X24X25X26RPSX27X28X29DRFSX30X31X32SGNX33ASLTIX34GAX35X36X37DX38AX39YYCSSRDKSGSRLX40X41FGX42GTX43X44X45X46X47的第26-31位(CDR1)、第49-51位(CDR2)和/或第88-99位(CDR3)氨基酸的一个或多个轻链互补决定区(CDR),其中X1是S或A;X2是Y或S;X3是E或D;X4是E或D;X5是T或P;X6是G、A或T;X7是L或F;X8是G、K或E;X9是R、Q或K;X10是T或R;X11是R或Q;X12是S、R或N;X13是H或Y;X14是A、V或T;X15是S或G;X16是K、E或Q;X17是K或R;X18是P或T;X19是G或R;X20是I、V或K;X21是L或V;X22是F、V或I;X23是G或P;X24是K或R;X25是N、D或H;X26是N或I;X27是G或P;X28是V或I;X29是P、H或S;X30是G或A;X31是S或F;X32是A、T或S;X33是R或T;X34是S、A或T;X35是Q或E;X36是A或G;X37是E或D;X38是D、E或I;X39是E或D;X40是S、V;X41是V、T;X42是G、R;X43是K或E;X44是L、V或R;X45是T、S或A;X46是V、T或G;并且X47是L、V或P。在某些实施方式中,特异性结合gp41的分离的人类单克隆抗体包括具有SEQ ID NO:188的第26-31位(CDR1)、第49-51位(CDR2)和第88-99位(CDR3)氨基酸的轻链。在其他实施方式中,特异性结合gp41的分离的抗体包括包含SEQ ID NO:188所示的氨基酸序列的轻链可变区。
数种实施方式包括分离的抗体,所述抗体特异性结合gp41并且是中和性的,并包括包含根据Kabat、IMGT或Clothia编号系统如SEQ ID NO:2、4、6、12、150-152、164-186、188或197-199所示的轻链可变区序列之一的一个或多个轻链互补决定区(CDR)的轻链。在某些实施方式中,特异性结合gp41的分离的抗体是中和性的,并包括包含根据Kabat、IMGT或Clothia编号系统如SEQ ID NO:2、4、6、12、150-152、164-186、188或197-199所示的轻链可变区序列之一的CDR1、CDR2和CDR3的轻链。在其他实施方式中,特异性结合gp41的分离的抗体包括SEQ ID NO:2、4、6、12、150-152、164-186、188或197-199之一的第26-31位(图6B中的第27-38位)(CDR1)、第49-51位(图6B中的第56-65位)(CDR2)和/或第88-99位(图6B中的第105-116位)(CDR3)氨基酸中的一个或多个区域。在其他实施方式中,特异性结合gp41的分离的人类单克隆抗体包括具有SEQ ID NO:2、4、6、12、150-152、164-186、188或197-199之一的第26-31位(CDR1)、第49-51位(CDR2)和第88-99位(CDR3)氨基酸的轻链。在特定实施例中,所述人类单克隆抗体的轻链包括SEQ ID NO:2、4、6、12、150-152、164-186、188或197-199之一。
例如,在某些实施方式中,特异性结合gp41的分离的抗体包括来自于gp41抗体10E8、7H6和/或7N16的一个或多个轻链互补决定区(CDR)。gp41抗体10E8的轻链如SEQ IDNO:2所示。因此,在某些实施方式中,特异性结合gp41的分离的抗体包括SEQ ID NO:2的第26-31位(图6B中的第27-38位)(CDR1)、第49-51位(图6B中的第56-65位)(CDR2)和/或第88-99位(图6B中的第105-116位)(CDR3)氨基酸中的一个或多个区域。在某些实施方式中,特异性结合gp41的分离的人类单克隆抗体包括具有SEQ ID NO:2的第26-31位(CDR1)、第49-51位(CDR2)和第88-99位(CDR3)氨基酸的轻链。在特定实施例中,所述人类单克隆抗体的轻链包括SEQ ID NO:2。gp41抗体7H6的轻链如SEQ ID NO:4所示。因此,在某些实施方式中,特异性结合gp41的分离的抗体包括SEQ ID NO:4的第26-31位(CDR1)、第49-51位(CDR2)和/或第88-99位(CDR3)氨基酸中的一个或多个区域。在某些实施方式中,特异性结合gp41的分离的人类单克隆抗体包括具有SEQ ID NO:4的第26-31位(CDR1)、第49-51位(CDR2)和第88-99位(CDR3)氨基酸的轻链。在特定实施例中,所述人类单克隆抗体的轻链包括SEQ ID NO:4。gp41抗体7N16的轻链如SEQ ID NO:6所示。因此,在某些实施方式中,特异性结合gp41的分离的抗体包括SEQ ID NO:6的第26-31位(CDR1)、第49-51位(CDR2)和/或第88-99位(CDR3)氨基酸中的一个或多个区域。在某些实施方式中,特异性结合gp41的分离的人类单克隆抗体包括具有SEQ ID NO:6的第26-31位(CDR1)、第49-51位(CDR2)和第88-99位(CDR3)位氨基酸的重链。在特定实施例中,所述人类单克隆抗体的重链包括SEQ ID NO:6。
在其他实施方式中,特异性结合gp41的分离的抗体包括包含来自于gp41抗体10E8gL03的一个或多个重链互补决定区(CDR)的重链。gp41抗体10E8gH03的轻链如SEQ IDNO:152所示。因此,在某些实施方式中,特异性结合gp41的分离的抗体包括SEQ ID NO:152的第26-31位(CDR1)、第49-51位(CDR2)和/或第88-99位(CDR3)氨基酸中的一个或多个区域。在某些实施方式中,特异性结合gp41的分离的人类单克隆抗体包括具有SEQ ID NO:152的第26-31位(CDR1)、第49-51位(CDR2)和第88-99位(CDR3)氨基酸的重链。在特定实施例中,所述人类单克隆抗体的重链包括SEQ ID NO:152。
其他实施方式包括分离的抗体,所述抗体特异性结合gp41并且是中和性的,并且分别包括包含按照Kabat、IMGT或Clothia编号系统如SEQ ID NO:1、3、5、11、146、147-149、187、189-192和200-204所示的重链可变区序列之一的一个或多个重链互补决定区(CDR)的重链,以及按照Kabat、IMGT或Clothia编号系统如SEQ ID NO:2、4、6、12、150-152、164-186、188或197-199所示的轻链可变区序列之一的一个或多个轻链互补决定区(CDR)。其他实施方式包括分离的抗体,所述抗体特异性结合gp41并且是中和性的,并且分别包括包含按照Kabat、IMGT或Clothia编号系统如SEQ ID NO:1、3、5、11、146、147-149、187、189-192和200-204所示的重链可变区序列之一的重链互补决定区1(HCRD1)、HCRD2和HCDR3的重链,以及按照Kabat、IMGT或Clothia编号系统如SEQ ID NO:2、4、6、12、150-152、164-186、188或197-199所示的轻链可变区序列之一的轻链互补决定区1(HCRD1)、HCRD2和HCDR3。
因此,在某些实施方式中,特异性结合gp41的分离的抗体包括包含SEQ ID NO:1、3、5、11、146、147-149、187、189-192和200-204之一的第26-33位(图6B中的第27-38位)氨基酸(CDR1)、第51-60位(图6B中的第56-65位)氨基酸(CDR2)和/或第99-120位(图6B中的第105-126位)氨基酸(CDR3)的重链,以及包含SEQ ID NO:2、4、6、12、150-152、164-186、188或197-199之一的第26-31位(图6B中的第27-38位)(CDR1)、第49-51位(图6B中的第56-65位)(CDR2)和/或第88-99位(图6B中的第105-116位)(CDR3)氨基酸的轻链。在其他实施方式中,特异性结合gp41的分离的抗体包括包含SEQ ID NO:1、3、5、11、146、147-149、187、189-192和200-204之一的第26-33位(图6B中的第27-38位)氨基酸(CDR1)、第51-60位(图6B中的第56-65位)氨基酸(CDR2)和第99-120位(图6B中的第105-126位)氨基酸(CDR3)的重链,以及包含SEQ ID NO:2、4、6、12、150-152、164-186、188或197-199之一的第26-31位(图6B中的第27-38位)(CDR1)、第49-51位(图6B中的第56-65位)(CDR2)和第88-99位(图6B中的第105-116位)(CDR3)氨基酸的轻链。
在某些实施方式中,特异性结合gp41的分离的抗体包括包含SEQID NO:1的第26-33位(图6B中的第27-38位)氨基酸(CDR1)、第51-60位(图6B中的第56-65位)氨基酸(CDR2)和/或第99-120位(图6B中的第105-126位)氨基酸(CDR3)的重链,以及包含SEQID NO:2的第26-31位(图6B中的第27-38位)(CDR1)、第49-51位(图6B中的第56-65位)(CDR2)和/或第88-99位(图6B中的第105-116位)(CDR3)氨基酸的轻链。在某些实施方式中,特异性结合gp41的分离的抗体包括包含SEQ ID NO:154的第26-33位(图6B中的第27-38位)氨基酸(CDR1)、第51-60位(图6B中的第56-65位)氨基酸(CDR2)和/或第99-120位(图6B中的第105-126位)氨基酸(CDR3)的重链,以及包含SEQ ID NO:152的第26-31位(图6B中的第27-38位)(CDR1)、第49-51位(图6B中的第56-65位)(CDR2)和/或第88-99位(图6B中的第105-116位)(CDR3)氨基酸的轻链。在某些实施方式中,特异性结合gp41的分离的抗体包括包含SEQ ID NO:192的第26-33位(图6B中的第27-38位)氨基酸(CDR1)、第51-60位(图6B中的第56-65位)氨基酸(CDR2)和/或第99-120位(图6B中的第105-126位)氨基酸(CDR3)的重链,以及包含SEQ IDNO:152的第26-31位(图6B中的第27-38位)(CDR1)、第49-51位(图6B中的第56-65位)(CDR2)和/或第88-99位(图6B中的第105-116位)(CDR3)氨基酸的轻链。
在其他实施例中,特异性结合gp41并且是中和性的分离的抗体包括重链可变区和轻链可变区,其中所述重链可变区包括SEQ ID NO:1、3、5、11、146、147-149、187、189-192或200-204之一所示的氨基酸序列,并且所述轻链可变区包括SEQ ID NO:2、4、6、12、150-152、164-186、188或197-199之一所示的氨基酸序列。在一个实施例中,重链可变区包括SEQ IDNO:1所示的氨基酸序列,并且轻链可变区包括SEQ ID NO:2所示的氨基酸序列。在另一个实施例中,重链可变区包括SEQ ID NO:192所示的氨基酸序列,并且轻链可变区包括SEQ IDNO:152所示的氨基酸序列。在其他实施例中,重链可变区包括SEQ ID NO:154所示的氨基酸序列,并且轻链可变区包括SEQ ID NO:152所示的氨基酸序列。
在其他实施方式中,特异性结合gp41的分离的抗体包括重链可变区,所述重链可变区包括与SEQ ID NO:1、3、5、11、146、147-149、187、189-192和200-204之一相比包含不超过10个(例如超过1、2、3、4、5、6、7、8个或不超过9个)氨基酸置换的氨基酸序列。在其他实施方式中,特异性结合gp41的分离的抗体包括轻链可变区,所述轻链可变区包括与SEQ IDNO:2、4、6、12、150-152、164-186、188或197-199之一相比包含不超过10个(例如超过1、2、3、4、5、6、7、8个或不超过9个)氨基酸置换的氨基酸序列。在其他实施方式中,特异性结合gp41的分离的抗体包括重链可变区和轻链可变区,所述重链可变区包括与SEQ ID NO:1、3、5、11、146、147-149、187、189-192和200-204之一相比包含不超过10个(例如超过1、2、3、4、5、6、7、8个或不超过9个)氨基酸置换的氨基酸序列,所述轻链可变区包括与SEQ ID NO:2、4、6、12、150-152、164-186、188或197-199之一相比包含不超过10个(例如超过1、2、3、4、5、6、7、8个或不超过9个)氨基酸置换的氨基酸序列。
在其他实施方式中,特异性结合gp41的分离的抗体包括重链可变区和轻链可变区,所述重链可变区包括与SEQ ID NO:1相比包含不超过10个(例如超过1、2、3、4、5、6、7、8个或不超过9个)氨基酸置换的氨基酸序列,所述轻链可变区包括与SEQ ID NO:2相比包含不超过10个(例如超过1、2、3、4、5、6、7、8个或不超过9个)氨基酸置换的氨基酸序列。
在其他实施方式中,特异性结合gp41的分离的抗体包括包含SEQID NO:187所示的氨基酸序列的重链可变区,其中所述氨基酸序列与SEQ ID NO:1相比包括不超过25个(例如超过1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23个或不超过24个)氨基酸置换。在其他实施方式中,特异性结合gp41的分离的抗体包括包含SEQ ID NO:188所示的氨基酸序列的轻链可变区,其中所述氨基酸序列与SEQ ID NO:2相比包括不超过33个(例如超过1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32个或不超过33个)氨基酸置换。在其他实施方式中,特异性结合gp41的分离的抗体包括包含SEQ ID NO:187所示的氨基酸序列的重链,其中所述氨基酸序列与SEQ ID NO:1相比包括不超过25个(例如超过1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23个或不超过24个)氨基酸置换;以及包含SEQ ID NO:188所示的氨基酸序列的轻链,其中所述氨基酸序列与SEQ ID NO:2相比包括不超过33个(例如超过1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32个或不超过33个)氨基酸置换。
在其他实施方式中,特异性结合gp41的分离的抗体包括重链可变区,所述重链可变区包括与SEQ ID NO:1、3、5、11、146、147-149、187、189-192和200-204之一相比具有不超过10个(例如超过1、2、3、4、5、6、7、8个或不超过9个)氨基酸置换的氨基酸序列,并且其中所述置换选自图60A和60B中列出的氨基酸置换。在其他实施方式中,特异性结合gp41的分离的抗体包括轻链可变区,所述轻链可变区包括与SEQ ID NO:2、4、6、12、150-152、164-186、188或197-199之一所示的氨基酸序列之一相比包含不超过10个(例如超过1、2、3、4、5、6、7、8个或不超过9个)氨基酸置换的氨基酸序列,并且其中所述置换选自图61A和61B中示出的氨基酸置换。在其他实施方式中,特异性结合gp41的分离的抗体包括重链可变区,所述重链可变区包括与SEQID NO:1、3、5、11、146、147-149、187、189-192和200-204之一相比具有不超过10个(例如超过1、2、3、4、5、6、7、8个或不超过9个)氨基酸置换的氨基酸序列,其中所述置换选自图60A和60B中示出的氨基酸置换;以及轻链可变区,所述轻链可变区包括与SEQID NO:2、4、6、12、150-152、164-186、188或197-199之一所示的氨基酸序列之一相比包含不超过10个(例如超过1、2、3、4、5、6、7、8个或不超过9个)氨基酸置换的氨基酸序列,并且其中所述置换选自图61A和61B中列出的氨基酸置换。在其他实施方式中,特异性结合gp41的分离的抗体包括重链可变区,所述重链可变区包括与SEQ ID NO:1相比具有不超过10个(例如超过1、2、3、4、5、6、7、8个或不超过9个)氨基酸置换的氨基酸序列,其中所述置换选自图60A和60B中列出的氨基酸置换;以及轻链可变区,所述轻链可变区包括与SEQ ID NO:2相比具有不超过10个(例如超过1、2、3、4、5、6、7、8个或不超过9个)氨基酸置换的氨基酸序列,并且其中所述置换选自图61A和61B中列出的氨基酸置换。
在其他实施方式中,特异性结合gp41的分离的抗体包括在SEQ ID NO:11的第26-31位(CDR1)、第49-51位(CDR2)和第87-98位(CDR3)氨基酸中具有至多1个、至多2个、至多3个或至多4个氨基酸置换的重链,以及轻链。在某些实施方式中,特异性结合gp41的分离的抗体包括在SEQ ID NO:1的第26-33位(CDR1)、第51-60位(CDR2)和第99-120位(CDR3)氨基酸中具有至多1个、至多2个、至多3个、至多4个或至多5个氨基酸置换的重链。
在某些实施方式中,抗体可以包括在SEQ ID NO:3的第26-33位(CDR1)、第51-60位(CDR2)和第99-120位(CDR3)氨基酸中具有至多1个、至多2个、至多3个、至多4个或至多5个氨基酸置换的重链。在某些实施方式中,抗体可以包括在SEQ ID NO:5的第26-33位(CDR1)、第51-60位(CDR2)和第99-120位(CDR3)氨基酸中具有至多1个、至多2个、至多3个、至多4个或至多5个氨基酸置换的重链。在某些实施方式中,抗体可以包括在SEQ ID NO:154的第26-33位(CDR1)、第51-60位(CDR2)和第99-120位(CDR3)氨基酸中具有至多1个、至多2个、至多3个、至多4个或至多5个氨基酸置换的重链。
在其他实施方式中,特异性结合gp41的分离的抗体包括在SEQ ID NO:12的第26-31位(CDR1)、第49-51位(CDR2)和第88-99位(CDR3)氨基酸中具有至多1个、至多2个、至多3个或至多4个氨基酸置换的轻链。在某些实施方式中,特异性结合gp41的分离的抗体包括在SEQ ID NO:2的第26-31位(CDR1)、第49-51位(CDR2)和第88-99位(CDR3)氨基酸中具有至多1个、至多2个、至多3个或至多4个氨基酸置换的轻链。在某些实施方式中,抗体可以包括在SEQ ID NO:4的第26-31位(CDR1)、第49-51位(CDR2)和第88-99位(CDR3)氨基酸中具有至多1个、至多2个、至多3个或至多4个氨基酸置换的轻链。在某些实施方式中,抗体可以包括在SEQ ID NO:6的第26-31位(CDR1)、第49-51位(CDR2)和第88-99位(CDR3)氨基酸中具有至多1个、至多2个、至多3个或至多4个氨基酸置换的轻链。在某些实施方式中,抗体可以包括在SEQ ID NO:152的第26-31位(CDR1)、第49-51位(CDR2)和第88-99位(CDR3)氨基酸中具有至多1个、至多2个、至多3个或至多4个氨基酸置换的轻链。
在某些实施方式中,本文中公开的特异性结合gp41的分离的抗体在抗体的重链、抗体的轻链或抗体的重链和轻链的构架区(例如根据Kabat、Clothia或IMGT编号系统)中包括最多10个氨基酸置换(例如最多1、2、3、4、5、6、7、8个或最多9个氨基酸置换)。
在某些实施方式中,特异性结合gp41的分离的抗体包括重链可变区,所述重链可变区在SEQ ID NO:1、3、5、11、146、147-149、187、189-192和200-204之一的构架区中包括不超过10个(例如1、2、3、4、5、6、7、8或9个)氨基酸置换。SEQ ID NO:1、3、5、11、146、147-149、187、189-192和200-204的构架区分别包括SEQ ID NO:1、3、5、11、146、147-149、187、189-192的200-204的第1-25位(FR1)、第34-50位(FR2)、第61-66位(FR3)和第121-131位(FR4)氨基酸(按照Kabat编号系统)。在某些实施方式中,特异性结合gp41的分离的抗体包括轻链可变区,所述轻链可变区分别在SEQ ID NO:2、4、6、12、150-152、164-186、188或197-199的构架区中包括不超过10个(例如1、2、3、4、5、6、7、8或9个)氨基酸置换。SEQ ID NO:2的构架区分别包括SEQ ID NO:2、4、6、12、150-152、164-186、188或197-199的第1-25位(LFR2)、第32-48位(LFR2)、第52-87位(LFR3)和第99-108位(OFR4)氨基酸(按照Kabat编号系统)。
在其他实施方式中,特异性结合gp41的分离的抗体包括在SEQ IDNO:1的构架区中包含不超过10个(例如1、2、3、4、5、6、7、8或9个)氨基酸置换的重链可变区,以及在SEQ IDNO:2的构架区中包含不超过10个(例如1、2、3、4、5、6、7、8或9个)氨基酸置换的轻链可变区。在其他实施方式中,特异性结合gp41的分离的抗体包括在SEQ ID NO:154的构架区中包含不超过10个(例如1、2、3、4、5、6、7、8或9个)氨基酸置换的重链可变区,以及在SEQ ID NO:152的构架区中包含不超过10个(例如1、2、3、4、5、6、7、8或9个)氨基酸置换的轻链可变区。在其他实施方式中,特异性结合gp41的分离的抗体包括在SEQ ID NO:192的构架区中包含不超过10个(例如1、2、3、4、5、6、7、8或9个)氨基酸置换的重链可变区,以及在SEQ ID NO:152的构架区中包含不超过10个(例如1、2、3、4、5、6、7、8或9个)氨基酸置换的轻链可变区。
在某些实施方式中,人类单克隆抗体的重链包括与SEQ ID NO:1、3、5、11、146、147-149、187、189-192或200-204之一所示的氨基酸序列具有至少80%(例如至少85%、90%、91%、92%、93%、94%、95%、96%、97%、98%或至少99%)序列同一性的氨基酸序列。在其他实施例中,重链包括SEQ ID NO:1、3、5、11、146、147-149、187、189-192或200-204之一所示的氨基酸序列。在某些实施例中,人类单克隆抗体的轻链包括与SEQ ID NO:2、4、6、12、150-152、164-186、188或197-199之一所示的氨基酸序列具有至少80%(例如至少85%、90%、91%、92%、93%、94%、95%、96%、97%、98%或至少99%)序列同一性的氨基酸序列。在其他实施方式中,特异性结合gp41的分离的抗体包括重链可变区和轻链可变区,其中所述重链可变区包括与SEQ ID NO:1、3、5、11、146、147-149、187、189-192或200-204之一所示的氨基酸序列具有至少80%(例如至少85%、90%、91%、92%、93%、94%、95%、96%、97%、98%或至少99%)序列同一性的氨基酸序列,并且所述轻链可变区包括与SEQID NO:2、4、6、12、150-152、164-186、188或197-199之一所示的氨基酸序列具有至少80%(例如至少85%、90%、91%、92%、93%、94%、95%、96%、97%、98%或至少99%)序列同一性的氨基酸序列。
正如本文中所公开的,使用深度测序来鉴定以基本上相同的取向结合于gp41表面上与10E8、7H6和/或7N16所结合的表位基本上相似的表位的其他抗体。编码抗体重链的示例性核酸序列如随附的序列表中的SEQ ID NO:35-115所示。这些序列编码与10E8抗体重链可变区(SEQ ID NO:1)具有至少约80%同一性的抗体重链可变区。因此,本文公开了编码抗体重链可变区的核酸分子,所述抗体重链可变区与SEQ ID NO:1所示的重链可变区具有至少约80%同一性,例如与SEQ ID NO:1具有至少约80%、至少约81%、至少约82%、至少约83%、至少约84%、至少约85%、至少约86%、至少约87%、至少约88%、或甚至至少约89%、至少约90%、至少约91%、至少约92%、至少约93%、至少约94%、至少约95%、至少约96%、至少约97%、至少约98%或甚至至少约99%同一性。编码10E8样抗体轻链的示例性核酸序列如随附的序列表中的SEQ ID NO:116-145所示。编码抗体轻链的示例性核酸序列如随附的序列表中的SEQ ID NO:116-145所示。这些序列编码与10E8抗体轻链可变区(SEQ ID NO:2)具有至少约80%同一性的抗体轻链可变区。因此,本文中公开了编码抗体轻链可变区的核酸分子,所述抗体轻链可变区与SEQ ID NO:2所示的轻链可变区具有至少约80%同一性,例如与SEQ ID NO:2具有至少约80%、至少约81%、至少约82%、至少约83%、至少约84%、至少约85%、至少约86%、至少约87%、至少约88%、或甚至至少约89%、至少约90%、至少约91%、至少约92%、至少约93%、至少约94%、至少约95%、至少约96%、至少约97%、至少约98%或甚至至少约99%同一性。
在某些实施方式中,特异性结合gp41的分离的抗体包括由SEQ ID NO:35-115之一所示的核酸序列编码的一个或多个重链互补决定区(CDR)。在某些实施方式中,特异性结合gp41的分离的人类单克隆抗体包括具有由SEQ ID NO:35-115之一所示的核酸序列编码的所有CDR的重链。在特定实施例中,所述人类单克隆抗体的重链包括由SEQ ID NO:35-115之一所示的核酸序列编码的氨基酸序列。
在某些实施方式中,特异性结合gp41的分离的抗体包括由SEQ ID NO:116-145之一所示的核酸序列编码的一个或多个轻链互补决定区(CDR)。在某些实施方式中,特异性结合gp41的分离的人类单克隆抗体包括具有由SEQ ID NO:116-145之一所示的核酸序列编码的所有CDR的轻链。在特定实施例中,所述人类单克隆抗体的轻链包括由SEQID NO:116-145之一所示的核酸序列编码的氨基酸序列。
在某些实施方式中,特异性结合gp41的分离的抗体包括由源自于IGHV3-15种系等位基因来源例如IGHV3-15*01、IGHV3-15*02、IGHV3-15*03、IGHV3-15*04、IGHV3-15*05、IGHV3-15*06、IGHV3-15*07、IGHV3-15*08、IGHV3-15*09、IGHV3-15*10、IGHV3-15*11、IGHV3-15*12、IGHV3-15*13、IGHV3-15*14或IGHV3-15*15种系等位基因来源的核酸编码的重链可变区。在某些实施方式中,重链可变区由源自于IGHV3-15种系等位基因来源例如IGHV3-15*01、IGHV3-15*02、IGHV3-15*03、IGHV3-15*04、IGHV3-15*05、IGHV3-15*06、IGHV3-15*07、IGHV3-15*08、IGHV3-15*09、IGHV3-15*10、IGHV3-15*11、IGHV3-15*12、IGHV3-15*13、IGHV3-15*14或IGHV3-15*15种系等位基因来源的核酸编码,并且与相应的重链种系序列相比具有约10%、15%、20%、25%、30%、35%或40%,例如约15%至40%的趋异性。
在某些实施方式中,特异性结合gp41的分离的抗体包括由源自于IGLV3-19种系等位基因来源例如IGLV3-19*01种系等位基因来源的核酸编码的轻链可变区。在某些实施方式中,轻链由源自于IGLV3-19种系等位基因来源例如IGLV3-19*01种系等位基因来源的核酸编码,并且与相应的轻链种系序列相比具有约10%、15%、20%、25%、30%、35%或40%,例如约15%至40%的趋异性。
在某些实施例中,重链可变结构域是来自于供体N152的克隆变体,其中重链由VH3-15基因和VJ-1J基因编码。在其他实施例中,轻链可变结构域是来自于供体N152的克隆变体,其中轻链由LV3-19V基因和LJ-3J基因编码。分离的单克隆抗体可以包括重链和轻链,其中所述重链可变区是来自于具有SEQ ID NO:1所示的氨基酸序列的重链可变区的供体N152的克隆变体。所述重链源自于VH3-15基因和LJ-3J基因。轻链可变结构域是来自于具有SEQ ID NO:2所示的氨基酸序列的轻链可变区的供体N152的克隆变体。所述轻链源自于LV3-19V基因和LJ-3J基因,所述单克隆抗体特异性结合gp41,与10E8竞争与gp41的结合,并且是中和性的。
在某些实施方式中,10E8样抗体的重链可以用10E8、7H6和/或7N16抗体的轻链补充,并仍保留对gp41的结合,例如保留对10E8表位的特异性结合。在某些实施方式中,10E8样抗体的轻链可以用10E8、7H6和/或7N16抗体的重链补充,并仍保留对gp41的结合,例如保留对10E8表位的特异性结合。因此,本文中公开了可以通过10E8、7H6和/或7N16的重链或轻链的互补来鉴定的10E8样抗体。
一旦鉴定到目标重链或轻链可变结构域之后,可以使用交叉互补分析来确定与gp41或目标表位(例如10E8表位)的结合。简单来说,如果目标可变结构域是重链可变结构域,产生该重链可变结构域的氨基酸序列。然后将重链可变结构域与参比序列轻链可变结构域例如10E8(SEQ ID NO:2)、7H6(SEQ ID NO:4)和/或7N16(SEQ ID NO:6)轻链可变结构域配对,并确定抗体是否以指定的亲和性例如10-8、10-9或10-10的KD特异性结合抗原(或表位)。同样地,如果目标可变结构域是轻链可变结构域,产生该氨基酸序列。然后将轻链可变结构域与参比序列重链可变结构域例如10E8(SEQ ID NO:1)、7H6(SEQ ID NO:3)和/或7N16(SEQ ID NO:5)重链可变结构域配对,并确定抗体是否以指定的亲和性例如10-8、10-9或10-10的KD特异性结合抗原(或表位)。
完全人类的单克隆抗体包括人类构架区。因此,本文中特异性结合gp41的任何抗体都可以包括人类构架区,并且可以包括SEQ ID NO:1-6、11、12和/或146-192之一所示的或由SEQ ID NO:35-145之一编码的氨基酸序列的构架区。然而,构架区可以来自于另一个来源。可以使用的构架序列的其他实例包括PCT公布号WO 2006/074071中公开的重链和轻链的氨基酸构架序列(参见例如SEQ ID NO:1-16),所述公布通过参考并入本文。
在某些实施方式中,将来自于SEQ ID NO:1-6、11、12和/或146-192之一所示的或由SEQ ID NO:35-145编码的gp41抗体的一个或多个重链和/或轻链互补决定区(CDR)表达在另一种蛋白例如支架蛋白的表面上。抗体的结构域在支架蛋白表面上的表达在本领域中是已知的(参见例如Liu等,J.Virology 85(17):8467-8476,2011)。这样的表达产生嵌合蛋白,所述嵌合蛋白保留对gp41的结合,例如对10E8表位的特异性结合。正如在实施例1中描述的,10E8类型的抗体通过重链CDR进行其大部分接触(参见例如作为图27-30给出的表,以及在图4、5、12、15、16和39-41A中示出的分子模型)。因此,在某些特定实施方式中,将一个或多个重链CDR嫁接到支架蛋白上,例如SEQ ID NO:1、3、5、11、146-149、153-163、187、189-192或200-204之一所示的或由SEQ ID NO:35-115之一编码的一个或多个重链CDR1、CDR2和/或CDR3。
单克隆抗体可以是任何同种型。单克隆抗体可以是例如IgM或IgG抗体,例如IgG1、IgG2、IgG3或IgG4。特异性结合gp41的抗体的类型可以彼此转换。在一种情况下,使用本领域公知的方法分离编码VL或VH的核酸分子,使得它分别不包括编码轻链或重链的恒定区的任何核酸序列。
在特定实施例中,VH氨基酸序列如SEQ ID NO:1、3、5、11、146-149、153-163、187、189-192或200-204之一所示或由SEQ ID NO:35-115之一编码。在其他实施例中,VL氨基酸序列如SEQ ID NO:2、4、6、12、150-152、164-186、188或197-199之一所示或由SEQ ID NO:116-145之一编码。然后将编码VL或VH的核酸分子可操作地连接到编码来自于不同类别的免疫球蛋白分子的CL或CH的核酸序列。正如本领域中已知的,这可以使用包含CL或CH链的载体或核酸分子来实现。例如,最初为IgM的特异性结合gp41的抗体可以被类别转换成IgG。可以使用类别转换将一种IgG亚类转变成另一种亚类,例如从IgG1转变成IgG2、IgG3或IgG4
在某些实施例中,所公开的抗体是抗体的寡聚体,例如二聚体、三聚体、四聚体、五聚体、六聚体、七聚体、八聚体等。在某些实施例中,抗体是五聚体。
在某些实施例中,抗体或其抗体结合片段被修饰成使得它对感染的细胞具有直接细胞毒性,或者利用天然防御例如补体、抗体依赖性细胞性细胞毒性(ADCC)或巨噬细胞的吞噬作用。
本公开涵盖抗体片段,例如包含重链和轻链可变区并特异性结合gp41的Fab、F(ab')2和Fv。这些抗体片段保留与抗原选择性结合的能力,并且是“抗原结合”片段。这些片段包括:
(1)Fab,该片段含有抗体分子的单价抗原结合片段,可以通过用木瓜蛋白酶消化整个抗体以得到完整轻链和一条重链的一部分来生产;
(2)Fab',该抗体分子片段可以通过用胃蛋白酶处理整个抗体,然后进行还原以得到完整轻链和一部分重链来获得;每个抗体分子获得两个Fab'片段;
(3)(Fab')2,该抗体片段可以通过用胃蛋白酶处理整个抗体而不进行随后的还原来获得;F(ab')2是由两个二硫键保持在一起的两个Fab'片段的二聚体;
(4)Fv,一种遗传工程改造的片段,其含有作为两条链表达的轻链可变区和重链可变区;以及
(5)单链抗体(例如scFv),其被定义为一种含有通过适合的多肽连接物相连的轻链可变区和重链可变区的遗传工程改造的分子,是遗传融合的单链分子。
(6)单链抗体的二聚体(scFV2),其被定义为scFV的二聚体。它也被称为“微型抗体”。
制造这些片段的方法在本领域中是已知的(参见例如Harlow和Lane,《抗体实验指南》(Antibodies:A Laboratory Manual),Cold Spring Harbor Laboratory,New York,1988).
在另一组实施方式中,抗体是Fv抗体,其通常为约25kDa并含有完整的抗原结合位点,每条重链和每条轻链具有3个CDR。为了产生这些抗体,可以在宿主细胞中从两个单独的核酸构建物表达VH和VL。在特定实施例中,VH氨基酸序列包括来自于SEQ ID NO:1、3、5、11、146-149、153-163、187或189-192之一或由SEQ ID NO:35-115之一编码的CDR。在其他实施例中,VL氨基酸序列包括来自于SEQ ID NO:2、4、6、12、150-152、164-186、188或197-199或由SEQ ID NO:116-145之一编码的CDR。在其他实施例中,VH氨基酸序列包括SEQ ID NO:1、3、5、11、146-149、153-163、187或189-192之一所示或由SEQ ID NO:35-115之一编码的氨基酸序列。在其他实施例中,VL氨基酸序列包括SEQ ID NO:2、4、6、12、150-152、164-186、188或197-199所示或由SEQ ID NO:116-145之一编码的氨基酸序列。
如果VH和VL被非毗连地表达,则通常通过非共价相互作用将Fv抗体的链保持在一起。然而,这些链在稀释后倾向于解离,因此已经开发了通过戊二醛、分子间二硫键或肽连接物来将链交联的方法。因此,在一个实施例中,Fv可以是二硫键稳定的Fv(dsFv),其中重链可变区和轻链可变区通过二硫键化学连接。
在其他实施例中,Fv片段包括通过肽连接物相连的VH和VL链。这些单链抗原结合蛋白(scFv)通过构建包括由寡核苷酸相连的编码VH和VL结构域的DNA序列的结构基因来制备。将所述结构基因插入到表达载体中,随后将其导入到宿主细胞例如大肠杆菌中。重组宿主细胞合成带有桥接两个V结构域的连接肽的单一多肽链。用于生产scFv的方法在本领域中是已知的(参见Whitlow等,Methods:a Companion to Methods in Enzymology,Vol.2,97页,1991;Bird等,Science 242:423,1988;美国专利号4,946,778;Pack等,Bio/Technology11:1271,1993;和Sandhu,同上)。也考虑到了单链抗体的二聚体(scFV2)。
抗体片段可以通过抗体的蛋白水解或通过在大肠杆菌中表达编码所述片段的DNA来制备。抗体片段可以通过用常规方法对整个抗体进行胃蛋白酶或木瓜蛋白酶消化来获得。例如,抗体片段可以通过用胃蛋白酶对抗体进行酶切割来生产,以提供被称为F(ab')2的5S片段。这种片段可以使用巯基还原剂和任选地用于由二硫键的切割产生的巯基的阻断基团来进一步切割,以产生3.5S的Fab'单价片段。或者,使用胃蛋白酶的酶切割直接产生两个单价Fab'片段和Fc片段(参见美国专利号4,036,945和美国专利号4,331,647以及其中包含的参考文献;Nisonhoff等,Arch.Biochem.Biophys.89:230,1960;Porter,Biochem.J.73:119,1959;Edelman等,Methods in Enzymology,Vol.1,422页,AcademicPress,1967;以及Coligan等,2.8.1-2.8.10和2.10.1-2.10.4部分)。
也可以使用切割抗体的其他方法,例如分离重链以形成单价轻链-重链片段,进一步切割片段,或其他酶、化学或遗传技术,只要所述片段结合于完整抗体所识别的抗原即可。
技术人员将会认识到,可以产生抗体的保守变体。在抗体片段例如dsFv片段或scFv片段中使用的这样的保守变体会保留VH与VL区之间的正确折叠和稳定化所必需的关键氨基酸残基,并且会保留残基的电荷特性以便保持分子的低pI和低毒性。可以在VH和VL区中进行氨基酸置换(例如至多1个、至多2个、至多3个、至多4个或至多5个氨基酸置换),以提高得率。在特定实施例中,VH序列是SEQ ID NO:1、3、5、11、146-149、153-163、187或189-192或由SEQ ID NO:35-115之一所编码。在其他实施例中,VL序列是SEQ ID NO:2、4、6、12、150-152、164-186、188或197-199或由SEQ ID NO:116-145之一所编码。提供功能上相似的氨基酸的保守氨基酸置换表对于本领域普通技术人员来说是公知的。下面的6个组是被认为是彼此的保守置换的氨基酸的实例:
1)丙氨酸(A),丝氨酸(S),苏氨酸(T);
2)天冬氨酸(D),谷氨酸(E);
3)天冬酰胺(N),谷氨酰胺(Q);
4)精氨酸(R),赖氨酸(K);
5)异亮氨酸(I),亮氨酸(L),甲硫氨酸(M),缬氨酸(V);以及
6)苯丙氨酸(F),酪氨酸(Y),色氨酸(W)。
本文中公开的抗体可以使用包封抗原来分离,如PCT公布号WO2009/100376中所描述的。简单来说,将抗原包封以将抗原的抗原性靶向被目标抗体例如中和性抗体特异性结合的特定表位。
特异性结合与本文中公开的特异性结合gp41的抗体所结合的表位相同的gp41表位的其他重组人类中和性抗体可以通过筛选重组组合抗体文库例如Fab噬菌体展示文库来分离(参见例如美国专利申请公布号2005/0123900)。在某些情况下,使用从源自于人类淋巴细胞的mRNA制备的重链和轻链的可变区cDNA来制备噬菌体展示文库。用于制备和筛选这样的文库的方法在本领域中是已知的。存在用于产生噬菌体展示文库的可商购的试剂盒(例如Pharmacia重组噬菌体抗体系统,目录号27-9400-01;以及Stratagene SurfZAPTM噬菌体展示试剂盒,目录号240612)。还存在可用于产生和筛选抗体展示文库的其他方法和试剂(参见例如美国专利号5,223,409;PCT公布号WO 92/18619;PCT公布号WO 91/17271;PCT公布号WO 92/20791;PCT公布号WO 92/15679;PCT公布号WO 93/01288;PCT公布号WO 92/01047;PCT公布号WO92/09690;Fuchs等,Bio/Technology 9:1370-1372,1991;Hay等,Hum.Antibod.Hybridomas 3:81-85,1992;Huse等,Science 246:1275-1281,1989;McCafferty等,Nature 348:552-554,1990;Griffiths等,EMBO J.12:725-734,1993)。
在一种实施方式中,为了分离特异性结合gp41的其他人类抗体,首先将本文中所描述的特异性结合gp41的中和性抗体用于选择对gp41具有相似结合活性的人类重链和轻链序列,例如使用在PCT公布号WO93/06213中所公开的表位印记方法。在这种方法中使用的抗体文库是使用例如在PCT公布号WO 92/01047;McCafferty等,Nature 348:552-554,1990;和/或Griffiths等,EMBO J.12:725-734,1993中所描述的方法,使用gp120制备和筛选得到的scFv文库。
一旦选择到初始的人类可变轻链(VL)和可变重链(VH)区段之后,进行“混合和匹配”实验来选择目标VL/VH对组合,在所述实验中筛选不同对的最初选择的VL和VH区段的gp41结合。此外,为了提高抗体的结合亲和性,可以在与天然免疫应答期间负责抗体亲和性成熟的体内体细胞突变过程相类似的过程中,在例如H-CDR3区或L-CDR3区内对VL和VH区段进行随机突变。因此,可以通过使用分别与H-CDR3或L-CDR3互补的PCR引物扩增VH和VL区,来实现体外亲和性成熟。在这一过程中,引物在某些位置处已被“掺有”4种核苷酸碱基的随机混合物,使得得到的PCR产物编码其中已在VH和/或VL的CDR3区中导入随机突变的VH和VL区段。可以对这些随机突变的VH和VL区段进行测试,以确定对gp41的结合亲和性。在特定实施例中,VH氨基酸序列是SEQ ID NO:1、3、5或11、146-149、153-163、187、189-192或200-204或由SEQ ID NO:35-115之一所编码。在其他实施例中,VL氨基酸序列是SEQ ID NO:2、4、6、12、150-152、164-186、188或197-199或由SEQ ID NO:116-145之一所编码。
在从重组免疫球蛋白展示文库筛选和分离结合gp41的抗体之后,可以通过本文中所描述的标准的重组DNA技术从展示包装物(例如从噬菌体基因组)回收编码所选抗体的核酸,并将其亚克隆到其他表达载体中。如果需要,也可以如本文中所述对核酸进行进一步操作以产生其他抗体片段。为了表达通过筛选组合文库而分离到的重组抗体,可以如本文中所述将编码抗体的DNA克隆到重组表达载体中,并导入哺乳动物宿主细胞中。
可以使用本领域技术人员已知的各种手段将效应子分子例如治疗性、诊断性或检测部分连接到目标抗体。可以使用共价和非共价附连手段两者。用于将效应子分子附连于抗体的程序随着效应子的化学结构而变。多肽通常含有各种官能团,例如羧基(COOH)、游离胺基(-NH2)或巯基(-SH),其可用于与抗体上的适合官能团反应,引起效应子分子的结合。或者,将抗体衍生化以暴露或附连其他反应性官能团。衍生化可以包括附连多种连接物分子中的任一种,例如可以从Pierce Chemical Company,Rockford,IL获得的连接物分子。连接物可以是用于将抗体联结到效应子分子的任何分子。连接物能够与抗体和效应子分子两者形成共价键。适合的连接物对于本领域技术人员来说是公知的,并且包括但不限于直链或支链碳连接物、杂环碳连接物或肽连接物。在抗体和效应子分子是多肽的情况下,可以将连接物通过组成氨基酸的侧链基团(例如通过半胱氨酸的二硫键)联结到所述组成氨基酸,或联结到末端氨基酸的α碳氨基和羧基。
在某些情况下,当免疫偶联物到达其靶位点时,希望从抗体上去除效应子分子。因此,在这些情况下,免疫偶联物包括在靶位点附近可以被切割的连键。切割连接物以从抗体释放效应子分子,可以通过免疫偶联物在靶细胞内或靶位点附近所经历的酶活性或条件来促进。
鉴于已报道了大量方法用于将各种放射诊断化合物、放射治疗化合物、标记物(例如酶或荧光分子)、药物、毒素和其他药剂附连到抗体,本领域技术人员能够确定用于将给定药剂附连到抗体或其他多肽的适合方法。
本文中公开的抗体或抗体片段可以被衍生化或连接到另一种分子(例如另一种肽或蛋白质)。一般来说,将抗体或其部分衍生化,使得与gp41的结合不受衍生化或标记的不利影响。例如,可以将抗体功能性连接(通过化学偶联、遗传融合、非共价结合等)到一种或多种其他分子实体,例如另一种抗体(例如双特异性抗体或双体抗体)、检测试剂、药剂和/或蛋白质或肽,其能够介导抗体或抗体部分与另一种分子(例如链霉亲和素核心区域或多组氨酸标签)的结合。
一种类型的衍生化抗体通过对两种或更多种抗体(相同类型或不同类型,以例如产生双特异性抗体)进行交联来产生。适合的交联剂包括具有被适合的间隔物分隔开的两个不同反应性基团的具有异源双功能的交联剂(例如(m-马来酰亚胺基苯甲酰基-N-羟基琥珀酰亚胺酯)或具有同源双功能的交联剂(例如辛二酸二琥珀酰亚胺酯)。这样的连接物可以从Pierce Chemical Company(Rockford,IL)获得。
特异性结合gp41的抗体可以用可检测的部分标记。有用的检测试剂包括荧光化合物,包括荧光素、荧光素异硫氰酸酯、罗丹明、5-二甲基胺-1-萘磺酰氯、藻红蛋白、镧系元素磷光体等。也可以使用生物发光标志物例如荧光素酶、绿色荧光蛋白、黄色荧光蛋白。还可以将抗体用可用于检测的酶标记,例如辣根过氧化物酶、β-半乳糖苷酶、荧光素酶、碱性磷酸酶、葡萄糖氧化酶等。当将抗体用可检测的酶标记时,它可以通过添加被酶利用以产生可以被辨别的反应产物的其他试剂来检测。例如,当存在试剂辣根过氧化物酶时,添加过氧化氢和二氨基联苯胺能够产生可以目测检测的有色反应产物。抗体也可以用生物素标记,并通过亲和素或链霉亲和素结合的间接测量来检测。应该指出,亲和素本身可以用酶或荧光标记物标记。
抗体可以用磁性试剂例如钆标记。抗体也可以用镧系元素(例如铕和镝)和锰标记。顺磁性粒子例如超顺磁氧化铁也可以用作标记物。抗体也可以用被第二报告物(例如亮氨酸拉链对序列、第二抗体的结合位点、金属结合结构域、表位标签)识别的预定的多肽表位来标记。在某些实施方式中,通过各种长度的间隔物臂来附连标记物,以减小潜在的空间位阻。
抗体也可以用放射性标记的氨基酸进行标记。发射性标记物可用于诊断和治疗两种目的。用于多肽的标记物的实例包括但不限于下列放射性同位素或放射性核苷酸:3H,14C,15N,35S,90Y,99Tc,111In,125I,131I。
抗体也可以用化学基团例如聚乙二醇(PEG)、甲基或乙基或糖基来衍生化。这些基团可用于改进抗体的生物学特性,例如增加血清半衰期或增加组织结合。
检测这样的标记物的手段对于本领域技术人员来说是公知的。因此,例如,可以使用照相底片或闪烁计数器来检测放射性标记物,可以使用光检测器检测发出的光来检测荧光标志物。酶标记物通常通过为所述酶提供底物并检测由酶对底物的作用产生的反应产物来检测,比色标记物通过简单地将有色标记物可视化来检测。
本公开还涉及从与gp41(或gp41肽)复合的10E8、7H6和/或7N16抗体或其部分获得的晶体,与gp41(或gp41肽)复合的10E8、7H6和/或7N16抗体或其部分的晶体结构,与gp41(或gp41肽)复合的10E8、7H6和/或7N16抗体或其部分的三维坐标,以及与gp41(或gp41肽)复合的10E8、7H6和/或7N16抗体或其部分的模型的三维结构。
本领域技术人员将会理解,与gp41或其部分复合的10E8、7H6和/或7N16抗体或其部分的一组结构坐标是定义了三维形状的相对的一组点。因此,有可能完全不同的一组坐标可以定义相似或相同的结构。此外,单个坐标的轻微变化对整个形状几乎没有影响。上面讨论的坐标的变化可能由结构坐标的数学操作产生。
本公开还提供了旨在为能够在对象中引发免疫应答的抗原性化合物产生结构和/或进行合理药物或化合物设计的系统,例如计算机系统。所述系统可以含有下列一项或多项或所有项:10E8、7H6和/或7N16抗体复合物的原子坐标数据或其子集,以及通过同源性建模从其产生的图,定义了10E8、7H6和/或7N16抗体复合物或其至少一个亚结构域的三维结构的数据,或gp41的结构因子数据,所述结构因子数据可以从10E8、7H6和/或7N16抗体复合物的原子坐标数据或其子集和所述图产生。
B.多核苷酸和表达
编码本文中提供的多肽(包括但不限于抗体)的核酸分子(也称为多核苷酸)可以由本领域技术人员容易地产生。例如,可以使用本文中提供的氨基酸序列(例如CDR序列、重链和轻链序列)来产生这些核酸。
本领域技术人员可以容易地使用遗传密码来构建各种功能上等同的核酸,例如序列不同但编码同一抗体序列的核酸或编码包含VL和/或VH核酸序列的偶联物或融合蛋白的核酸。
编码特异性结合gp41的抗体的核酸序列可以通过任何适合的方法来制备,所述方法包括例如适合序列的克隆,或通过例如下列方法直接化学合成:Narang等,Meth.Enzymol.68:90-99,197的磷酸三酯方法;Brown等,Meth.Enzymol.68:109-151,1979的磷酸二酯方法;Beaucage等,Tetra.Lett.22:1859-1862,1981的二乙基亚磷酰胺方法;Beaucage&Caruthers,Tetra.Letts.22(20):1859-1862,1981所描述的固相亚磷酰胺三酯方法,例如如Needham-VanDevanter等,Nucl.Acids Res.12:6159-6168,1984中所述使用自动化合成仪;以及美国专利号4,458,066的固相支持物方法。化学合成产生单链寡核苷酸。这可以通过与互补序列杂交或通过使用单链作为模板用DNA聚合酶进行聚合而转变成双链DNA。技术人员将会认识到,尽管DNA的化学合成一般限于约100碱基的序列,但通过连接较短的序列可以获得更长的序列。
示例性的核酸可以通过克隆技术来制备。适合的克隆和测序技术以及足以通过许多克隆练习来指导本领域技术人员的指南的实例存在于Sambrook等,同上,Berger和Kimmel主编,同上,和Ausubel,同上中。来自于生物试剂和实验设备制造商的产品信息也提供有用的信息。这样的制造商包括SIGMA Chemical Company(Saint Louis,MO)、R&DSystems(Minneapolis,MN)、Pharmacia Amersham(Piscataway,NJ)、CLONTECHLaboratories,Inc.(Palo Alto,CA)、Chem Genes Corp.、Aldrich Chemical Company(Milwaukee,WI)、Glen Research,Inc.、GIBCO BRL Life Technologies,Inc.(Gaithersburg,MD)、Fluka Chemica-Biochemika Analytika(Fluka Chemie AG,Buchs,Switzerland)、Invitrogen(Carlsbad,CA)和Applied Biosystems(Foster City,CA),以及技术人员已知的许多其他商业来源。
核酸可以通过扩增方法来制备。扩增方法包括聚合酶链反应(PCR)、连接酶链反应(LCR)、基于转录的扩增系统(TAS)、自维持序列复制系统(3SR)。对于本领域技术人员来说,广泛的各种克隆方法、宿主细胞和体外扩增方法是公知的。
编码本文中公开的任何抗体、VH和/或VL(或其片段)的任何核酸可以在重组工程改造的细胞例如细菌、植物、酵母、昆虫和哺乳动物细胞中进行表达。这些抗体可以作为单个的VH和/或VL链表达,或者可以作为融合蛋白表达。还可以表达免疫粘附素。因此,在某些实施例中,提供了编码VH和VL以及免疫粘附素的核酸。核酸序列可以任选地编码前导序列。
为了产生单链抗体(scFv),将编码VH和VL的DNA片段可操作地连接到编码柔性连接物例如编码氨基酸序列(Gly4-Ser)3的另一个片段,使得VH和VL序列可以被表达为毗连的单链蛋白,其中VL和VH结构域由柔性连接物联结(参见例如Bird等,Science 242:423-426,1988;Huston等,Proc.Natl.Acad.Sci.USA 85:5879-5883,1988;McCafferty等,Nature348:552-554,1990)。任选地,可以在连接物中包含切割位点,例如弗林蛋白酶切割位点。
编码VH和/或VL的核酸任选地可以编码Fc结构域(免疫粘附素)。Fc结构域可以是IgA、IgM或IgG的Fc结构域。Fc结构域可以是优化过的Fc结构域,如已公布的美国专利申请号20100/093979中所述,所述专利申请通过参考并入本文。在一个实施例中,免疫粘附素是IgG1Fc。在一个实施例中,免疫粘附素是IgG3Fc。
如果仅使用单个VH和VL,则单链抗体可以是单价的,如果使用两个VH和VL,则单链抗体可以是双价的,或者如果使用超过两个VH和VL,则单链抗体可以是多价的。可以产生特异性结合于gp120和另一个分子例如gp41的双特异性或多价抗体。编码的VH和VL任选地可以在VH与VL结构域之间包含弗林蛋白酶切割位点。
预期本领域技术人员会了解可获得的用于蛋白质表达的大量表达系统,包括大肠杆菌、其他细菌宿主、酵母和各种高等真核细胞例如COS、CHO、HeLa和骨髓瘤细胞系。
宿主细胞可以是革兰氏阳性细菌,包括但不限于芽孢杆菌(Bacillus)、链球菌(Streptococcus)、链霉菌(Streptomyces)、葡萄球菌(Staphylococcus)、肠球菌(Enterococcus)、乳杆菌(Lactobacillus)、乳球菌(Lactococcus)、梭状芽孢杆菌(Clostridium)、地芽孢杆菌(Geobacillus)和海洋芽孢杆菌(Oceanobacillus)。用于在革兰氏阳性细菌例如乳杆菌(Lactobacillus)中表达蛋白的方法在本领域中是公知的,参见例如已公布的美国专利申请号20100/080774。用于乳杆菌的表达载体被描述在例如美国专利号6,100,388和美国专利号5,728,571中。为了在乳杆菌中表达,可以包含前导序列。革兰氏阴性细菌包括但不限于大肠杆菌(E.coli)、假单胞菌(Pseudomonas)、沙门氏菌(Salmonella)、弯曲杆菌(Campylobacter)、螺旋杆菌(Helicobacter)、黄杆菌(Flavobacterium)、梭形杆菌(Fusobacterium)、泥杆菌(Ilyobacter)、奈瑟氏菌(Neisseria)和脲原体(Ureaplasma)。
编码抗体或其片段的一个或多个DNA序列可以通过将DNA转移到适合的宿主细胞中进行体外表达。细胞可以是原核或真核的。该术语还包括对象宿主细胞的任何后代。应该理解,由于可能存在复制期间发生的突变,因此所有后代不一定与亲代细胞相同。稳定转移的方法在本领域中是已知的,所述稳定转移意味着将外来DNA连续维持在宿主中。本公开还涵盖表达目标抗体的杂交瘤。
编码本文中描述的分离的蛋白的核酸的表达可以通过将DNA或cDNA可操作地连接到启动子(其是组成型或诱导型的)、然后掺入到表达盒中来实现。启动子可以是任何目标启动子,包括巨细胞病毒启动子和人类T细胞嗜淋巴病毒启动子(HTLV)-1。任选地,在构建物中包含增强子,例如巨细胞病毒增强子。表达盒可以适合于在原核细胞或真核细胞中复制和整合。典型的表达盒含有可用于调控编码蛋白质的DNA的表达的特定序列。例如,表达盒可以包含适合的启动子、增强子、转录和翻译终止子、起始序列、蛋白质编码基因前方的起始密码子(即ATG)、用于内含子的剪接信号、用于维持基因的正确阅读框以允许mRNA的正确翻译的序列以及终止密码子。载体可以编码可选择标志物,例如编码药物抗性(例如氨苄青霉素或四环素抗性)的标志物。
为了获得被克隆基因的高水平表达,希望构建至少含有指导转录的强启动子、用于翻译起始的核糖体结合位点(内部核糖体结合序列)和转录/翻译终止子的表达盒。对于大肠杆菌来说,这包括启动子例如T7、trp、lac或λ启动子,核糖体结合位点以及优选地转录终止信号。对于真核细胞来说,控制序列可以包括源自于例如免疫球蛋白基因、HTLV、SV40或巨细胞病毒的启动子和/或增强子以及多腺苷化序列,并且还可以包含剪接供体和/或受体序列(例如CMV和/或HTLV剪接受体和供体序列)。表达盒可以通过公知的方法转移到所选的宿主细胞内,所述方法例如用于大肠杆菌的转化或电穿孔以及用于哺乳动物细胞的磷酸钙处理、电穿孔或脂转染。被表达盒转化的细胞可以通过由表达盒中包含的基因例如amp、gpt、neo和hyg基因所赋予的抗生素抗性进行选择。
当宿主是真核细胞时,可以使用的DNA转染方法为磷酸钙共沉淀、常规的机械程序例如微注射、电穿孔、插入被包装在脂质体中的质粒或病毒载体。也可以用编码抗体、标记的抗体或其抗体结合片段的多核苷酸序列以及编码可选择表型的第二种外来DNA分子例如单纯性疱疹病毒胸苷激酶基因来共转化真核细胞。另一种方法是使用真核病毒载体例如猿猴病毒40(SV40)或牛乳头瘤病毒来瞬时感染或转化真核细胞并表达蛋白(参见例如《真核病毒载体》(Eukaryotic Viral Vectors),Cold Spring Harbor Laboratory,Gluzman主编,1982)。本领域技术人员可以容易地使用表达系统例如质粒和载体,用于在细胞中生产蛋白,所述细胞包括高等真核细胞例如COS、CHO、HeLa和骨髓瘤细胞系。
可以对编码本文中描述的多肽的核酸进行修饰,而不降低其生物活性。可以做出一些修饰以便于克隆、表达或将靶向分子掺入到融合蛋白中。这样的修饰对于本领域技术人员来说是公知的,并且包括例如终止密码子、在氨基端添加甲硫氨酸以提供起始位点、在任一端放置其他氨基酸以产生位置方便的限制性位点、或协助纯化步骤的其他氨基酸(例如聚His)。除了重组方法之外,本发明的免疫偶联物、效应子部分和抗体也可以使用本领域中公知的标准肽合成来完全或部分地构建。
在表达后,重组免疫偶联物、抗体和/或效应子分子可以按照本领域的标准程序进行纯化,所述程序包括硫酸铵沉淀、亲和柱、柱层析等(总的来说参见R.Scopes,《蛋白质纯化》(PROTEIN PURIFICATION),Springer-Verlag,N.Y.,1982)。抗体、免疫偶联物和效应子分子不必是100%纯的。一旦根据需要部分纯化或纯化至均质后,如果在治疗上使用,多肽应该基本上不含内毒素。
用于从细菌例如大肠杆菌表达抗体和/或重折叠成适合的活性形式、包括单链抗体的方法已被描述并且是公知的,而且适用于本文中公开的抗体。参见Buchner等,Anal.Biochem.205:263-270,1992;Pluckthun,Biotechnology 9:545,1991;Huse等,Science 246:1275,1989和Ward等,Nature 341:544,1989。
通常,将来自于大肠杆菌或其他细菌的功能不均一的蛋白从包含体分离,并需要使用强变性剂溶解,随后重新折叠。在溶解步骤期间,正如本领域中公知的,必须存在还原剂以分开二硫键。含有还原剂的示例性缓冲液是:0.1M Tris pH 8,6M胍,2mM EDTA,0.3MDTE(二硫苏糖醇)。二硫键的再氧化可以在还原和氧化形式的低分子量巯基试剂的存在下发生,正如在Saxena等,Biochemistry 9:5015-5021,1970中所描述的,特别是由Buchner等,同上所描述的。
复性通常通过将变性和还原的蛋白质在重折叠缓冲液中稀释(例如100倍)来实现。示例性的缓冲液是0.1M Tris,pH 8.0,0.5M L-精氨酸,8mM氧化型谷胱甘肽(GSSG)和2mM EDTA。
作为对双链抗体纯化流程的修改,将重链和轻链区独立地溶解和还原,然后组合在重折叠溶液中。当这两种蛋白以使一种蛋白超过另一种蛋白的摩尔过量倍数不超过5倍的摩尔比混合时,获得了示例性的得率。在氧化还原穿梭完成之后,可以向重折叠溶液加入过量的氧化型谷胱甘肽或其他氧化性低分子量化合物。
除了重组方法之外,本文中公开的抗体、标记的抗体及其抗体结合片段还可以使用标准的肽合成来全部或部分地构建。长度小于约50个氨基酸的多肽的固相合成可以通过将序列的C-端氨基酸附连于不溶性支持物,然后顺序添加序列中的其余氨基酸来实现。用于固相合成的技术被描述在下列文献中:Barany&Merrifield,《肽:分析,合成,生物学》第2卷:肽合成中的特殊方法,部分A(The Peptides:Analysis,Synthesis,Biology.Vol.2:Special Methods in Peptide Synthesis,Part A.),pp.3-284;Merrifield等,J.Am.Chem.Soc.85:2149-2156,1963;以及Stewart等,《固相肽合成》(Solid PhasePeptide Synthesis),第二版,Pierce Chem.Co.,Rockford,Ill.,1984。长度更长的蛋白可以通过将较短片段的氨基和羧基端进行缩合来合成。通过羧基端末端的活化(例如利用偶联剂N,N'-二环己基碳二酰亚胺)形成肽键的方法在本领域中是公知的。
C.组合物和治疗方法
本文中公开了用于预防或治疗HIV感染例如HIV-1感染的方法。预防可以包括抑制HIV-1的感染。所述方法包括将细胞与有效量的本文中公开的特异性结合gp41的人类单克隆抗体或其抗体结合片段或编码这样的抗体或其抗体结合片段的核酸相接触。所述方法还可以包括向对象施用治疗有效量的所述人类单克隆抗体或其抗体结合片段或编码这样的抗体或其抗体结合片段的核酸,例如所述抗体结合片段可以是嫁接在蛋白质支架上的一个或多个CDR。在某些实施例中,抗体或其抗体结合片段或编码这样的抗体或其抗体结合片段的核酸可以在暴露后预防中使用。在某些实施例中,抗体或其抗体结合片段或编码这样的抗体或其抗体结合片段的核酸可用于消除病毒贮库。例如,可以将治疗有效量的抗体或其抗体结合片段或编码这样的抗体或其抗体结合片段的核酸施用于用抗病毒疗法治疗的对象。在某些实施例中,对抗体或其抗体结合片段进行修饰以使它对被感染的细胞具有直接细胞毒性,或利用天然防御例如补体、抗体依赖性细胞性细胞毒性(ADCC)或巨噬细胞的吞噬作用。
测定中和活性的方法包括但不限于在Martin等,(2003)Nature Biotechnology21:71-76中描述的单循环感染测定法。在这种测定法中,通过其活性反映出样品中的活病毒的量的可选择标志物测量病毒的活性水平,并确定IC50。在其他测定法中,可以在PM1细胞系或原代细胞(正常PBMC)中监测急性感染。在这种测定法中,可以通过使用ELISA测定p24浓度来监测病毒的活性水平。参见例如Martin等,(2003)NatureBiotechnology 21:71-76。
对于有效的组合物来说,HIV感染不必被完全消除。例如,与不存在组合物情况下的HIV感染相比,组合物可以将HIV感染降低所需量,例如至少10%、至少20%、至少50%、至少60%、至少70%、至少80%、至少90%、至少95%、至少98%或甚至至少100%(消除可检测到的HIV感染细胞)。在实施例中,还将细胞与有效量的其他药剂例如抗病毒药剂相接触。细胞可以是体内或体外的。方法可以包括施用本领域中已知的一种或多种其他药剂。在其他实施例中,通过类似的方法可以减少或抑制HIV复制。对于有效的组合物来说,HIV复制不必被完全消除。例如,与不存在组合物情况下的HIV复制相比,组合物可以将HIV复制降低所需量,例如至少10%、至少20%、至少50%、至少60%、至少70%、至少80%、至少90%、至少95%、至少98%或甚至至少100%(消除可检测到的HIV)。在一个实施例中,还将细胞与有效量的其他药剂例如抗病毒药剂相接触。细胞可以是体内或体外的。
提供了在载体中包含本文中所公开的一种或多种特异性结合gp41的抗体或其抗体结合片段或编码这样的抗体或其抗体结合片段的核酸的组合物。可以将组合物制备成单位剂型用于施用于对象。施用的量和时间安排由治疗医师决定,以实现所需目的。可以将抗体配制成用于全身或局部施用。在一个实施例中,特异性结合gp41的抗体或其抗体结合片段或编码这样的抗体或其抗体结合片段的核酸被配制成用于肠胃外施用例如静脉内施用。
用于施用的组合物可以包括溶解在药学可接受的载体例如水性载体中的特异性结合gp41的抗体或其抗体结合片段或编码这样的抗体或其抗体结合片段的核酸的溶液。可以使用各种水性载体例如缓冲盐水等。这些溶液是无菌的,并且一般不含不想要的物质。这些组合物可以通过常规的公知的灭菌技术来灭菌。根据需要,组合物可以含有药学可接受的辅助物质以接近生理条件,例如pH调节剂和缓冲剂、毒性调节剂等,例如乙酸钠、氯化钠、氯化钾、氯化钙、乳酸钠等。在这些制剂中的抗体浓度可以广泛变化,并且按照所选择的具体施用方式和对象的需要,主要根据流体体积、粘度、体重等来选择。
用于静脉内施用的典型的药物组合物包括每天每位对象约0.1至10mg抗体。可以使用每天每位对象0.1mg至约100mg的剂量,特别是如果药剂被施用到计划位点并且不进入循环或淋巴系统,例如进入体腔或进入器官的内腔的话。用于制备可施用组合物的真正方法对于本领域技术人员来说是已知的或明显的,并且被更详细地描述在诸如《雷明顿制药学》(Remington's Pharmaceutical Science),第19版,Mack Publishing Company,Easton,PA(1995)的出版物中。
抗体或其抗体结合片段或编码这样的抗体或其抗体结合片段的核酸可以以冷冻干燥形式提供并在施用之前用无菌水重新水合,尽管它们也可以被提供为已知浓度的无菌溶液。然后将抗体或其抗体结合片段或编码这样的抗体或其抗体结合片段的核酸的溶液加入到含有0.9%氯化钠USP的输注袋中,并通常以0.5至15mg/kg体重的剂量施用。自从在1997年被批准以来,在本领域中可以获得相当多的关于在美国销售的抗体药物的施用的经验。抗体或其抗体结合片段或编码这样的抗体或其抗体结合片段的核酸可以通过缓慢输注而不是静脉内快速输注或推注来施用。在一个实施例中,施用较高的负荷剂量,随后以较低水平施用维持剂量。例如,可以在约90分钟的时间段内输注4mg/kg的初始负荷剂量,如果先前的剂量被良好耐受的话,随后进行4-8周的在30分钟时间段内输注2mg/kg的每周维持剂量。
人类gp41特异性抗体或其抗体结合片段或编码这样的抗体或其抗体结合片段的核酸的治疗有效量取决于疾病和/或感染的严重性以及患者的总体健康状况。抗体的治疗有效量是提供症状的主观缓解或者由临床医生或其他有资格的观察人员注意到的客观可辨识的改善的量。这些组合物可以同时或顺序地与另一种治疗剂联合施用。
在一种实施方式中,所述抗体或其抗体结合片段或编码这样的抗体或其抗体结合片段的核酸的施用导致对象中HIV感染的建立减少和/或随后的HIV疾病进展减轻。HIV感染的建立减少和/或随后的HIV疾病进展减轻包含HIV活性的任何统计学显著的减少。在某些实施方式中,公开了用于治疗患有HIV-1感染的对象的方法。这些方法包括向对象施用治疗有效量的抗体或编码所述抗体的核酸,由此预防或治疗HIV-1感染。
研究显示,当将齐多夫定在妊娠和分娩期间施用于感染HIV的女性并在出生后施用于子女时,HIV从母亲传播到婴儿的比率被显著降低(Connor等,1994Pediatr InfectDis J 14:536-541)。数项HIV的母婴传播研究证实了分娩时的母体病毒载量与HIV向儿童的传播风险之间的关联性。本公开提供了可用于减少HIV从母亲向婴儿传播的分离的人类单克隆抗体。因此,在某些实施例中,施用治疗有效量的人类gp41特异性抗体或其抗体结合片段或编码这样的抗体或其抗体结合片段的核酸,以便防止HIV从母亲向婴儿的传播或降低HIV从母亲向婴儿传播的风险。在某些实施例中,在分娩时向母亲和/或婴儿施用治疗有效量的抗体或其抗体结合片段或编码这样的抗体或其抗体结合片段的核酸。在其他实施例中,在哺乳之前向母亲和/或婴儿施用治疗有效量的抗体,以便防止病毒向婴儿的传播或降低病毒向婴儿传播的风险。在某些实施方式中,向母亲和/或婴儿施用治疗有效量的抗体和治疗有效量的另一种药剂例如齐多夫定两者。
对于任何应用来说,抗体或其抗体结合片段或编码这样的抗体或其抗体结合片段的核酸可以与抗反转录病毒疗法组合。抗反转录病毒药物在广义上通过所述药物抑制的反转录病毒生活周期的阶段进行分类。本公开的抗体可以与下列药物联合施用:核苷类似物反转录酶抑制剂(例如齐多夫定、去羟肌苷、扎西他宾、司他夫定、拉米夫定、阿巴卡韦、恩曲他滨、恩替卡韦和apricitabine),核苷酸反转录酶抑制剂(例如替诺福韦和阿德福韦),非核苷反转录酶抑制剂(例如依法韦仑、奈韦拉平、地拉韦啶、依曲韦林和利匹韦林),蛋白酶抑制剂(例如沙奎那韦、利托那韦、茚地那韦、奈非那韦、安泼那韦、洛匹那韦、福沙那韦、阿扎那韦、替拉那韦和达芦那韦),进入或融合抑制剂(例如马拉维若和恩夫韦地),成熟抑制剂(例如bevirimat和vivecon)或广谱抑制剂例如天然抗病毒剂。在某些实施例中,所公开的抗体或其活性片段或编码它们的核酸与IL-15联合施用或偶联于IL-15施用。
在某些实施例中,对象被进一步施用一种或多种结合HIV糖蛋白例如gp120和gp41的其他抗体。可以与本公开的抗体联合施用的中和性抗体的实例可以在2011年3月31日公布的国际专利公布号WO2011/038290中找到,所述专利的全部内容特别地通过参考并入本文。
包含本文公开的抗体的组合物的单次或多次施用根据患者所需和耐受的剂量和频率来进行。在任何情况下,组合物应该提供足够量的至少一种本文公开的抗体,以有效地治疗患者。剂量可以被施用一次,但是可以周期性地使用直至实现治疗效果或直至副作用要求中断治疗。在一个实施例中,每隔一日,在30分钟内输注一剂抗体。在这一实施例中,可以施用约1至约10剂,例如可以每隔一日施用共3或6剂。在其他实施例中,进行约5至约10日的连续输注。对象可以以规则的间隔例如每月进行治疗,直至获得所需治疗结果。一般来说,剂量足以治疗或改善疾病的症状和征兆,并且不对患者产生不可接受的毒性。
受控释放的肠胃外制剂可以被制造成植入物、油性注射液或作为颗粒系统。对于蛋白质递送系统的广泛概述,参见Banga,A.J.,《治疗性肽和蛋白质:配制、加工和递送系统》(Therapeutic Peptides and Proteins:Formulation,Processing,and DeliverySystems),Technomic Publishing Company,Inc.,Lancaster,PA,(1995)。颗粒系统包括微球、微粒、微囊、纳米囊、纳米球和纳米粒子。微囊含有治疗性蛋白例如细胞毒素或药物作为中央核心。在微球中,治疗药剂分散在整个粒子中。小于约1μm的粒子、微球和微囊一般分别被称为纳米粒子、纳米球和纳米囊。毛细管具有约5μm的直径,使得只有纳米粒子可以被静脉内施用。纳米粒子的直径通常为100μm左右,并且通过皮下或肌内施用。参见例如Kreuter,J.,《胶体药物递送系统》(Colloidal Drug Delivery Systems),J.Kreuter主编,Marcel Dekker,Inc.,New York,NY,pp.219-342(1994);和Tice&Tabibi,《受控药物递送专题论文》(Treatise on Controlled Drug Delivery),A.Kydonieus主编,Marcel Dekker,Inc.New York,NY,pp.315-339,(1992)。
聚合物可用于本文公开的抗体组合物的离子控制的释放。各种用于受控药物递送的可降解和不可降解的聚合物基质是本领域已知的(Langer,Accounts Chem.Res.26:537-542,1993)。例如,嵌段共聚物泊洛沙姆407,在低温下作为粘稠但仍可流动的液体存在,但在体温下形成半固体凝胶。已显示,它是用于重组白介素-2和脲酶的配制和持续递送的有效介质(Johnston等,Pharm.Res.9:425-434,1992;和Pec等,J.Parent.Sci.Tech.44(2):58-65,1990)。可替选地,已将羟基磷灰石用作蛋白质受控释放的微型载体(Ijntema等,Int.J.Pharm.112:215-224,1994)。在另一种情况下,将脂质体用于脂质包封的药物的受控释放以及药物靶向(Βetageri等,《脂质体药物递送系统》(Liposome Drug DeliverySystems),Technomic Publishing Co.,Inc.,Lancaster,PA(1993))。用于治疗性蛋白的受控释放的大量其他系统是已知的(参见美国专利号5,055,303,美国专利号5,188,837,美国专利号4,235,871,美国专利号4,501,728,美国专利号4,837,028,美国专利号4,957,735,美国专利号5,019,369,美国专利号5,055,303,美国专利号5,514,670,美国专利号5,413,797,美国专利号5,268,164,美国专利号5,004,697,美国专利号4,902,505,美国专利号5,506,206,美国专利号5,271,961,美国专利号5,254,342和美国专利号5,534,496)。
在某些实施例中,对象被施用编码抗体或其抗体结合片段的DNA,例如抗体结合片段可以是嫁接到蛋白质支架上的一个或多个CDR,以例如使用对象的细胞机制来提供体内抗体生产。用核酸构建物进行免疫在本领域中是公知的,并在例如美国专利号5,643,578、美国专利号5,593,972和美国专利号5,817,637中有教导。美国专利号5,880,103描述了将编码核酸递送到生物体的数种方法。所述方法包括核酸的脂质体递送。本领域普通技术人员可以将这样的方法应用于抗体或其抗体结合片段的生产。
一种核酸施用方法是使用质粒DNA例如使用哺乳动物表达质粒的直接施用。可以将编码本公开的抗体或其抗体结合片段的核苷酸序列置于启动子的控制之下以提高表达。
在使用核酸的另一种方法中,也可以通过减毒的病毒宿主或载体或细菌载体来表达本公开的抗体或其抗体结合片段。可以使用重组痘苗病毒、腺相关病毒(AAV)、疱疹病毒、反转录病毒、巨细胞病毒或其他病毒载体来表达抗体。例如,痘苗病毒载体和方法以及有用的方案被描述在美国专利号4,722,848中。BCG(卡介苗(Bacillus Calmette Guerin))提供了用于表达本公开的抗体的另一种载体(参见Stover,Nature351:456-460,1991)。
在一种实施方式中,将编码本公开的抗体或其抗体结合片段的核酸直接导入到细胞中。例如,可以通过标准方法将核酸装载到金微球上,并通过诸如Bio-Rad的HELIOSTM基因枪的装置导入到皮肤中。核酸可以是“裸露的”,由在强启动子的控制之下的质粒构成。
通常将DNA注射到肌肉内,尽管它也可以被直接注射到其他位点中。用于注射的剂量通常为约0.5μg/kg至约50mg/kg,通常为约0.005mg/kg至约5mg/kg(参见例如美国专利号5,589,466)。
D.诊断方法和试剂盒
本文提供了用于在体外或体内检测gp41的表达的方法。在一个实施例中,检测生物样品中gp41的表达,并且当样品中存在HIV-1时可以将gp41的表达用于检测HIV-1感染。样品可以是任何样品,包括但不限于来自于活检、尸检和病理样本的组织。生物样品还包括组织切片,例如为组织学目的而获取的冷冻切片。生物样品还包括体液,例如血液、血清、血浆、痰液、脑脊液或尿液。
在数种实施方式中,提供了用于在对象中检测AIDS和/或HIV-1感染的方法。本公开提供了用于在生物样品中检测HIV-1的方法,其中所述方法包括将生物样品与抗体在有助于免疫复合物形成的条件下相接触并检测所述免疫复合物,以检测生物样品中的gp41。在一个实施例中,样品中gp41的检测表明对象具有HIV感染。在另一个实施例中,样品中gp41的检测表明对象患有AIDS。在另一个实施例中,样品中gp41的检测证实了对象中AIDS和/或HIV-1感染的诊断。
在某些实施方式中,本公开的抗体被用于测试疫苗。例如,测试疫苗组合物是否采取与gp41肽相同的构象。因此,本文提供了用于测试疫苗的方法,其中所述方法包括将含有疫苗例如gp41免疫原的样品与抗体在有助于免疫复合物形成的条件下相接触并检测所述免疫复合物,以检测样品中的疫苗。在一个实施例中,样品中免疫复合物的检测表明疫苗组分例如gp41免疫原采取能够结合抗体的构象。
在一种实施方式中,将抗体用可检测标记物直接标记。在另一种实施方式中,结合gp41的抗体(第一抗体)是未标记的,并且使用能够与结合gp41的抗体结合的第二抗体或其他分子。正如本领域技术人员公知的,选择能够特异性结合特定物种和类别的第一抗体的第二抗体。例如,如果第一抗体是人类IgG,那么第二抗体可以是抗人类IgG抗体。能够结合于抗体的其他分子包括但不限于蛋白A和蛋白G,二者是可商购的。
适用于抗体或第二抗体的标记物如上文所描述,并包括各种酶、辅基、荧光材料、发光材料、磁性试剂和放射活性材料。适合的酶的非限制性实例包括辣根过氧化物酶、碱性磷酸酶、β-半乳糖苷酶或乙酰胆碱酯酶。适合的辅基复合物的非限制性实例包括链霉亲和素/生物素和亲和素/生物素。适合的荧光材料的非限制性实例包括伞形酮、荧光素、荧光素异硫氰酸酯、罗丹明、二氯三嗪基胺荧光素、丹磺酰氯或藻红蛋白。非限制的示例性发光材料是鲁米诺;非限制的示例性磁性试剂是钆,非限制的示例性放射活性标记物包括125I、131I、35S或3H。
本文公开的免疫测定和方法可用于大量目的。用于检测多肽的试剂盒通常包括结合gp41的抗体,例如本文中公开的任何抗体。在某些实施方式中,试剂盒中包括抗体片段,例如Fv片段或Fab。在其他实施方式中,抗体被标记(例如使用荧光、放射活性或酶标记物)。
在一种实施方式中,试剂盒包括公开了使用方式的说明材料。说明材料可以是书面的、采取电子形式(例如计算机磁盘或光盘),或者可以是可视的(例如视频文件)。试剂盒还可以包括其他组分,以便于为试剂盒所设计的特定应用。因此,例如,试剂盒还可以含有检测标记物的手段(例如用于酶标记物的酶底物,用于检测荧光标记物的滤光片组,适合的第二标记物例如第二抗体等)。试剂盒还可以包括缓冲液和常规用于特定方法的实践的其他试剂。这样的试剂盒和适合的内含物对于本领域技术人员来说是公知的。
在一种实施方式中,诊断试剂盒包括免疫测定体系。尽管免疫测定体系的详细情况可能随着所使用的具体形式而变,但检测生物样品中gp41的方法一般包括将生物样品与在免疫反应性条件下与gp41特异性反应的抗体相接触。允许抗体在免疫反应性条件下特异性结合以形成免疫复合物,并直接或间接检测免疫复合物(结合的抗体)的存在。
E.鉴定目标抗体的方法
提供了用于产生特异性结合于靶抗原的单克隆抗体的方法。这些方法包括从已经暴露于靶抗原的对象分离记忆性B细胞群体,其中所述记忆性B细胞是CD19+IgA-IgD-IgM-B细胞。将分离的记忆性B细胞群体与有效量的IL-21、IL-2和CD40配体(CD40L)相接触,并从分离的记忆性B细胞群体分离mRNA。从细胞分离编码抗体的可变重链和可变轻链的核酸,并表达所述可变重链和可变轻链。然后从可变重链和可变轻链的组合选择包括特异性结合于靶抗原的可变重链和可变轻链的单克隆抗体。
在某些实施方式中,从来自于以前暴露于目标抗原的对象的生物样品分离记忆性B细胞群体。将记忆性B细胞群体分成亚群,将所述亚群与有效量的CD40L、IL-2和IL-21接触足以使记忆性B细胞经历细胞分裂并产生抗体的时间量。为记忆性B细胞的亚群确定特异性结合于目标抗原的抗体的存在或不存在。如果确定记忆性B细胞亚群产生特异性结合于目标抗原的抗体,则选择该亚群。可以确定由所选亚群的记忆性B细胞产生的抗体的重链和轻链可变结构域的编码核酸序列,并生产含有由所选亚群的记忆性B细胞产生的抗体的重链和轻链可变区的单克隆抗体。测定单克隆抗体对目标抗原的特异性结合,并选择特异性结合于目标抗原的抗体,由此鉴定特异性结合于目标抗原的抗体。
还提供了从对象分离特异性针对靶抗原的B细胞的全部组成成分的方法。这些方法包括从已经暴露于靶抗原的对象分离记忆性B细胞群体,其中所述记忆性B细胞是CD19+IgA-IgD-IgM-B细胞。将分离的记忆性B细胞群体与有效量的IL-21、IL-2和CD40相接触,并从所述群体选择表达特异性结合靶抗原的抗体的B细胞。这些方法还可以包括分离核酸文库,所述文库编码从核酸分离的免疫球蛋白的可变重链和可变轻链。然后表达可变重链和可变轻链的文库,以从对象分离特异性针对靶抗原的B细胞的全部组成成分。
针对实体例如病原体或疫苗的体液全部组成成分、包括但不限于全体液全部组成成分,可以提供多维信息(例如特异性、亲和性、稳定性、基因区段序列偏好性等),其可以被认为是对象的体液应答的“分布情况”。这些参数的定量(Story等,2008PNAS 105(46):17902-17907)可用于与针对病原体的保护或缺乏保护相关联。然后可以将这一信息以迭代方式告知疫苗设计,为特定抗原的多参数诊断测定法提供基础,或者直接用于鉴定针对给定病原体的单个或多个中和性抗体。
在某些实施方式中,可以对抗体进行表征。例如,可以收集描述所述特征例如特异性、亲和性、稳定性、同种型、基因区段序列偏好性等的多参数数据集(Story等,2008PNAS105(46):17902-17907)。在某些代表性的非限制性实施方式中,可以使用分布情况或多参数数据集以迭代方式告知疫苗设计,为特定抗原的多参数诊断测定法提供基础,或者直接用于鉴定针对给定病原体的单个或多个中和性抗体。
因此,本文公开的方法可用于分离特异性结合靶抗原的一种或多种单克隆抗体,和/或可用于在样品或对象中分离结合靶抗原的B细胞全部组成成分。靶抗原可以来自于病原体,包括病毒、寄生虫、真菌和细菌。在某些实施方式中,病原体是病毒,例如但不限于来自于下列病毒科之一的病毒:反转录病毒科(Retroviridae)(例如人免疫缺陷病毒(HIV)、人类T细胞白血病病毒(HTLV));小核糖核酸病毒科(Picornaviridae)(例如脊髓灰质炎病毒、甲肝病毒、丙肝病毒、肠病毒、人类柯萨奇病毒、鼻病毒、艾柯病毒、手足口病病毒);杯状病毒科(Calciviridae)(例如引起肠胃炎的病毒株);披膜病毒科(Togaviridae)(例如马脑炎病毒、风疹病毒);黄病毒科(Flaviridae)(例如登革病毒、黄热病病毒、西尼罗病毒、圣路易斯脑炎病毒、日本脑炎病毒和其他脑炎病毒);冠状病毒科(Coronaviridae)(例如冠状病毒、严重急性呼吸综合征(SARS)病毒);弹状病毒科(Rhabdoviridae)(例如水泡性口炎病毒、狂犬病病毒);纤丝病毒科(Filoviridae)(例如埃博拉病毒);副粘病毒科(Paramyxoviridae)(例如副流感病毒、腮腺炎病毒、麻疹病毒、呼吸道合胞病毒(RSV));正粘病毒科(Orthomyxoviridae)(例如流感病毒);布尼亚病毒科(Bunyaviridae)(例如汉坦病毒、辛诺柏病毒、裂谷热病毒、布尼亚病毒、白蛉病毒和内罗病毒);砂粒病毒科(Arenaviridae)(出血热病毒、马秋波病毒、胡宁病毒);呼肠孤病毒科(Reoviridae)(例如呼肠孤病毒、环状病毒和轮状病毒);双核糖核酸病毒科(Birnaviridae);嗜肝病毒科(Hepadnaviridae)(乙肝病毒);细小病毒科(Parvoviridae)(细小病毒);乳多空病毒科(Papovaviridae)(乳头瘤病毒、多瘤病毒、BK病毒);腺病毒科(Adenoviridae)(大多数腺病毒);疱疹病毒科(Herpesviridae)(单纯性疱疹病毒(HSV)-1和HSV-2、巨细胞病毒(CMV)、Epstein-Barr病毒(EBV)、水痘带状疱疹病毒(VZV)和其他疱疹病毒,包括HSV-6);痘病毒科(Poxviridae)(天花病毒、痘苗病毒、痘病毒);和虹彩病毒科(Iridoviridae)(例如非洲猪瘟热病毒);纤丝病毒科(Filoviridae)(例如埃博拉病毒、马尔堡病毒);嵌杯病毒科(Caliciviridae)(例如诺瓦克病毒)和未分类的病毒(例如海绵状脑病的病原、丁型肝炎的因子(据认为是乙肝病毒的缺陷的卫星)和星状病毒)。
在其他实施方式中,靶抗原是来自于细菌的抗原,例如但不限于幽门螺旋杆菌(Helicobacter pyloris)、伯氏疏螺旋体(Borelia burgdorferi)、嗜肺性军团菌(Legionella pneumophilia)、分枝杆菌属菌种(Mycobacteria sps)(例如结核分枝杆菌(M.tuberculosis)、鸟分枝杆菌(M.avium)、胞内分枝杆菌(M.intracellulare)、堪萨斯分枝杆菌(M.kansaii)、戈登分枝杆菌(M.gordonae))、金黄色葡萄球菌(Staphylococcusaureus)、淋病奈瑟氏菌(Neisseria gonorrhoeae)、脑膜炎奈瑟氏菌(Neisseriameningitidis)、单核细胞增多性李斯特氏菌(Listeria monocytogenes)、酿脓链球菌(Streptococcus pyogenes)(A群链球菌)、无乳链球菌(Streptococcus agalactiae)(B群链球菌)、链球菌(Streptococcus)(草绿色(viridans)群)、粪链球菌(Streptococcusfaecalis)、牛链球菌(Streptococcus bovis)、链球菌(Streptococcus)(厌氧性(anaerobic)菌种)、肺炎链球菌(Streptococcus pneumoniae)、病原性弯曲杆菌菌种(pathogenic Campylobacter sp.)、肠球菌菌种(Enterococcus sp.)、流感嗜血杆菌(Haemophilus influenzae)、炭疽芽胞杆菌(Bacillus anthracis)、白喉棒状杆菌(corynebacterium diphtheriae)、棒状杆菌菌种(corynebacterium sp.)、红斑丹毒丝菌(Erysipelothrix rhusiopathiae)、产气夹膜梭状芽胞杆菌(Clostridium perfringers)、破伤风梭状芽胞杆菌(Clostridium tetani)、产气肠杆菌(Enterobacter aerogenes)、肺炎克雷伯氏菌(Klebsiella pneumoniae)、多杀巴氏杆菌(Pasturella multocida)、拟杆菌属菌种(Bacteroides sp.)、具核梭杆菌(Fusobacterium nucleatum)、念珠状链杆菌(Streptobacillus moniliformis)、梅毒密螺旋体(Treponema pallidium)、细弱密螺旋体(Treponema pertenue)、钩端螺旋体(Leptospira)或以色列放线菌(Actinomycesisraelli)。
在其他实施方式中,抗原来自于真菌,例如新型隐球菌(Cryptococcusneoformans)、荚膜组织胞浆菌(Histoplasma capsulatum)、粗球孢子菌(Coccidioidesimmitis)、皮炎芽生菌(Blastomyces dermatitidis)、沙眼衣原体(Chlamydiatrachomatis)或白假丝酵母(Candida albicans)。在其他实施方式中,抗原来自于寄生虫,例如但不限于恶性疟原虫(Plasmodium falciparum)或刚地弓形虫(Toxoplasma gondii)。
在某些实施方式中,抗原是癌抗原。癌症可以是实体肿瘤或血液癌。在特定实施例中,实体肿瘤是肉瘤或癌例如纤维肉瘤、黏液肉瘤、脂肪肉瘤、软骨肉瘤、成骨性肉瘤或另一种肉瘤、滑膜瘤、间皮瘤、尤文氏瘤、平滑肌肉瘤、横纹肌肉瘤、结肠癌、恶性淋巴瘤、胰腺癌、乳腺癌、肺癌、卵巢癌、前列腺癌、肝细胞癌、鳞状细胞癌、基底细胞癌、腺癌、汗腺癌、皮脂腺癌、乳头状癌、乳头状腺癌、髓样癌、支气管癌、肾细胞癌、肝癌、胆管癌、绒毛膜癌、肾母细胞瘤、宫颈癌、睾丸癌、膀胱癌或CNS肿瘤(例如神经胶质瘤、星形细胞瘤、髓母细胞瘤、颅咽管瘤、室管膜瘤、松果体瘤、血管母细胞瘤,听神经瘤、少突胶质细胞瘤、menangioma、黑素瘤、神经母细胞瘤或视网膜母细胞瘤)。
在某些实施例中,血液癌是白血病,例如急性白血病(例如急性淋巴细胞性白血病、急性髓细胞性白血病、急性髓性白血病以及成髓细胞性、早幼粒细胞性、髓单核细胞性、单核细胞性和红细胞性白血病)、慢性白血病(例如慢性髓细胞性(粒细胞性)白血病、慢性髓性白血病和慢性淋巴细胞性白血病)、真性红细胞增多症、淋巴瘤、霍奇金病、非霍奇金淋巴瘤(无痛和高级形式)、多发性骨髓瘤、Waldenstrom巨球蛋白血症、重链病、骨髓增生异常综合征、毛细胞白血病或脊髓发育不良。
肿瘤抗原在本领域中是公知的,并包括例如癌胚抗原(CEA)、人类绒毛膜促性腺激素(HCG)、α-甲胎蛋白(AFP)、凝集素反应性AFP(AFP-L3)、甲状腺球蛋白、RAGE-1、MN-CA IX、人类端粒酶反转录酶(hTERT)、RU1、RU2(AS)、肠羧基酯酶、mut hsp70-2、M-CSF、前列腺酶、前列腺特异性抗原(PSA)、PAP、NY-ESO-1、LAGE-1a、p53、prostein、PSMA、Her2/neu、存活素和端粒酶、前列腺癌肿瘤抗原-1(PCTA-1)、黑素瘤相关抗原(MAGE)、ELF2M、中性粒细胞弹性蛋白酶、ephrinB2和CD22。CH2或CH3结构域分子也可以结合任何癌相关蛋白例如IGF-I、IGF-II、IGR-IR或间皮素。其他肿瘤相关抗原被提供在下面的表中:
示例性肿瘤及其肿瘤抗原
在某些实施方式中,抗原是自体抗原。抗原可以是与自体免疫疾病相关的抗原,所述自体免疫疾病例如类风湿性关节炎、青少年少关节炎、胶原蛋白诱导的关节炎、佐剂诱导的关节炎、综合征、多发性硬化症、实验性自体免疫脑脊髓炎、炎性肠病(例如克罗恩病、溃疡性结肠炎)、自体免疫性胃萎缩、寻常型天疱疮、银屑病、白癜风、1型糖尿病、非肥胖性糖尿病、重症肌无力、Grave病、桥本氏甲状腺炎、硬化性胆管炎、硬化性涎腺炎、系统性红斑狼疮、自体免疫性血小板减少性紫癜、古德帕斯丘综合征、阿狄森氏病、系统性硬化症、多肌炎、皮肌炎、自体免疫性溶血性贫血或恶性贫血。
分离B细胞
在数种实施方式中,从对象获得包含记忆性B细胞的细胞群体。通常,分离基本上纯的记忆性B细胞群体(例如CD19+IgA-、IgD-、IgM-B细胞)。通常,分离的细胞群体富含记忆性B细胞。
包含记忆性B细胞的细胞群体可以分离自从目标对象获得的生物样品。与本发明的方法一起使用的示例性生物样品包括骨髓、脾脏、淋巴结、血液例如外周血。然而,生物样品也可以包括可以从中分离记忆性B细胞的任何其他来源,包括:组织活检样品,手术样本,细针吸出物,尸检材料等。在数种实施方式中,生物样品从已暴露于目标抗原的对象获得。对象可以是任何动物,优选为哺乳动物或人类。对象可能患有疾病或病症,包括肿瘤、传染病或自体免疫疾病,或者已被免疫接种。在某些情况下,对象可能从疾病或病症例如肿瘤、传染病或自体免疫疾病恢复或存活。在其他情况下,对象可能正接受或已接受疾病或病症的预防和治疗例如癌症疗法或传染病疗法或疫苗接种。例如,对象已暴露于抗原,所述抗原是感染因子、肿瘤抗原、肿瘤细胞、过敏原或自体抗原。这样的感染因子可以是任何病原性病毒、病原性细菌、真菌、原生动物、多细胞寄生虫和异常蛋白例如朊病毒,以及源自于它们的核酸或抗原。过敏原可以是能够在个体中刺激I型超敏反应的任何非寄生性抗原,例如许多常见的环境抗原。
通过将细胞与适当标记的抗体相接触并根据标记的抗体与细胞的结合来分选细胞,可以使用荧光激活细胞分选(FACS)来分选(分离)细胞,例如记忆性B细胞群体。在一种实施方式中,可以使用数种抗体(例如结合CD19、IgA、IgD和/或IgM的抗体)和FACS分选来产生基本上纯化的记忆性B细胞群体。这些方法在本领域中是已知的,示例性流程被描述在本文中。
FACS利用多个颜色通道、小角度和钝角光散射检测通道、和阻抗通道以及其他更精密复杂的检测水平来分离或分选未标记或用可检测标记物标记的细胞。可以使用任何FACS技术,只要它对所需细胞的存活没有损害即可。(对于示例性的FACS方法来说,参见美国专利号5,061,620)。在一个实施例中,使用FACSARIA细胞分选仪(BectonDickinson,Franklin Lakes,NJ)。可以将抗体偶联于随后可以使用结合于支持物的亲和素或链霉亲和素来去除的生物素或者可以与FACS一起使用的荧光团,以便能够进行细胞分离。
然而,可以使用效能不同的其他技术来纯化和分离所需细胞群体。所使用的分离技术应该使待收集的细胞级分的存活性的保留最大化。当然,所使用的具体技术取决于分离效率、方法的细胞毒性、分离的容易性和速度以及所需的设备和/或技巧。
分离程序包括使用抗体包被的磁珠的磁性分离,亲和层析,联结到单克隆抗体或与补体联合使用的细胞毒性剂,以及利用附连于固体基质的单克隆抗体或另一种方便的技术的“淘选”。附连于磁珠和其他固体基质例如琼脂糖珠、聚苯乙烯珠、中空纤维膜和塑料皮氏培养皿的抗体允许进行直接分离。通过将固体支持物与细胞悬液简单地物理分离开,可以从细胞悬液去除被抗体结合的细胞。细胞与固相连接的抗体的准确的温育条件和持续时间取决于所使用的系统特有的数种因素。然而,适合条件的选择在本领域的技术范围之内。
然后,在提供足够的时间以允许表达目标标志物(例如CD19)的细胞结合于连接到固相的抗体之后,可以收集未结合的细胞(当对于免疫珠子的结合来说使用负选择时)或用生理缓冲液洗掉未结合的细胞(当对于免疫珠子的结合来说使用正选择有利时)。然后使用任何适合的方法从固相分离结合的细胞,所述方法主要取决于所使用的固相和抗体的性质。在使用磁性珠的第一轮选择之后,可以使用第二轮(和更多轮)来进一步分离目标细胞群体。
在某些实施方式中,通过对CD19的细胞表面表达进行正选择,将表达CD19的细胞与其他细胞分离开。在一个具体的非限制性实施例中,通过用偶联于可检测标志物的CD19特异性抗体标记CD19+细胞,然后使用FACS来选择标记有与可检测标志物偶联的抗体的细胞,使用FACS对CD19+细胞进行正选择。偶联于可检测标志物的CD19特异性抗体是已知的,并且可以从例如BD Bioscience,Franklin Lakes,NJ商购。在另一个具体的非限制性实施例中,通过磁性珠分离对CD19+细胞进行正选择,其中将磁性珠用CD19反应性单克隆抗体包被,并且收集被CD19反应性免疫珠子捕获的细胞。然后从磁性珠上取下CD19+细胞。
在其他实施方式中,通过IgA的细胞表面表达的缺乏,将在细胞表面上不表达IgA的细胞与其他细胞分离开。在一个具体的非限制性实施例中,通过用偶联于可检测标志物的IgA特异性抗体标记IgA+细胞,然后使用FACS选择不被偶联于可检测标志物的IgA特异性抗体标记的细胞,使用FACS对IgA-细胞进行负选择。偶联于可检测标志物的IgA特异性抗体是已知的,并且可以从例如Jackson ImmunoResearch Laboratories,Inc.West Grove,PA商购。在另一个具体的非限制性实施例中,通过磁性珠分离对IgA-细胞进行负选择,其中将磁性珠用IgA反应性单克隆抗体包被,并且收集不被免疫珠子捕获的细胞。
在其他实施方式中,通过IgD的细胞表面表达的缺乏,将在细胞表面上不表达IgD的细胞与其他细胞分离开。在一个具体的非限制性实施例中,通过用偶联于可检测标志物的IgD特异性抗体标记IgD+细胞,然后使用FACS选择不被偶联于可检测标志物的IgD特异性抗体标记的细胞,使用FACS对IgD-细胞进行负选择。偶联于可检测标志物的IgD特异性抗体是已知的,并且可以从例如BD Pharmingen,Franklin Lakes,NJ商购。在另一个具体的非限制性实施例中,通过磁性珠分离对IgD-细胞进行负选择,其中将磁性珠用IgD反应性单克隆抗体包被,并且收集不被免疫珠子捕获的细胞。
在其他实施方式中,通过IgM的细胞表面表达的缺乏,将在细胞表面上不表达IgM的细胞与其他细胞分离开。在一个具体的非限制性实施例中,通过用偶联于可检测标志物的IgM特异性抗体标记IgM+细胞,然后使用FACS选择不被偶联于可检测标志物的IgM特异性抗体标记的细胞,使用FACS对IgM-细胞进行负选择。偶联于可检测标志物的IgM特异性抗体是已知的,并且可以从例如Jackson ImmunoResearch Laboratories,Inc.West Grove,PA商购。在另一个具体的非限制性实施例中,通过磁性珠分离对IgM-细胞进行负选择,其中将磁性珠用IgM反应性单克隆抗体包被,并且收集不被免疫珠子捕获的细胞。
在其他实施方式中,通过对CD19的细胞表面表达进行正选择并对IgA、IgD和IgM在细胞表面上的表达进行负选择,将在细胞表面上表达CD19但不表达IgA、IgD或IgM的细胞与其他细胞分离开。使用这样的方法,可以收集CD19+IgA-IgD-IgM-细胞。在一个具体的非限制性实施例中,通过用特异性针对CD19、IgA、IgD和IgM的四种抗体标记细胞,使用FACS来选择CD19+IgA-IgD-IgM-细胞,其中每种所述抗体被偶联于可以使用FACS分析差异检测的可检测标志物。然后使用FACS来分选CD19+IgA-IgD-IgM-细胞。本领域技术人员可以容易地使用FACS并设定适合的门来分离CD19+IgA-IgD-IgM-细胞。
将B细胞与CD40L、IL-2和IL-21相接触
在数种实施方式中,将分离的记忆性B细胞与CD40L、IL-2和IL-21接触足够量的时间,以使记忆性B细胞经历细胞分裂并产生抗体。在某些实施方式中,通过将分离的记忆性B细胞群体与CD40L、IL-2和IL-21温育约10至约15天,来将分离的记忆性B细胞群体与CD40L、IL-2和IL-21相接触。在其他实施方式中,将分离的记忆性B细胞群体与CD40L、IL-2和IL-21温育约13天。在数种实施方式中,将B细胞与CD40L、IL-2和IL-21接触足够量的时间,以使记忆性B细胞经历细胞分裂并产生抗体。在这种情形中,足够量的时间可以为至少5天,例如6、7、8、9、10、11、12、13、14,15、16、17、18、19、20、21或22天,例如5-22、5-21、10-20、10-15、11-16或13-15天。可以将B细胞与CD40L、IL-2和IL-21在生长培养基的存在下相接触,所述生长培养基例如为含有10%胎牛血清的Iscove改良的Dulbecco培养基(IMDM)或用于培养B细胞的其他组织培养生长培养基。本领域普通技术人员熟悉这样的培养基。
CD40L(也称为CD40配体或CD154)是一种主要表达在例如活化的T细胞上的蛋白,但是也以可溶形式存在。CD40L结合于B细胞的细胞表面上的CD40,这种结合事件可以引起B细胞的活化、成熟B细胞分化成浆细胞和记忆细胞以及抗体的产生。本领域普通技术人员熟悉CD40L,并且CD40L是可商购的(参见例如Life Technologies目录号PHP0024)。在某些实施方式中,通过将B细胞与表达CD40L的细胞系例如CD40L饲养细胞系一起培养,将B细胞与CD40L相接触。CD40L饲养细胞系在本领域中是已知的(参见例如Kershaw等,Cancer Res.,61:7920-7924,2001)。在本公开的方法中使用的CD40L的示例性浓度包括每毫升1-2000个国际单位,例如每毫升100个国际单位。人类CD40L的示例性核酸和多肽序列可以在NCBI网站处分别作为登记号NM_000074.2和登记号NP_000065.1获得(正如在2012年6月13所获得的),其通过参考并入本文。
IL-2是可商购的(参见例如Life Technologies,Grand Island,NY,目录号PHP0021)。人类IL-2的示例性核酸和多肽序列可以在NCBI网站处分别作为登记号NM_000586.3和登记号NP_000577.2获得(正如在2012年6月13所获得的),其通过参考并入本文。在本公开的方法中使用的IL-2的示例性浓度包括每毫升10-200个国际单位,例如每毫升100个国际单位。
IL-21也是可商购的(参见例如Life Technologies,Grand Island,NY,目录号PHC0211)。人类IL-21的示例性核酸和多肽序列可以在NCBI网站处分别作为登记号NM021803和登记号AF254069获得。这些登记通过参考并入本文。在数种实施方式中,将分离的B细胞与约10-100ng/ml IL-21,例如约10、20、30、40、50、60、70、80、90或100ng/ml IL-21相接触,例如,可以将记忆性B细胞与10-100、20-90、30-80、40-70、40-60或45-55ng/mlIL-21相接触。在本公开的方法中使用的IL-2的示例性浓度包括5-500ng/ml IL-21,例如50ng/ml IL-21。
在数种实施方式中,将记忆性B细胞与CD40L、IL-2和IL21的组合相接触提供了协同作用,即通过将记忆性B细胞与这三种分子相接触所观察到的细胞分裂和抗体产生的量,在组合的情况下高于单独使用所述分子产生的效应的总和。
选择产生目标抗体的B细胞
在某些实施方式中,对已与CD40L、IL-2和IL-21接触过一段足以使记忆性B细胞经历细胞分裂并产生抗体的时间的B细胞亚群,测定特异性结合于目标抗原的抗体的表达。用于确定抗体是否结合于目标抗原的方法对于本领域普通技术人员来说是熟知的,并且包括ELISA和中和测定法。
可以使用的筛选方法的三种代表性通用类别是(a)抗体捕获测定法,(b)抗原捕获测定法和(c)功能筛选。也可以使用它们的组合。在抗体捕获测定法中,可以将抗原结合于固相,允许待测试的单克隆抗体结合于抗原,通过洗涤去除未结合的抗体,然后通过例如第二试剂例如特异性识别所述抗体的标记的抗体来检测结合的抗体。对于抗原捕获测定法来说,可以将抗原直接标记。在一种实施方式中,可以将待测试的单克隆抗体结合于固相,然后与任选标记的抗原进行反应。或者,可以在将待测试的单克隆抗体结合于固相之前,通过免疫沉淀允许抗体-抗原复合物形成。一旦将抗体-抗原复合物结合于固相之后,可以通过洗涤去除未结合的抗原,并且可以通过检测抗原来鉴定阳性结果。
存在用于鉴定具有所需活性的单克隆抗体的各种功能筛选方法。实例包括病毒中和测定法,激动性活性测定法和阻断测定法,角化细胞单层粘附测定法和混合淋巴细胞应答(MLR)测定法(Werther等,J.Immunol.157:4986-4995(1996)),肿瘤细胞生长抑制测定法(例如如PCT公布号WO 89/06692中所述),抗体依赖性细胞性细胞毒性(ADCC)和补体介导的细胞毒性(CDC)测定法(美国专利号5,500,362),以及造血测定法(参见WO 95/27062)。抗体的类别/亚类可以通过例如双扩散测定法、抗原包被的板上的抗体捕获和/或抗IgG抗体上的抗体捕获来确定。
为了筛选结合于目标抗原上的特定表位的抗体,可以进行常规的交叉阻断测定法,例如在《抗体实验指南》(Antibodies,A Laboratory Manual,Cold Spring HarborLaboratory,Ed Harlow和David Lane(1988))中所描述的。或者,可以进行例如在Champe等(J.Biol.Chem.270:1388-1394(1995))中所描述的表位作图来确定抗体是否结合于目标表位。
如果确定记忆性B细胞亚群产生特异性结合于目标抗原的抗体,则可以采取其他步骤从所述亚群分离特异性结合于目标抗原的单克隆抗体。例如,从所述亚群中的B细胞分离免疫球蛋白基因的重链和轻链可变区,产生包含所述重链和轻链可变区的单克隆抗体,并测定单克隆抗体对目标抗原的特异性结合亲和性(例如通过ELISA或中和测定法)。
在某些情况下,可以获得核酸序列的序列信息。获得核酸序列信息可以包括确定核酸序列。为了确定核酸序列,可以使用本领域中已知的任何核酸测序方法,包括高通量DNA测序。高通量测序方法的非限制性实例包括通过合成测序(例如454测序)、通过连接测序、通过杂交测序、单分子DNA测序、多路聚合酶克隆测序(multiplex polonysequencing)、纳米孔测序或其组合。
在其他实施方式中,方法可以包括(a)从B细胞亚群分离RNA;(b)将所述RNA转录成cDNA;(c)使用包含能够扩增重链可变结构域编码区的至少两种寡核苷酸的第一寡核苷酸混合物,从所述cDNA扩增所述DNA分子的第一合并物;(d)使用包含能够扩增轻链可变结构域编码区的至少两种寡核苷酸的第二寡核苷酸混合物,从所述cDNA扩增所述DNA分子的第二合并物;以及任选地(e)将所述DNA分子的第一和第二合并物的样本通过编码所述连接物区(LR)的DNA彼此相连。
可变区的克隆是本领域中公知的标准程序,并且已经针对各种物种进行了描述,所述物种包括人类、非人类灵长动物、小鼠、兔和鸡。对于综述,参见Barbas III等(主编)《噬菌体展示实验指南》(Phage Display--A Laboratory manual,Cold Spring HarbourPress,2001),尤其是其中的Andris-Widhopf等,“抗体文库的产生:轻链和重链编码序列的PCR扩增和组装”(Generation of Antibody Libraries:PCR Amplification andAssembly of Light-and Heavy-chain Coding Sequences)一章。Andris-Widhopf等公开了能够扩增可变区编码区(VR编码区)、优选为重链可变结构域编码区或轻链可变结构域编码区的寡核苷酸的序列。此外,能够扩增重链可变结构域编码区或轻链可变结构域编码区、优选为人类重链可变结构域编码区或轻链可变结构域编码区的寡核苷酸,可以由技术人员通过比较抗体编码区的已知序列并鉴定适用于引物设计的共有序列来设计,所述已知序列可以从数据库例如Immunogenetics(imgt.cines.fr/)、Kabat(Kabatdatabase.com)和Vbase(vbase.mrc-cpe.cam.ac.uk/)获得。能够扩增重链可变结构域编码区或轻链可变结构域编码区的寡核苷酸在本领域中是已知的,其中所述引物可以包括用于扩增产物的克隆的适合的限制性位点,并且其中所述寡核苷酸还编码连接物区。用于扩增和克隆可变结构域的其他策略被描述在Sblattero和Bradbury(1998)Immunotechnology 3:271-278以及Weitkamp等,(2003),J.Immunol.Meth.275:223-237中。
在某些实施例中,可以使用已知方法,通过RT-PCR来扩增免疫球蛋白基因的重链和轻链的可变区(参见例如Tiller等,J.Immunological Methods,329:112-124,2008)。可以将包含VH或VL区DNA的PCR产物克隆到相应的Igγ1、Igκ和Igλ表达载体中,所述表达载体可用于共转染到允许细胞系(例如293T细胞)中,用于单克隆抗体的表达和生产。在某些实施例中,可以使用标准程序来纯化全长IgG1,然后测试其与目标抗原的结合(例如使用ELISA或中和测定法)。本领域普通技术人员将会理解,表达载体可以在任何允许细胞系或对象中进行表达以用于测试(例如在哺乳动物细胞系、植物细胞系中),或者使用病毒表达载体以在细胞系或生物体中表达。此外,包含由VH或VL区DNA编码的序列的蛋白可以合成生产,以用于测试。
与鉴定目标抗体的方法相关的数种实施方式
数种实施方式包括用于生产特异性结合于靶抗原的单克隆抗体的方法,其中所述方法包括:(a)从已暴露于靶抗原的对象分离记忆性B细胞群体,其中所述记忆性B细胞是CD19+IgA-IgD-IgM-B细胞;(b)将分离的记忆性B细胞群体与有效量的IL-21、IL-2和CD40相接触;(c)从分离的记忆性B细胞群体分离核酸分子;(d)从所述核酸扩增编码可变重链和可变轻链的核酸;(e)从所述核酸表达可变重链和可变轻链,以从所述可变重链和可变轻链产生抗体分子;以及(f)选择特异性结合于靶抗原的单克隆抗体。
某些实施方式包括用于从对象分离特异性针对靶抗原的B细胞的全部组成成分的方法,所述方法包括:(a)从已暴露于靶抗原的对象分离记忆性B细胞群体,其中所述记忆性B细胞是CD19+IgA-IgD-IgM-B细胞;(b)将分离的记忆性B细胞群体与有效量的IL-21、IL-2和CD40相接触;以及(c)从所述群体选择表达特异性结合靶抗原的抗体的B细胞,由此从对象分离特异性针对靶抗原的B细胞的全部组成成分。
在数种实施方式中,靶抗原是来自于病原体例如病毒、真菌、寄生虫或细菌的抗原。抗原可以来自于病毒例如人免疫缺陷病毒(HIV),例如HIV-1。在某些实施方式中,抗原可以是HIV-1gp41。在其中靶抗原是HIV抗原的某些实施方式中,对象是被HIV例如HIV-1感染的对象。在其他实施方式中,靶抗原是癌抗原。在某些这样的实施方式中,对象是患有癌症的对象。在其他实施方式中,靶抗原是自体抗原。例如,在某些实施方式中,靶抗原是毒素例如细菌毒素例如炭疽毒素。在其他实施方式中,靶抗原是疫苗中包含的抗原。本领域普通技术人员将会认识到,靶抗原可以是对象能够对其产生B细胞应答的任何抗原,所述B细胞应答引起记忆性B细胞的产生,所述记忆性B细胞产生特异性结合于所述靶抗原的抗体。
在某些实施方式中,分离的记忆性B细胞群体代表了对象中特异性针对靶抗原的B细胞的全部组成成分。
在本公开方法的某些实施方式中,将分离的记忆性B细胞群体与CD40L相接触,包括将分离的记忆性B细胞与表达CD40L的饲养细胞温育。
在本公开方法的其他实施方式中,将分离的记忆性B细胞的分离群体与CD40L、IL-2和IL-21相接触,包括将分离的记忆性B细胞群体与CD40L、IL-2和IL-21温育约10至约15天,例如约13天。
实施例
提供下面的实施例以说明某些实施方式的具体特征,但是权利要求书的范围不应限于示例的那些特征。
实施例1
广泛中和性MPER特异性单克隆抗体的分离和表征
本实施例说明了来自于HIV-1感染的对象的HIV-1gp41特异性结合抗体的分离和表征。
摘要。人类单克隆抗体的表征为广泛的HIV-1中和的机制提供了相当多的见解。本实施例描述了被命名为10E8的HIV-1gp41膜近端外部区域(MPER)特异性抗体的分离,所述抗体中和~98%的所测试的病毒。来自于78位健康的HIV-1感染的供体的血清的分析证实,27%含有MPER特异性抗体,8%含有10E8样特异性。与其他中和性MPER抗体相反,10E8不结合磷脂,没有自体反应性,并结合细胞表面包膜。与完整MPER复合的10E8的结构揭示了易感性位点,其包括一窄段高度保守的gp41疏水性残基和紧邻跨膜区之前的关键的Arg/Lys。抗性HIV-1变体的分析证实了这些残基对中和的重要性。高度保守的MPER是强效、非自体反应性中和性抗体的靶标,表明HIV-1疫苗应该旨在诱导针对HIV-1Env的这一区域的抗体。
简介。诱导能够中和各种各样HIV-1分离株的抗体应答,是针对HIV-1感染提供保护的疫苗的关键目标。实现这一目标的最大障碍可能是中和性抗体的靶标即包膜糖蛋白(Env)中发生的格外大的多样性。尽管到目前为止疫苗未能诱导广泛中和性抗体应答,但存在着慢性感染患者具有中和高度多样化HIV-1分离株的血清的实例。这些个体提供的证据表明,人类抗体应答可能中和高度多样化的HIV-1株,尽管诱导或介导这样的应答的机制仍未被完全了解(Haynes等,Nat Biotechnol 30,423-433,2012;Walker等,Curr OpinImmunol 22,358-366,2010)。
最近,来自于慢性感染患者的细胞的人类单克隆抗体的分离和表征,为理解隐伏在对HIV-1的广泛中和性抗体应答之下的特异性和机制提供了相当大的进展。Env作为由gp120和gp41亚基组成的异二聚体的三聚体存在于毒粒和被感染细胞的表面上。一段时间以来,仅分离到少量广泛中和性单克隆抗体(mAb),其包括结合gp120上的CD4结合位点的一种抗体(b12),结合gp120的外部结构域上的聚糖构型的一种抗体(2G12)和结合gp41上的膜近端外部区域(MPER)的三种抗体(2F5、Z13e1和4E10;Zwick等,J Virol 75,10892-10905,2001;Burton等,Science 266,1024-1027,1994;Muster等,J Virol 67,6642-6647,1993)。更近些时候,已发现了明显更广泛和强效的抗体,其靶向包膜蛋白的CD4结合位点(VRC01是其原型;Bonsignori等,J Virol 86,4688-4692,2012;Wu等,Science 333,1593-1602,2011;Scheid等,Science333,1633-1637,2011;Wu等,Science 329,856-861,2010)和gp120的V1/V2和V3区的含聚糖区域(PG9和PGT128是其原型;Walker等,PLoS Pathog 6,e1001028,2010;Walker等,Nature 477,466-470,2011;Bonsignori等,J Virol 85,9998-10009,2011;Walker等,Science 326,285-289,2009)。这些新抗体的特异性提供了关于Env上的抗原靶标的重要信息,针对这些靶标的体液免疫应答可能介导广泛和强效的中和。然而,在组群内的许多慢性感染患者中缺乏这些特异性的证据,表明广泛和强效的中和可能由其他特异性介导。
本实施例描述了从具有高中和滴度的HIV-1感染的个体分离广泛和强效的gp41MPER特异性人类mAb 10E8。10E8是迄今为止描述的最广泛和强效的抗体之一,并缺少以前被认为限制MPER特异性抗体在疫苗或被动疗法中的可用性的许多特征,包括脂质结合和自体反应性。此外,10E8的晶体结构与生物化学结合研究一起,证实了10E8的广度由其识别gp41MPER内的结构保守的易感性位点的独特模式所介导。
10E8的分离和中和性质。为了了解隐伏在广泛中和性抗体应答之下的特异性和结合特征,开发了允许在没有特异性的先有知识的情况下分离人类单克隆抗体的技术(Walker等,Science 326,285-289,2009)。来自于一位供体N152的血清在针对20种交叉进化枝假病毒小组方面在组群中表现出前1%的中和广度和效价(图17;Doria-Rose等,JVirol 84,1631-1636,2010)。从该患者分选出外周血CD19+IgM-IgD-IgA-记忆性B细胞,并使用IL-2、IL-21和表达CD40配体的饲养细胞扩增13天。对~16,500个B细胞培养物的上清液进行筛选,对来自于具有中和活性的孔的IgG基因进行克隆和重新表达(Tiller等,Journal of immunological methods 329,112-124,2008),并分离到两种新的抗体(10E8和7H6)。
编码10E8和7H6的DNA的核苷酸序列分析揭示,两者都是IgG3抗体并且是同一IgG克隆的体细胞变体。这些抗体源自于IGHV3-15*05和IGLV3-19*01种系基因,并且与种系相比在重链(21%)和λ轻链(14%)两者的可变基因中存在高度体细胞突变。这些抗体还具有由22个氨基酸构成的长的重链互补决定区(CDR H3)环(图1A)。10E8和7H6的重链是相同的,并且在轻链中仅存在两个残基差异(图6)。
为了评估克隆变体的中和活性,首先将它们针对5种Env-假病毒进行测试(图17A),并选择mAb 10E8用于进一步研究。为了确定10E8的中和活性是否代表了患者N152供体血清中存在的总体中和特异性,将中和小组扩展到20种Env-假病毒,并将10E8与N152供体血清平行地进行测试。尽管在高抗性变体的中和图谱中存在一些相似性,但mAb10E8的中和IC50与N152血清的ID50的关联性没有达到统计学显著性(p=0.11;图7和17B)。这些结果表明,尽管10E8可能发挥主要作用,但N152血清的全部中和广度可能由10E8样或其他抗体的混合体介导。
为了比较10E8与其他广泛中和性抗HIV-1抗体的中和效价和广度,随后将10E8在181个分离株的Env-假病毒小组中与4E10、2F5、VRC01、NIH45-46、3BNC117、PG9和PG16平行地进行测试(图1B和图17C-17F)。在低于50μg/ml的IC50下,10E8中和98%的被测试的假病毒,与此相比4E10为98%,VRC01为89%。然而,在低于1μg/ml的IC50下,10E8中和72%的被测试的病毒,与此相比4E10为37%。10E8的IC50值的中位数和几何平均值低于1ug/ml。因此,10E8介导针对大范围病毒的广泛且强效的中和,并且效价与一些可用的最好的单克隆抗体相当。
10E8表位特异性和结合。为了对10E8抗体的表位进行作图,通过酶联免疫吸附测定法(ELISA)测试了与Env的不同子区域的结合。10E8强力结合于gp140、gp41和4E10特异性MPER肽,但是不结合于gp120(图2A)。为了进一步作图MPER内的10E8表位,检查了10E8与对应于2F5(656-671)、Z13e1(666-677)和4E10(671-683)特异性的交叠的肽的结合。10E8结合于完整MPER和4E10特异性肽,但是不结合于2F5或Z13e1特异性肽。在4E10表位内,当测试具有截短的C端的肽4E10.19(671-680)时,10E8结合被大幅减弱,表明MPER的三个末端氨基酸Tyr681、Ile682和Arg683对于10E8结合来说是关键的(图8A)。与这些结果相一致,只有完整MPER和4E10特异性肽阻断10E8介导的对嵌合C1病毒的中和,该病毒含有带有HIV-1MPER的HIV-2Env(图8B)。综上,这些数据表明最小的10E8表位位于MPER的第671-683位残基之内,尽管不能排除针对MPER的氨基端的其他接触。
为了更精确地作图10E8的表位,在TZM-bl测定法中使用扫描MPER的第671-683位残基的一组丙氨酸突变体肽来阻断嵌合C1病毒的10E8中和(图2B;Brunel等,J Virol 80,1680-1687,2006)。对于这些测定法来说,基础肽是具有指示的丙氨酸置换的4E10.22MPER肽(CNWFDITNWLWYIRKKK;SEQ ID NO:14)。在Trp672、Phe673或Thr676处具有丙氨酸置换的MPER肽不能阻断4E10或10E8中和,表明这些残基对4E10和10E8两者的结合来说是关键的。对于4E10结合来说不需要的残基Asn671和残基Arg683两者,被发现对于10E8结合和中和来说是关键的(图2B和18)。还测试了10E8中和在MPER的第660-683位残基中具有丙氨酸置换的HIV-1JR2假病毒的能力(图19)。与丙氨酸置换对肽结合的影响相一致,残基Asn671和Arg683对于10E8中和来说是关键的,但是对于4E10中和来说不是。在第671-673、680和683位残基处的各个丙氨酸置换导致对10E8的中和灵敏度降低,最明显的是在IC90水平而不是IC50水平上。尽管这种现象的机制尚不清楚,但以前在MPER突变引起对4E10的部分抗性时已观察到类似的效应(Zwick等,J Virol 79,1252-1261,2005)。综上,这些结果表明10E8识别新的表位,所述表位与已知的4E10和Z13e1表位交叠,但在对与Asn671和MPER的最后一个残基Arg683的结合的关键依赖性上有差异。
接下来,调查了10E8与其他MPER抗体相比更大的中和效价是否是与MPER的更高的结合亲和性的结果。将涵盖全部MPER(656-683)的生物素化的肽捕获到表面等离子体共振芯片,允许检查Fab 10E8、2F5和4E10的结合动力学。与其较高的中和效价相反,10E8对这个MPER肽的KD比2F5和4E10更弱;对于10E8来说为17nM,相比而言对于2F5来说为3.8nM,对于4E10来说为0.74nM(图9)。因此,10E8对可溶性肽形式的MPER的亲和性不能解释它与其他MPER特异性抗体相比更大的中和效价。
10E8样抗体的普遍性。接下来调查了MPER特异性和10E8样中和性抗体在HIV-1感染的供体组群中的普遍性。接下来,从在5种病毒的小组中针对至少一种假病毒具有中和ID50>100的组群,选择78份血清(Doria-Rose等,J Virol 84,1631-1636,2010)。自从这些供体得到诊断起的时间中位数为13.5年,CD4计数的中位数为557个细胞/μl,血浆HIV RNA的中位数为5573个拷贝/ml,并且他们没有正在接受抗反转录病毒剂。测试了针对HIV-2/HIV-1嵌合体C1的中和(图20)。在78份血清中,21份表现出针对HIV-2/HIV-1C1病毒的中和活性(图21)。为了作图被这些血清靶向的区域,使用含有MPER的亚结构域的7种HIV-2/HIV-1嵌合体来测量中和(图20;Gray等,J Virol 81,6187-6196,2007)。在对整个MPER具有中和活性的21份血清中,8份表现出与对10E8所观察到的相似的中和图谱,其限定仅中和那些含有MPER的末端残基Arg683的HIV-2/HIV-1嵌合病毒(C4、C4GW和C8;图21)。为了进一步证实这些结果,将对应于MPER的不同部分的肽用于阻断HIV-2/HIV-1嵌合体C1的血清中和(图22)。在根据嵌合体的中和而被发现具有10E8样图谱的8份血清中,3份被与10E8样活性相一致的肽阻断。8份10E8样血清中的另外3份被具有与10E8和Z13e1样抗体的组合相一致的图谱的肽阻断。血清具有10E8样活性的6位患者与其余72位患者在临床过程或HIV中和方面没有差异(图示说明;图10,图示说明)。总的来说,27%的被测试的患者血清表现出抗MPER中和活性。这种普遍性明显高于在以前的工作中观察到的,可能与具有已知中和活性的供体的选择相关(Gray等,J Virol 83,8925-8937,2009;Tomaras等,J Virol 85,11502-11519,2011;Morris等,PLoS ONE6,e23532,2011;Gray等,J Virol 83,11265-11274,2009)。此外,8%的被测试的血清具有10E8样抗体(图10),表明10E8样抗体不是稀有的。
10E8自体反应性的分析。以前表征的MPER mAb 2F5和4E10的共同性质在于它们与自体抗原交叉反应(Haynes等,Science 308,1906-1908,2005)。此外,与细胞膜和Env三聚体两者的结合据认为对于这些抗体的最佳中和来说是重要的,并且这种自体反应性可能是通过疫苗引发类似抗体的障碍(Haynes等,Science 308,1906-1908,2005;Alam等,Proceedings of the National Academy of Sciences of the United States ofAmerica 106,20234-20239,2009)。表面等离子体共振分析显示,10E8不结合于阴离子型磷脂例如磷脂酰胆碱-心磷脂(PC-CLP)和磷脂酰胆碱-磷脂酰丝氨酸(PC-PS)脂质体(图3A)。10E8也不结合HEp-2上皮细胞,这与以细胞质和核模式结合的2F5和4E10相反(图3B)。此外,10E8不结合自体抗原例如Sjogren综合征抗原A和B、Smith抗原、核糖核蛋白、硬皮病70抗原、Jo1抗原、着丝点B和组蛋白(图23)。综上,这些结果表明,与其他MPER抗体相反,10E8不是自体反应性的。
10E8的毒粒可接近性。已显示,2F5和4E10抗体相对不良地结合于被感染细胞表面上的HIV-1包膜刺突或无细胞毒粒,并在CD4受体的Env结合后更有效地反应(Chakrabarti等,J Virol 85,8217-8226,2011)。测量了与HIVJRFL转染的细胞上切开的全长包膜刺突的结合(图11A)。尽管与可接近性不成问题的其他抗体例如VRC01或F105相比10E8的结合效率较低,但它与2F5或4E10相比结合效率更高。与丙氨酸置换的结果相反,在HIVJRFL全长包膜刺突中的4E10区域中的突变(F673S)增强了10E8结合,尽管机制尚不清楚。2F5区域中的突变(K665E)对10E8结合没有影响。这些数据表明,10E8与2F5或4E10相比对细胞表面上的MPER表位具有适当更高的可接近性。
为了评估与无细胞病毒的结合,将毒粒与抗体温育,洗掉未结合的抗体,并测试中和(Chakrabarti等,J Virol 85,8217-8226,2011;Frey等,Proceedings of the NationalAcademy of Sciences of the United States of America 105,3739-3744,2008;Rathinakumar等,J Virol 86,1820-1831,2012)。在洗涤期间,不能接近其在游离毒粒上的Env靶标的抗体将大部分被去除,并因此中和将减少。作为对照,HXBc2分离株的中和不被洗涤减少,因为在这种实验室改造的分离株上的MPER区是可接近的(Chakrabarti等,J Virol85,8217-8226,2011)。洗涤也对JRFL被VRC01的中和几乎没有影响。与以前的工作相一致,所测试的大多数病毒分离株的2F5和4E10中和在洗涤后显著减少(图11B)。与2F5和4E10相反,洗涤对所测试的大多数病毒的10E8中和具有较小影响,正如通过曲线下面积或固定抑制浓度下的中和的倍率变化分析所测量的(图11C)。尽管与VRC01类似,10E8不完全能够接近其在天然病毒刺突上的表位,但在所测试的大多数实验条件下,它能够比2F5或4E10更好地接近其表位。
10E8-gp41复合物的结构。为了提供10E8与HIV-1的相互作用的原子水平的理解,对与涵盖整个28个残基的gp41MPER(第656-683位残基)的肽复合的10E8的抗原结合片段(Fab)进行了结晶。将单斜晶体衍射至分辨率,并将结构解析和细化至R晶体=18.01%(R游离=21.76%),其揭示出不对称单位中的两种复合物(此前称为复合物1和2)(图24)。总的来说,10E8结合于MPER肽的一个面,所述肽形成两个螺旋,每个螺旋长度为并相对于彼此100°取向(图4A)。对范围为Asn656-Arg683(对于复合物2来说为Leu660-Arg683)的整个MPER进行电子密度的观察,其中从N-端螺旋内的残基Trp666至C-端螺旋的Arg683观察到最高程度的有序密度(图12)。主链二面角的分析(图25)表明,N-端α-螺旋从残基Asn657延伸到Ala667,在残基Ser668与Leu669之间收紧成310-螺旋,然后在残基Trp670和Asn671处转折。由Asn671加帽的C-端α-螺旋开始于残基Trp672并延伸到残基Arg683,即MPER的最后残基(图4A、B)。
10E8抗体主要通过其重链接触gp41MPER,尽管关键性的接触也由轻链CDR L3介导(图4C和26-28)。在抗体与gp41之间观察到三个主要的相互作用位点(图29-30):一个在CDRH3环的尖端的残基与肽的C-端螺旋的尖端之间。第二个在CDR H2环的残基与肽的铰链区的残基之间,第三个在三个重链CDR环与轻链CDR L3的接合处,其形成容纳MPER C-端螺旋的起始残基的疏水裂缝(图4B)。
10E8-gp41界面。为了补充对高度保守的10E8表位的突变所观察到的结果(图4D和18),将从晶体结构确定的10E8互补位的每个残基单个地突变成丙氨酸,并评估所产生的25个10E8变体与可溶性MPER肽的亲和性。总的来说,丙氨酸突变对10E8与可溶性MPER肽的结合亲和性的最显著影响出现在CDR H3环的残基内,尽管疏水裂缝内的突变也显示出明显的影响(图4E、13和31)。由丙氨酸扫描鉴定为对与gp41的相互作用来说关键的10E8残基,从裂缝一直延伸到CDR H3的尖端(图4E),并且由在突变成丙氨酸时显著影响10E8结合的相应的gp41残基区段所反映(图4F)。
针对包含Tier 1和Tier 2病毒两者的5种Env-假病毒的小组,测试了同一组10E8丙氨酸突变的中和效价(图32)。与结合数据类似,10E8CDR H3的残基对中和具有显著影响,疏水裂缝的残基也是如此(图4g)。总的来说,互补位突变体的KD与中和相关(图14)。骨架相互作用(在10E8和gp41两者上)也对界面、尤其是10E8的CDR H2与MPER的铰链区之间的界面有贡献,尽管它们在丙氨酸扫描分析中是沉默的。总的来说,10E8利用狭窄的残基带(~20x)来识别一串高度保守的疏水性gp41残基和紧邻跨膜区之前出现的关键的带电荷残基Arg/Lys683(图4F、H),所述残基带跨越CDR H1和H2并沿着大部分CDR H3延伸。
保守的gp41-中和决定簇。以前已报道了与gp41的MPER复合的中和性抗体的数个结构,包括抗体2F5、Z13e1和4E10的所述结构(图15A;Julien等,J Mol Biol 384,377-392,2008;Cardoso等,J Mol Biol 365,1533-1544,2007;Cardoso等,Immunity 22,163-173,2005;Ofek等,J Virol78,10724-10737,2004;Pejchal等,J Virol 83,8451-8462,2009)。MPER在被2F5和Z13e1结合时采取趋异的环构象,并且在被4E10结合时采取α-螺旋。2F5、Z13e1和4E10表位与10E8结合的gp41的比较,揭示出只有4E10表位具有类似的二级结构,其中叠加为第671-683位残基的所有原子产生了的RMSD,为主链原子产生的RMSD(图15B和33)。
为了进一步比较10E8和4E10的识别,检查了它们的表位接近角。如图15C-15F中所示,公认的MPER螺旋的比对将10E8和4E10置于类似的总体空间位置中。然而,这两种抗体的公认的螺旋以及重链和轻链的相对取向显著不同。对于10E8来说,C-端螺旋垂直于对分重链和轻链的平面(图15C、E);对于4E10来说,公认的螺旋位于重链和轻链之间的界面处(图15D、F)。可能与此相关,10E8在识别gp41时几乎专门地利用CDR环,而4E10在重链和轻链之间的界面处包含β-链与gp41的显著的相互作用。
10E8和4E10识别保守的C-端MPER螺旋的不同模式,引起了公认的螺旋面的比例的显著差异:10E8接触螺旋面的约三分之一,而4E10接触一半以上(图15G、15H和34-35)。10E8的较小的接触表面可以为10E8与4E10相比对脂质表面的识别减少提供解释——为10E8的自体反应性降低提供了可能的基于结构的解释。
序列变异和10E8中和。为了将特异性和结构数据放置在MPER的已知变异的背景中,分析了对10E8的中和具有抗性的病毒序列(图5A)。在所测试的183种病毒中,仅有3种对10E8具有高度抗性,其IC50>50μg/ml。这些病毒中的每一种在通过丙氨酸扫描所发现的影响中和的位置(Asn671、Trp672、Phe673和Trp680)处具有置换。从中克隆到10E8的患者N152的血浆病毒也可能对10E8介导的中和具有抗性(Wu等,J Virol 86,5844-5856,2012)。血浆病毒RNA的序列分析揭示出Trp680和Lys/Arg683位置处的稀有置换(图5A)。这些残基通常是高度保守的,仅在Los Alamos数据库(hiv.lanl.gov)中的3,730个HIV Env序列的1.17%中发生变异。当将3种抗性病毒和患者病毒的置换置于敏感性JR2病毒的背景上时,Asn671Thr、Trp672Leu和Phe673Leu处的置换对IC50具有适度的影响,但是将IC80升高到超过20μg/ml。在结构分析中,在671位置处没有观察到与10E8的直接接触,表明该位置处的Thr或Ala置换对中和的影响由构象或gp41内的其他效应所介导。Trp672Leu和Phe673Leu的组合在IC50和IC80水平下提供了高水平的抗性。对应于患者的主要循环病毒的改变具有类似的效果。尽管单独的Lys/Arg683Gln在IC80水平下提供抗性,但Trp680Arg和Lys/Arg683Gln合在一起引起对10E8的更高的抗性(图5A)。当与10E8互补位的分析合在一起时,这些数据表明,除了在4E10表位中发现的Trp672、Phe673和Trp680之外,附加的10E8结合残基Lys/Arg683对于中和来说也是关键的。基于上面提到的结构分析,除了在结合方面的其他差异之外,10E8与4E10相比针对天然存在的病毒变体的附加效价可能通过直接与10E8CDRH3相互作用的高度保守的残基Trp680和Lys/Arg683的结合来介导。
讨论。10E8是广泛且强效的中和性抗体,对于使用疫苗刺激这样的抗体的努力来说具有重要意义。以前的MPER抗体在效价方面多少有些受限,并具有更加有限的接近原代分离株的Env上的MPER的能力。此外,据认为,脂质结合和自体反应性是MPER抗体的特征,并且是通过疫苗引发它们的重要障碍。然而,10E8缺少每种这些特征。此外,具有类似特异性的抗体在慢性感染组群中并不罕见。这表明,10E8样抗体没有因自体反应性而从抗体全部组成成分中缺失。这些结果进一步表明,10E8样抗体可以在较大比例的接受被设计用于引发这些抗体的疫苗的未感染HIV的人中产生,而没有慢性HIV感染的B细胞缺陷。这样的疫苗的设计可能要求不仅递呈完整的10E8表位,而且使用具有足够的免疫原性以驱动10E8样抗体的演变的平台。
10E8的格外大的广度和效价似乎由它结合MPER内的高度保守的残基的能力所介导。尽管10E8的表位与已知mAb例如4E10的表位交叠,但是它在识别表面、接近角、脂质结合和自体反应性方面有差异。丙氨酸扫描、结构分析和互补位分析各自表明,10E8与高度保守的残基Trp672、Phe673、Trp676和Lys/Arg683发生接触。某些强效mAb例如结合CD4结合位点的mAb的格外大的广度,据认为由阻断对于病毒进入来说关键的功能上重要的位点所提供。10E8是损害Env功能还是简单地通过结合高度保守的残基起作用,仍有待确定。然而,10E8的广度和效价证实了gp41易感性的保守位点(图5B),其是用于HIV中和的重要靶抗原,并且可能再度振兴对基于MPER的HIV疫苗设计的兴趣。
方法
方法概述。通过流式细胞术对外周血CD19+IgM-IgD-IgA-B细胞进行分选,以每个孔4个细胞的密度铺板,并用细胞因子和饲养细胞进行扩增。通过针对HIVMN.03and HIVBal.26假病毒的微量中和对B-细胞培养上清液进行筛选。对来自于具有中和活性的孔的IgG基因进行克隆,并在293T细胞中重新表达。针对181种分离株的Env-假病毒小组证实中和活性的广度。通过丙氨酸扫描肽和突变体Env假病毒来确定特异性。10E8的脂质结合和自体反应性通过表面等离子体共振、HEp-2细胞上的间接免疫荧光和珠子阵列来测量。转染的293细胞上HIV包膜的结合通过流式细胞术来检测。在与抗体预温育后,在感染TZM-bl细胞之前洗涤毒粒的影响被用于测量与病毒MPER的接近性。通过中和含有MPER的部分的HIV-2/HIV-1嵌合体的能力,来测量具有给定特异性的HIV-1+血清的频率。当肽涵盖整个28个残基的gp41MPER(第656-683位残基)时,获得了10E8与gp41的成功的共结晶。结构测定揭示出晶体不对称单元中的两种复合物。两种复合物之间的差异分析能够辨别必不可少的相互作用。对由被gp41复合时显示出降低的溶剂可接近性的抗体中的残基所定义的互补位进行全面的丙氨酸扫描,其中对25种10E8丙氨酸突变体中的每种通过SPR评估gp41的识别,并通过在5种假型病毒的小组上的中和进行评估。使用有限稀释RT-PCR来产生患者血浆病毒RNA的序列。
研究患者。从在国立卫生研究院(National Institute of Health)召集的HIV-1感染的患者,在由国家过敏和传染病研究所调查评估委员会(Investigational ReviewBoard in the National Institute of Allergy and Infectious Diseases)(NIAID-IRB)批准的临床方案下,选择血浆和外周血单核细胞(PBMC)。所有参加者签署由NIAID-IRB批准的知情同意书。召集标准如下:具有可检测的病毒载量,高于400个细胞/μl的稳定的CD4T-细胞计数,被诊断为具有HIV感染至少4年,并且脱离ARV治疗至少5年。根据当前和以前的居住地,推测所有患者感染有进化枝B病毒。选择供体N152用于B细胞分选和抗体产生,因为他的血清中和活性在组群中的最强效和广泛之列。根据以前描述过的判据,他是缓慢发展者(Migueles等,Immunity 29,1009-1021,2008)。在进行白细胞去除术时,他已感染有HIV-120年,CD4T-细胞计数为325个细胞/μl,血浆HIV-1RNA值为3,811个拷贝/ml,并且没有正在进行抗反转录病毒治疗。
记忆性B-细胞染色、分选和抗体克隆。记忆性B细胞的染色和单细胞分选如下进行。将来自于HIV-1感染的供体N152的PBMC用由抗CD19抗体-PE-Cy7(BD Bioscience)、IgA-APC(Jackson ImmunoResearch Laboratories Inc.)、IgD-FITC(BD Pharmingen)和IgM-PE(Jackson ImmunoResearch Laboratories Inc.)构成的抗体混合物,在4℃和暗处染色30min。然后将细胞用10ml PBS-BSA缓冲液洗涤,并重悬浮在500μl PBS-BSA中。使用FACSAria III细胞分选仪(Becton Dickinson)分选66,000个CD19+IgA-IgD-IgM-记忆性B细胞,并重悬浮在含有100U/ml IL-2、50ng/ml IL-21和1x105/ml辐照过的3T3-msCD40L饲养细胞的具有10%FBS的IMDM培养基中(Kershaw等,Cancer Res 61,7920-7924,2001)。将B细胞以4个细胞/孔的密度接种在384孔微量滴定板中,终体积为50μl。在温育13天后,从每个孔收集40μl培养上清液,并使用针对HIV-1MN.03和HIV-1Bal.26的高通量微量中和测定法筛选中和活性。将每个孔中的B细胞用含有0.25μl RNase抑制剂(New England BiolabsInc.)、0.3μl 1M Tris pH8(Quality Biological Inc.)和19.45μl DEPC处理过的H2O的20μl裂解缓冲液裂解。将含有B细胞的板储存在-80℃下。
从在HIV-1MN.03和HIV-1Bal.26中和测定法两者中被评分为阳性的孔,通过RT-PCR扩增免疫球蛋白基因的重链和轻链的可变区。将cDNA产物在PCR反应中用作模板。为了扩增高度体细胞突变的免疫球蛋白基因,在两个独立的PCR中使用以前描述过的两组引物(Tiller等,Journal of immunological methods 329,112-124,2008)。一组引物由分别特异性针对IgH、Igκ或Igλ的前导区和恒定区的正向引物和反向引物构成。另一组引物由特异性针对FWR1的正向引物混合物和特异性针对IgH、Igκ和IgλJ基因的相应的反向引物构成。所有PCR在96孔PCR板中,在50μl总体积中进行,所述总体积中含有20nM的每种引物或引物混合物、10nM的每种dNTP(Invitrogen)、10μl 5x Q-溶液(Qiagen)和1.2U HotStar Taq DNA聚合酶(Qiagen)。将来自于阳性PCR反应的VH或VL区DNA的合并物连接到pCR2.1-Topo-TA载体(Invitrogen)中用于测序,然后克隆到相应的Igγ1、Igκ和Igλ表达载体中。将10μg从同一孔克隆到并以所有可能的重链和轻链对组合的重链和轻链质粒与40μl FuGENE 6(Roche)在1500μl DMEM(Gibco)中混合,并共转染到293T细胞中。使用重组蛋白A柱(GEHealthcare)纯化全长IgG。
中和测定法。单克隆抗体的中和使用TZM-bl细胞的单轮HIV-1Env-假病毒感染来测量(Li等,J Virol 79,10108-10125,2005)。通过用含有荧光素酶报告基因的pSG3ΔEnv骨架和表达HIV-1Env的第二质粒共转染293T细胞来产生HIV-1Env-假病毒。在转染后72小时,收获含有假病毒的上清液,并将其冷冻在-80℃下直至进一步使用。在中和测定法中,将10μl 5倍连续稀释的患者血清或mAb与40μl假病毒在96孔板中,在37℃温育30分钟,然后加入TZM-bl细胞。在温育2天后,将细胞裂解,并通过使用Victor Light光度计(PerkinElmer)测量荧光素酶活性来定量病毒感染性。50%抑制浓度(IC50)被计算为使感染减少50%的抗体浓度。在TZM-bl测定法中使用HIV-1JR2MPER丙氨酸突变体假病毒来作图抗体表位。
HIV-2/HIV-1嵌合体中和。在竞争测定法中使用HIV-2/HIV-1C1嵌合体(带有HIV-1gp41MPER的HIV-2病毒7312A;Gray等,J Virol81,6187-6196,2007)。将固定浓度的MPER肽与连续稀释的2F5、4E10、Z13e1或10E8抗体在37℃下温育30分钟,然后与HIV-2/HIV-1C1嵌合体温育。使用野生型HIV-2病毒7312A作为对照。通过向4E10肽或其丙氨酸突变体的5μl连续稀释液加入10μl 10E8mAb,在37℃下30分钟,然后加入HIV-2/HIV-1C1嵌合体,来完成抗体表位作图。肽阻断抗体介导的中和的程度被计算为在4E10丙氨酸突变体存在下抗体的IC50值与野生型肽相比的倍率变化。MPER内被患者血清或抗体靶向的准确结合区,使用含有HIV-1MPER的不同部分的HIV-2/HIV-1嵌合体来测定,所述嵌合体例如为C1(带有HIV-1MPER的HIV-2Env)、C1C(带有进化枝C MPER的HIV-2Env)、C3(带有2F5表位的HIV-2Env)、C4(带有4E10表位的HIV-2Env)、C6(带有短的4E10表位NWFDIT的HIV-2Env)、C7(带有短的2F5表位ALDKWA的HIV-2Env)和C8(带有Z13和4E10表位两者的HIV-2Env)。将5倍稀释的患者血清或mAb与嵌合体在96孔板中,在37℃下温育30分钟,然后加入TZM-bl细胞。患者血清中的特异性,通过用25μg/ml 2F5、4E10、MPER、Bal.V3、对照肽或50μg/ml Z13肽阻断C1嵌合体的中和来证实。
ELISA测定法。将2μg/ml的每种抗原在96孔板上在4℃包被过夜。将板用BLOTTO缓冲液(PBS,1%FBS,5%脱脂奶)在室温(RT)阻断1小时,然后与在破碎缓冲液(PBS,5%FBS,2%BSA,1%Tween-20)中连续稀释的抗体在室温下温育1小时。加入辣根过氧化物酶(HRP)偶联的山羊抗人IgG抗体的1:10,000稀释液,室温温育1小时。在每个步骤之间将板用含有0.2%Tween 20的PBS洗涤。使用3,3′,5,5′-四甲基联苯胺(TMB)(Sigma)将板显色,并在450nm处读数。
自体反应性测定。10E8与磷脂的结合,通过在3000仪器上进行SPR来测量,并且如先前所述使用4.1软件()进行数据分析(Alam等,Proc.Natl.Acad.Sci.U.S.A.,106,20234-20239,2009)。将含有磷脂的脂质体捕获在L1传感器芯片上,所述芯片使用烷基连接物来锚定脂质。在捕获脂质之前,通过以100μl/分钟的速率对40mM辛基-β-D-吡喃葡萄糖苷进行60秒的注射来清洁L1芯片的表面,并用过量缓冲液洗涤芯片和流体系统以去除任何痕量去污剂。然后以30μl/min的流速注入100μg/ml的mAb。在每次Ab注射后,将表面再次用辛基-β-D-吡喃葡萄糖苷以及5mMHCl、然后是5mM NaOH的各5秒钟的注射进行清洁,以从芯片清理任何粘附的蛋白。
对HIV-1阴性人类上皮(HEp-2)细胞的反应性,使用作为复染剂的伊文思蓝和FITC偶联的山羊抗人IgG抗体(Zeus Scientific,Raritan N.J.;Haynes等,Science 308,1906-1908,2005),通过载片上的间接免疫荧光来测定。将载片在Nikon Optiphot荧光显微镜上照相。对于图3B来说,以32秒的曝光时间获取结合于HEp-2细胞的每种MAb的kodachrome底片,并将底片扫描成数字格式。使用Luminex AtheNA Multi-Lyte ANA试验(WampoleLaboratories,Princeton,NJ)来测试MAb对SSA/Ro、SS-B/La、Sm、核糖核蛋白(RNP)、Jo-1、双链DNA(dsDNA)、着丝点B和组蛋白的反应性,并按照制造商的说明书以及以前所描述的来进行(Haynes等,Science 308,1906-1908,2005)。测定的MAb浓度为50、25、12.5和6.25μg/ml。将10μl每种浓度与luminex荧光珠子温育,并按照制造商的说明书进行测试。
细胞表面HIV-1Env的荧光激活细胞分选(FACS)染色。FACS染色按照以前的描述进行(Chakrabarti等,J Virol 85,8217-8226,2011;Koch等,Virology 313,387-400,2003)。在转染后48小时,将细胞收获,在FACS缓冲液(PBS,5%HIFBS,0.02%叠氮化物)中洗涤,并用单克隆抗体染色。将转染的细胞悬浮在FACS缓冲液中,并与抗体在室温下温育1小时。将单克隆抗体-细胞混合物在FACS缓冲液中充分洗涤,并以1:200的稀释度加入藻红蛋白(PE)偶联的山羊抗人类第二抗体(Sigma)并温育1小时,然后充分洗涤以去除未结合的第二抗体。在BD LSRII仪器上获取抗体-PE染色的细胞并通过FlowJo进行分析。
抗体-病毒冲洗实验。从2mg/ml的浓度开始,向含有10%HIFCS和15μl假病毒的487.5μl DMEM加入12.5μl在PBS中5倍连续稀释的抗体,使得在500μl的总体积中抗体的终浓度为50μg/ml至0.08μg/ml。在“无抑制剂”对照中,加入同样体积的PBS代替抗体。将反应混合物在37℃温育30分钟。用完全DMEM将250μl反应混合物稀释至10ml,在SW41转头中在4℃下以25,000rpm离心2小时。然后将病毒沉淀物用10ml PBS另外洗涤两次。在洗涤步骤期间,将病毒-抗体复合物在4℃下以40,000rpm离心20分钟。在最后一次洗涤后,向洗涤过的病毒沉淀物加入250μl DMEM,并通过在4℃下轻柔振摇30min将其重悬浮。使用100μl悬浮的病毒感染100μl TZM-bl细胞(20万/ml),进行两份平行试验。从剩余的250μl反应混合物,使用等体积的抗体病毒混合物作为“无冲洗”对照。将板在CO2培养箱中在37℃温育2天。2天后,按照以前的描述进行荧光素酶测定(Mascola等,J Virol 76,4810-4821,2002)。然后将数据作图以确定在“洗涤”或“无洗涤”条件下由抗体介导的中和。
结构测定和分析。10E8的抗原结合片段(Fab)按照以前的描述使用LysC消化来制备(Ofek等,Proc.Natl.Aca.Sci..U.S.A.,107,17880-17887,2010)。首先将IgG用100mMDTT在37℃下还原1小时,然后在pH 7.6的Hepes中透析1小时,以将DTT浓度降低至1mM。然后将抗体在4℃下对2mM碘乙酰胺透析48小时,并对pH 7.6的Hepes进行2h的最终透析。在还原和烷基化之后,将抗体用Lys-C(Roche)切割,在蛋白A柱上运行以分离出Fc片段,然后进行离子交换(Mono S)和尺寸排阻层析(S200)。将纯化的10E8Fab与10倍过量的肽RRR-NEQELLELDKWASLWNWFDITNWLWYIR(SEQ ID NO:26)-RRR(American Peptide,CA)温育,然后将复合物在Honeybee 963机器人上设置成用于20℃蒸气扩散坐滴结晶(sitting dropcrystallization)的设定。建立从可商购的Hampton(Hampton Research)、PrecipitantSynergy(Emerald Biosystems)和Wizard(Emerald Biosystems)结晶筛选改造的576种初始条件并使用Rockimager(Formulatrix)进行成像,然后对晶体命中进行手动优化。晶体在40%PEG 400、0.1M柠檬酸钠、0.1M Tris pH 7.5中生长,在由增补有15%2R-3R-丁二醇和过量肽的母液构成的低温保护液中衍射至分辨率。在将晶体固定在环上之后,将它们急速冷却,在波长和SER CAT ID-22或BM-22光束线(APS)下收集数据,并使用HKL-2000处理数据(Otwinowski等,Macromolecular Crystallography,Pt A 276,307-326,1997)。使用以前获得的10E8的游离结构作为检索工具,使用Phaser通过分子置换法来解析结构(McCoy等,J Appl Crystallogr 40,658-674,2007;Winn等,Acta Crystallogr DBiol Crystallogr 67,235-242,2011)。结构的细化使用Phenix来进行(Adams等,ActaCrystallogr D Biol Crystallogr 58,1948-1954,2002),其中使用Coot进行迭代模型构建(Emsley,P.&Cowtan,K.Acta Crystallogr D Biol Crystallogr 60,2126-2132(2004))。使用MolProbity来验证结构(Davis等,Nucleic Acids Res 35,W375-383,2007),得到97%和99.8%的残基分别落在最有利的Ramachandran区和容许的Ramachandran区中的结果。使用APBS(Baker等,Proceedings of the National Academy of Sciences ofthe United States of America 98,10037-10041,2001)来分析结构的静电学(Ligplot;McDonald等,J Mol Biol 238,777-793,1994)、直接接触,使用PISA(Krissinel等,J MolBiol 372,774-797,2007)来分析埋置表面积,并使用LSQKAB(ccp4软件包;Winn,M.D.等,Acta Crystallogr D Biol Crystallogr,67,235-242,2011)来进行RMSD比对。使用程序Pepwheel(150.185.138.86/cgi-bin/emboss/pepwheel)来产生螺旋轮。所有图形使用Pymol来制备(PyMOL Molecular Graphics System)。
10E8和10E8变体对gp41MPER的结合亲和性的评估。使用表面等离子体共振(SPR)(T200,GE Healthcare)来评估野生型10E8对gp41MPER肽的结合亲和性。将生物素化的由gp41MPER的第656-683位残基构成的肽(RRR-NEQELLELDKWASLWNWFDITNWLWYIR(SEQ ID NO:26)-RRK-生物素;American Peptide,CA)偶联到SA芯片至表面密度为20-50个响应单位(RU)。然后将10E8的抗原结合片段(Fab)作为被分析物,以0.25nM至125nM范围内的浓度,作为2倍连续稀释液以30ml/min的流速流过芯片,其中结合和解离期最长5分钟。在相同条件下检测2F5和4E10Fab对照与相同肽的结合。
10E8互补位丙氨酸突变体与MPER的结合亲和性也使用SPR进行评估,但是使用抗体捕获方法。将CM5芯片用抗人类Fc抗体进行胺偶联至~10,000RU的高的表面密度。然后将10E8互补位变体IgG捕获至1500-2500RU之间,并将由gp41MPER的第656-683位残基构成的肽(RRR-NEQELLELDKWASLWNWFDITNWLWYIR(SEQ ID NO:26)-RRR)作为被分析物,作为从500nM开始(例外的是HC D30A、W100bA、S100cA、P100fA,其从250nM开始)的2倍连续稀释液流过芯片。结合和解离期跨度分别为3分钟和5分钟,流速为30μl/min。使用 软件(GE Healthcare)将结合传感图用1:1Langmuir模型进行拟合。在所有情况下,使用HBSEP+缓冲液(10mM Hepes,pH 7.4,150mMNaCl,3mMEDTA,0.1%P-20)。
PCR扩增和测序。从血浆提取病毒RNA以及cDNA的合成按照以前的描述进行(Imamichi等,J Infect Dis 183,36-50,2001)。将通过有限稀释法获得的包含HIV-1包膜基因的MPER区的588bp片段的单一分子,使用Expand High Fidelity PCR系统(RocheApplied Science,Indianapolis,IN)进行PCR扩增,其中使用了下列引物组:在第一轮反应中+7789(正义)5’-TCTTAGGAGCAGCAGGAAGCACTATGGG-3’(SEQI ID NO:193)和-8524(反义)5’-GTAAGTCTCTCAAGCGGTGGTAGC-3’(SEQI ID NO:194);在第二轮反应中+7850(正义)5’-ACAATTATTGTCTGGTATAGTGCAACAGCA-3’(SEQI ID NO:195)和-8413(反义)5’-CCACCTTCTTCTTCGATTCCTTCGG-3’(SEQI ID NO:196)。每轮PCR由25个循环构成,包含94℃2分钟的初始变性,然后是94℃变性15秒、50℃退火30秒和72℃延伸1分钟的25个循环,最后在72℃延伸7min。将PCR产物用QIA quick PCR纯化试剂盒(QIAGEN,Valencia,CA)纯化,然后克隆到pCR2.1-TOPO载体(TOPO TA Cloning it,Invitrogen,Carlsbad,CA)中,用于各个分子克隆的序列分析。使用ABI BigDye Terminator v3.1Ready Reaction Cycle测序试剂盒(Applied Biosystems,Foster City,CA)对来自于18个独立克隆的DNA进行测序,并使用ABI PRISM 3130xl遗传分析仪(Applied Biosystems,Foster City,CA)进行分析。
统计学分析。N152患者血清和10E8的效价之间的关系以及10E8变体结合与中和之间的关系,通过Spearman秩方法来评估。
保藏。10E8重链和轻链的核苷酸序列已被提交GenBank,登记号为JX645769和JX645770,其每个以2012年9月18日出现在GenBank中的形式通过参考并入本文。与gp41MPER复合的10E8Fab的坐标和结构因子已被Protein Data Bank保存在登记号4G6F下,其以2012年9月18日出现在GenBank中的形式通过参考并入本文。
实施例2
中和测定法
本实施例描述了用于测试本文中公开的抗体的中和广度和效价的方法。
单克隆抗体的中和使用HIV-1Env-假病毒和TZM-bl靶细胞的单轮感染来测量。通过用含有荧光素酶报告基因的pSG3ΔEnv骨架和表达HIV-1Env的第二质粒共转染293T细胞来产生HIV-1Env-假病毒。在转染后72小时,收获含有假病毒的上清液并将其冷冻在-80℃下直至进一步使用。患者血清和抗体的抗gp41膜近端外部区域(MPER)特异性活性使用HIV-2/HIV-1MPER嵌合体来测量。使用野生型HIV-27312A作为对照。50%抑制浓度(IC50)被计算为引起感染降低50%的抗体/抑制剂浓度。对于竞争测定法来说,将固定浓度的肽与连续稀释的2F5、4E10、Z13E1或10E8Ab在37℃下温育30分钟,然后与7312A-C1嵌合体温育。表位作图测定法,通过向4E10肽或其丙氨酸突变体的连续稀释液加入0.5μg/ml 10E8Ab,在37℃下30分钟,然后加入7312A-C1嵌合体来评估。肽的中和阻断效果被计算为抗体在4E10丙氨酸突变体存在下与4E10野生型肽相比的IC50值的倍率变化。10E8对HIV-1COT6.15丙氨酸突变体假病毒的中和也使用TZM-bl测定法来测量(图36)。数种HIV-1病毒株的进一步中和,使用10E8抗体以及含有交叉互补的10E8、7H6和7N16重链和轻链的抗体来测试(图37)。
实施例3
ELISA测定法
将2μg/ml的每种抗原用于将96孔板在4℃包被过夜。将包被的板用BLOTTO缓冲液(PBS,1%FBS,5%脱脂奶)在室温阻断1小时,然后与在破碎缓冲液(PBS,5%FBS,2%BSA,1%Tween-20)中连续稀释的抗体在室温下温育1小时。加入1:10,000稀释的辣根过氧化物酶(HRP)偶联的山羊抗人IgG抗体,室温温育1小时。在每个步骤之间将板用含有0.2%Tween20的PBS洗涤。使用3,3′,5,5′-四甲基联苯胺(TMB)(Sigma)将板显色,并在450nm处读数。
实施例4
用于检测样品或对象中的HIV-1的特异性针对gp41的HIV-1单克隆中和性抗体
本实施例描述了使用特异性针对gp41的HIV-1单克隆中和性抗体检测样品或对象中的HIV-1。本实施例还描述了使用这些抗体证实对象中的HIV-1诊断。
生物样品例如血液样品,从被诊断患有HIV-1感染、正经历HIV-1感染筛查或怀疑患有HIV-1感染的患者获得。使用从未被感染的患者获得的血液样品作为对照,尽管也可以使用标准结果作为对照。进行ELISA以检测血液样品中HIV-1的存在。按照本领域中公知的方法(参见例如Robinson等,Lancet 362:1612-1616,2003,通过参考并入本文),将血液样品(患者样品和对照样品)中存在的蛋白质固定在固体支持物例如96孔板上。在固定化之后,将用荧光标志物直接标记的特异性针对gp41的HIV-1单克隆中和性抗体施加到固定有蛋白质的板。将板在适合的缓冲液例如PBS中洗涤,以去除任何未结合的抗体并使抗体的非特异性结合最小化。可以按照标准方法使用荧光读板器来检测荧光。患者样品相对于对照样品的荧光强度的增加,表明gp41抗体特异性结合来自于血液样品的蛋白,从而检测到样品中存在HIV-1蛋白。检测到患者样品中的HIV-1蛋白表明患者具有HIV-1,或证实了对象中HIV-1的诊断。
实施例5
用于HIV-1治疗的特异性针对gp41的HIV-1单克隆中和性抗体
本实施例描述了通过施用一种或多种gp41特异性人类中和性mAb,可用于在人类对象中治疗HIV的具体方法。尽管提供了具体的方法、剂量和施用方式,但本领域技术人员将会认识到,可以做出改变而不显著影响治疗。
根据本文中公开的教导,可以通过施用治疗有效量的一种或多种本文中描述的中和性mAb,由此减少或消除HIV感染,来治疗HIV-1。
筛选对象。在特定实施例中,首先对对象进行筛选以确定他们是否具有HIV感染。可用于筛选HIV感染的方法的实例包括测量血清中对象的CD4+T细胞计数和HIV水平的组合。使用本文中描述的gp41特异性mAb的其他方法也可用于筛选HIV。
在某些实施例中,HIV测试由以下构成:使用酶联免疫吸附测定法(ELISA)的初始筛选,以检测针对HIV例如HIV-1的抗体。具有来自于初始ELISA的无反应性结果的样本被认为是HIV阴性的,除非发生了对被感染的配偶或HIV状态未知的配偶的新的暴露。对具有反应性ELISA结果的样本进行两份平行的重新测试。如果任一次平行试验的结果是反应性的,则样本被报告为重复反应性的,并使用更特异性的补充试验(例如蛋白质免疫印迹或免疫荧光测定法(IFA))进行验证性测试。通过ELISA测定为重复反应性的并且通过IFA测定为阳性或通过蛋白质免疫印迹测定为反应性的样本被认为是HIV阳性的并指示HIV感染。具有ELISA重复反应性的样本偶尔提供不确定的蛋白质免疫印迹结果,其可能是在被感染的人中对HIV的不完全抗体应答,或者是在未被感染的人中的非特异性反应。在这些模棱两可的情形中,可以使用IFA来证实感染。在某些情况下,对于具有不确定的蛋白质免疫印迹结果的对象,在超过一个月后收集第二份样本并重新测试。在其他实施例中,核酸测试(例如病毒RNA或前病毒DNA扩增方法)在某些情况下也有助于诊断。
在对象的血液中检测到HIV指示了对象感染有HIV并且是接收本文公开的治疗性组合物的候选者。此外,检测到CD4+T细胞计数低于每微升350个例如每微升200个细胞,也指示对象可能具有HIV感染。
在施用本文中公开的治疗性组合物之前,不需要预先筛选。
对象的预先治疗。在特定实施例中,在施用包含本领域技术人员已知的一种或多种抗反转录病毒疗法的治疗剂之前,对对象进行治疗。然而,这样的预先治疗不总是需要的,并且可以由有经验的临床医生确定。
治疗性组合物的施用。在选择对象后,将治疗有效剂量的本文中描述的gp41特异性中和性mAb施用到对象(例如处于接触HIV的风险中或已知感染有HIV的成年人或新生婴儿)。也可以在施用本公开药剂的同时、之前或之后将其他药剂例如抗病毒剂施用于对象。施用可以通过本领域中已知的任何方法例如口服施用、吸入、静脉内、肌内、腹膜内或皮下来实现。
所施用的用于预防、减少、抑制和/或治疗HIV或与其相关的病症的组合物的量,取决于待治疗的对象、障碍的严重性和治疗性组合物的施用方式。理想情况下,药剂的治疗有效量是足以在对象中预防、减少和/或抑制和/或治疗病症(例如HIV)而不在对象中引起显著细胞毒性效应的量。有效量可以由本领域技术人员,例如使用建立剂量响应曲线的常规试验来确定。因此,这些组合物可以用惰性稀释剂或用药学可接受的载体来配制。
在一个特定实施例中,取决于HIV的具体阶段,抗体以每两周每kg 5mg或每两周每kg 10mg的量施用。在一个实施例中,抗体被连续施用。在另一个实施例中,抗体或抗体片段以每周两次给予每kg 50μg的量施用2至3周。
治疗性组合物的施用可以长期进行(例如在数月或数年的时间段内)。
评估。在施用一种或多种疗法之后,可以监测具有HIV的对象的HIV水平的降低、对象的CD4+T细胞计数的增加或与HIV相关的一种或多种临床症状的减轻。在特定实施例中,从治疗后7天开始,对对象进行一次或多次分析。可以使用本领域中已知的任何方法来监测对象。例如,可以获得来自于对象的生物样品、包括血液,并评估HIV或CD4+T细胞水平的改变。
其他治疗。在特定实施例中,如果对象是稳定的或对治疗具有少量、混合或部分响应,则可以在重新评估后,将他们用与他们以前所接受的相同的药剂日程安排和制剂重新治疗所需的时间量,包括对象的寿命期。部分响应是HIV感染、HIV复制或其组合的减少,例如减少至少10%、至少20%、至少30%、至少40%、至少50%或至少70%。部分响应也可以是CD4+T细胞计数的增加,例如至少每微升350个T细胞。
实施例6
用于患者N152细胞的454测序的PCR
本实施例描述了用于扩增样品DNA以用于深度测序的PCR测定法。过程包括使用RTPCR从患者细胞产生cDNA,然后从产生的cDNA扩增VH3和VL3基因。
患者N152的样品具有3300-3600万个PBMC/ml。
使用Qiagen Oligotex试剂盒来制备mRNA(如制造商的说明书中所述)。
使用Invitrogen试剂(其包括作为引物的寡聚dT和Superscript IIRT)在mRNA上进行RT PCR。
在RT PCR反应后,随后使用VH3和VL3基因特异性引物对cDNA进行扩增,这意味着从推测是10E8的前体的等位基因IGHV3-15*05和IGLV3-19*01的前导序列开始扩增。
所使用的引物如下:
5’重链
>XLR-A_5L-VH3CCATCTCATCCCTGCGTGTCTCCGACTCAGAAGGTGTCCAGTGTGARGTGCAG(SEQ ID NO:28)
>XLR-A_VH3-L1-MP CCATCTCATCCCTGCGTGTCTCCGACTCAGGCTATTTTAAAAGG-TGTCCAATGT(SEQ ID NO:29)
>XLR-A_VH3/4_L1_MP CCATCTCATCCCTGCGTGTCTCCGACTCAGGTGGCAGCTCCCAGATG-GGTCCTGTC(SEQ ID NO:30)
>XLR-A_VH3/4_L3_MP CCATCTCATCCCTGCGTGTCTCCGACTCAGGTTGCAGTTTTAAA-AGGTGTCCAGTG(SEQ ID NO:31)
5’轻链
>XLR-A_5L-VL3CCATCTCATCCCTGCGTGTCTCCGACTCAGGCTCTGTGACCTCCTATGAGCTG(SEQ ID NO:32)
>XLR-A_5MP-VL3-1CCATCTCATCCCTGCGTGTCTCCGACTCAGGCTTACTGCACA-GGATCCGTGGCC(SEQ ID NO:33)
>XLR-A_5MP-VL3-19CCATCTCATCCCTGCGTGTCTCCGACTCAGACTCTTTGCAT-AGGTTCTGTGGTT(SEQ ID NO:34)
>XLR-A_5MP-VL3-21CCATCTCATCCCTGCGTGTCTCCGACTCAGTCTCACTGCACAGGC-TCTGTGACC(SEQ ID NO:35)
将样品进行凝胶提取并通过苯酚-氯仿进行纯化。
最终产量:1.15μg重链;0.9μl轻链
将0.5μg每种链送去进行454测序。
从完整454芯片获得的每条链的序列的总数:重链:843084个原始序列,37669个序列属于IGHV3-15家族;轻链:1219214个原始序列,9195个序列属于IGKV3-15家族。
实施例7
在不具有抗原特异性的先有知识的情况下分离和生产单克隆抗体的方法
本实施例说明了分离和生产生物体针对靶抗原例如毒粒、癌症或毒素产生的所有抗体的方法。用于分离和生产单克隆抗体的当前方法依赖于特定的已知表位来分离和生产新的单克隆抗体。使用这些方法,可以根据表位特异性来分选B细胞并分离免疫球蛋白基因。然而,由于依赖于以前知道的表位或抗体特异性,这些方法可能存有偏颇。此外,由于这些方法依赖于以前知道的抗体特异性或表位,因此这些方法不允许发现具有未知表位特异性的新的单克隆抗体。与当前方法不同,这种方法始于来自于生物体的代表了由所述生物体产生的所有B细胞的B细胞群体。将这个群体扩增并筛选针对目标官能团或抗原例如毒粒、毒素、蛋白或癌症的活性。这允许在没有特异性或结合特征的先有知识的情况下,分离生物体产生的特异性针对抗原的记忆性B细胞的全部组成成分。例如,可以对这一全部组成成分中的记忆性B细胞进行功能活性(例如中和活性)的筛选,并用于生产特异性针对抗原的单克隆抗体。
方法
记忆性B细胞的染色和单细胞分选如下进行。
B细胞的分离
将来自于以前暴露于靶抗原的对象(例如具有HIV-1感染的对象,如果靶抗原是HIV-1抗原的话)的PBMC,用由抗CD19抗体-PE-Cy7(BD Bioscience)、IgA-APC(JacksonImmunoResearch Laboratories Inc.)、IgD-FITC(BD Pharmingen)和IgM-PE(JacksonImmunoResearch Laboratories Inc.)构成的抗体混合物在4℃和暗处染色30min。然后将细胞用10ml PBS-BSA缓冲液洗涤,并重悬浮在500μl PBS-BSA中。使用FACSAria III细胞分选仪(Becton Dickinson)分选CD19+IgA-IgD-IgM-记忆性B细胞。图42示出了从PMBC样品进行CD19+IgA-IgD-IgM-B细胞的FACS分离的结果。
B细胞的分离的其他描述
1.准备FACSARIA细胞分选仪(Becton Dickinson,Franklin Lakes,NJ):
a.打开,预热,并运行CST;运行Auto Drop延迟(遵照手册中的步骤);
b.制备一瓶无菌PBS-BSA(或重新过滤现有的瓶)
c.对管路进行灭菌:(1)装载15%contrad的样品并以流速8运行5分钟;(2)装载10%漂白样品并以流速8运行5分钟;(3)装载无菌PBS-BSA样品(在无菌管中)并以流速8运行数分钟;(4)重新设置到流速1。
d.针对分选料流:(1)将空的guava管置于分选区块中并连接区块;(2)打开料流门;(3)Diva:在测料流窗口中(被称为“70微米”),打开废液抽取器;确保滑动条1、3、4被设定到0,滑动条2应该在48左右;(4)点击电压,然后点击试验分选;(5)观察料流门——分选料流击中管的中心吗?;(6)使用测料流窗口上的滑动条来调整液流,使其位于中央;(7)点击电压以关闭;关闭废液抽取器。
e.DIVA(Aria软件):通过选择以前的分选来拷贝旧的模板,然后“无数据复制”或者使用下面示出的门控来设置新的实验。
f.将冷却器管路附连到区块;打开冷却器。
2.准备细胞:
a.在开始之前用乙醇充分清洁通风橱和移液器
b.制备至少400ml IMDM(含有glutamax)/10%FBS/mycozap
c.对装有7.5ml IMDM/10%FBS和15μl benzonase的两个15ml锥形管加温
d.在eppindorf管中制备染色主混合物:
在分装之前将IgM和IgA抗体离心1min
制备主混合物:每5千万个细胞50μl
在微量离心机中在4℃离心20分钟;FACS染料(PE:藻红蛋白;Cy7:花青染料;APC:别藻蓝蛋白;FITC:荧光素异硫氰酸酯;CD19-PE-Cy7(偶联有染料的抗CD19mAb——特异性针对B细胞(除了血浆B细胞之外);IgA:抗IgA mAb;IgD:抗IgD mAb;IgM:抗IgM mAb
e.融化2小管患者细胞:(1)将小管在水浴中加温直至可以看见浮冰;(2)向小管添加1ml预加温的培养基/benzonase,留置15秒;(3)将小管的所有内含物移动到含有加温培养基的15ml锥形管;(4)1200rpm离心10min;(5)各自重悬浮在1ml PBS-BSA中,组合,将50μl移动到5个锥形管的每个管中;(6)将所有6个锥形管离心;(7)注意–如果只需要1个小管,你可以跳过步骤v.和vi.。
f.重悬浮细胞沉淀物:(1)主要样品:在100μl主混合物中;(2)包含在50μl PBS-BSA中,添加单一病毒株(0.5μl CD19-PE-Cy7等)
g.覆盖在箔中,30min 4℃。
h.洗涤:添加1000μl含有P1000的PBS-BSA,充分混合,并另外加入2ml PBS-BSA
i.离心,同时在通风橱中打开一袋新的过滤器盖管并标记它们
j.重悬浮在500μl PBS-BSA中,并通过将细胞喷射通过盖子而转移到无菌过滤器盖管(在喷射的同时触摸顶部以盖上盖子)
k.保持低温直至准备流动
3.分选细胞:(1)装载在Aria上,门如实施例中所示;如果电压看起来OK,使用旧的补偿,否则调整电压并运行补偿;(2)将流速调整到1-2之间,以便事件速率尽可能高,但是不超过13,000个事件/秒,在分选期间监测流速;(3)建立分选(点击分选>新分选布局;纯度1.5;分选:连续;选择门P6用于分选到左侧);(4)将250μl培养基置于2ml o型环管中,装载到分选区块e。测试分选500个细胞;(5)卸载样品,返回到低温;(6)运行样品线路反冲1-2分钟,然后将新鲜的PBS-BSA管装载到流路中;(7)流速8运行2分钟以清除主要样品;(8)从分选区块中取出分选管,使用P1000以使用管中的培养基轻柔地洗涤侧面;(9)将所有材料移动到流动管;(10)流动并记录分选后纯度;(12)将主样品装载到Aria上并分选20000-30000个B细胞;(13)重复步骤5-7;(14)取出10μl,加入到流动管中的100μl PBS-BSA,流动并记录分选后纯度;(15)将270μl Guava ViaCount放置在guava管中,加入30μl分选的细胞,两分钟,然后在Guava上计数(仅记录浓度;它不接受0.25ml体积);(16)计算以所需密度铺板所需要的细胞数量。
用生长因子处理细胞以诱导细胞分裂
将CD19+IgA-IgD-IgM-记忆性B细胞重悬浮在含有10%FBS和100U/ml IL-2、50ng/ml IL-21和如前所述生产的1x105/ml辐照过的3T3-msCD40L饲养细胞(Kershaw等,CancerRes.,61:7920-7924,2001)的Iscove改良的Dulbecco培养基IMDM培养基中。将B细胞以4个细胞/孔的密度接种在384孔微量滴定板中,终体积为50μl。
用生长因子处理细胞的其他描述
1.准备铺板条件:(1)融化1小管35x106个辐照过的3T3-msCD40L细胞(benzonase方法),重悬浮在10ml IMDM/10%FBS中;(2)计算试剂量
a.浓度(饲养细胞混合物):3T3-msCD40L:5000个细胞/50ul/孔=105个细胞/ml;IL2100u/ml;IL2150u/ml;在IMDM细胞培养基/10%FBS中(参见上文);对于20块板来说=350ml:336mlIMDM/10%FBS;3.5ml IL2(10000u/ml);175μl IL21;10ml3T3msCD40L
b.按照计算制备饲养细胞混合物;对于10块板来说:留出12.5ml用于无B细胞对照。
2.铺板细胞:(1)使用384孔白色板;在板的盖子和侧面上对它们进行标记;(2)使用12通道移液器;(3)成一定角度的板架可能是有用的;(4)将100μl无菌dI-H2O轻柔地放置在外部孔中(需要7.7ml/板);(5)在向混合物添加B细胞之前,在所有板的D行中铺板50μl/孔的饲养细胞混合物;(6)无抗体对照;(7)向剩余的饲养细胞混合物加入适量的B细胞(对于10块板来说,2.5个B细胞/孔=50个细胞/ml,需要8125个B细胞);(8)将细胞混合物移动到大的无菌盆中,并在内部的308个孔(除了D行之外)中铺板50μl/孔;(9)确保在盆中频繁地混合细胞;(10)铺板额外的四分之一板,用于晚些时候的ELISA;(11)移动到培养箱的背部,静置13天。
3.供应品:IL2–Roche-11147528001(50ml);IL21–Invitrogen–PHC0215(25ug);IMDM+Glutamax–Invitrogen–31980-097(1x10btls)
温育和上清液中和筛选
在温育13天后,从每个孔收集40μl培养上清液,并使用目标抗原的功能性靶标筛选中和活性(例如,如果HIV-1抗原是靶抗原,中和测定法可以是针对HIV-1MN.03和HIV-1Bal.26的高通量微量中和测定法)。用于中和测定法的上清液收集的其他描述
1.用于中和测定法的上清液的收集
a.事先准备ELISA板(用抗IgG抗体包被MaxisorpTM板);用乙醇、然后用RNaseAwayTM清洁通风橱和移液器;将所有的384孔白色板标记为第11天板
b.从第11天板的每个孔移动40μl到新鲜板的相应孔:(1)使用12通道移液器;(2)将尖端尽可能向下伸入孔中——轻轻触碰底部也是可以的,将尖端略微向上移动,然后停下;(3)分发到新的板;(4)用箔贴纸覆盖sups板,并盖上盖子;将四分之一板带到4℃;(5)将sups板储存在-80℃,并在需要时用于中和测定法
c.制备捕集-裂解缓冲液——足够用于308个孔*1.15*板的数目:对于1个孔来说(0.3μl Tris,pH 8,1M;0.25μl RNase抑制剂;19.45μl depc处理的H2O);将20μl捕集-裂解缓冲液置于所有B细胞孔上(用多通道移液器分发;用箔贴纸覆盖并盖上盖子;储存在-80℃);使用来自于四分之一板的10μl sup进行ELISA,以测量IgG浓度和命中率。
单克隆抗体的生产
将每个孔中的B细胞用含有0.25μl RNase抑制剂(New England Biolabs Inc.)、0.3μl 1M Tris pH8(Quality Biological Inc.)和19.45μlDEPC处理的H2O的20μl裂解缓冲液裂解。将含有B细胞的板储存在-80℃下。从在中和测定法中被评分为阳性的孔,通过RT-PCR扩增免疫球蛋白基因的重链和轻链的可变区。将cDNA产物作为模板用于PCR反应中。为了扩增高度体细胞突变的免疫球蛋白基因,在两个独立的PCR中使用以前描述过的两组引物(Tiller等,J.Immunological Methods,329:112-124,2008)。一组引物包括分别特异性针对IgH、Igκ或Igλ的前导区和恒定区的正向引物和反向引物。另一组引物包括特异性针对FWR1的正向引物混合物和特异性针对IgH、Igκ和IgλJ基因的相应的反向引物。所有PCR在96孔PCR板中,在50μl总体积中进行,所述总体积中含有20nM的每种引物或引物混合物、10nM的每种dNTP(Invitrogen)、10μl 5x Q-溶液(Qiagen)和1.2U HotStar Taq DNA聚合酶(Qiagen)。将来自于阳性PCR反应的VH或VL区DNA的合并物连接到pCR2.1-Topo-TA载体(Invitrogen)中用于测序,然后克隆到相应的Igγ1、Igκ和Igλ表达载体中。将10μg从同一孔克隆到并以所有可能的重链和轻链对组合的重链和轻链质粒与40μl6(Roche)在1500μl DMEM(Gibco)中混合,并共转染到293T细胞中。使用重组蛋白A柱(GEHealthcare)纯化全长IgG。
用于单克隆抗体的中和测定法
在纯化全长IgG后,测试产生的抗体的中和活性。
例如,如果目标抗原是HIV-1抗原,则单克隆抗体的中和活性可以使用TZM-bl细胞的单轮HIV-1Env-假病毒感染来测量。通过用pSG3Env骨架和表达HIV-1Env的第二质粒共转染293T细胞,可以产生HIV-1Env-假病毒。在转染后72小时,收获含有假病毒的上清液,并将其冷冻在-80℃下直至进一步使用。在中和测定法中,将10μl 5倍连续稀释的患者血清或mAb与40μl假病毒在96孔板中,在37℃温育30分钟,然后加入TZM-bl细胞。在温育2天后,将细胞裂解,并通过使用Victor Light光度计(Perkin Elmer)测量荧光素酶活性来定量病毒感染性。50%抑制浓度(IC50)被计算为使感染减少50%的抗体浓度。
实施例8
10E8修饰
本实施例示出了增加对gp120的亲和性并且不增加自体反应性的10E8抗体的修饰。正如下面描述的,采取了数种方法来鉴定和设计10E8抗体的改进,包括10E8互补位的基于结构的丙氨酸扫描突变,基于结构的突变以增强疏水性相互作用,部分种系回复,这些方法的组合,以及患者N152的B细胞的454深度焦磷酸测序以鉴定具有提高的效价的10E8系统发育变体。此外,还进行了这四种方法的组合,将每种的最佳要素和结果组合。下面是四种方法的每种的概述及其背后的基本原理。
(1)10E8互补位的基于结构的丙氨酸扫描突变
基于带有gp41MPER的10E8Fab的晶体结构(如上所述),将10E8的互补位的重链残基突变成丙氨酸。使用标准技术产生突变体抗体构建物,并按照实施例1中所描述表达和纯化抗体。将10E8互补位的所有残基突变成丙氨酸(参见图43),数个残基位置引起10E8介导的病毒中和的增强(参见图32和49)。这些残基包括10E8残基D28、D30、N31、T52、E53、S56、D58和Y100e(Kabat编号系统)。如实施例2中所述进行中和测定法。
(2)基于结构的突变以增强疏水性相互作用
基于带有gp41MPER的10E8Fab的晶体结构,将被视为与10E8表位共平面的残基突变成疏水性残基(参见图44A和44B)。使用标准技术产生突变体抗体构建物,并按照实施例1中所描述表达和纯化抗体。如图45中所示,数个残基位置单独和组合地引起10E8的中和效价的提高。在图45所列出的突变体中,S74残基突变成色氨酸产生中和的最大提高,其次是双突变体D30-N31和单突变体D28。如实施例2中所述进行中和测定法。
(3)部分种系回复
使用CDR嫁接将一部分10E8的成熟变化回复到种系序列。CDR嫁接是通常用于来自于非人类(例如小鼠)来源的抗体的人源化的程序:所述程序利用非人类抗体与人类对应物(通常为人类种系基因)的序列比对,并保留原始抗体的CDR但将所选的构架残基突变成相应的人类残基。根据结构和序列分析来选择用于突变的构架残基。在某些情况下,不是抗体中所有观察到的成熟变化都可能有益,并且部分回复到种系可能有助于改进某些抗体性能,例如增加半衰期、降低免疫原性或提高效价。通过将CDR嫁接应用于10E8,设计了三种不同的重链回复突变体和三种不同的轻链部分回复链(参见图47)。在氨基酸水平上,突变率对于重链来说从28%降低到12-20%,对于轻链来说从21%降低到7-14%。如实施例1中所述使用标准方法来构建和生产突变的抗体。对重链和轻链回复突变体的不同组合进行了与MPER的结合和中和的测试(参见图48)。对于包括与成熟抗体最接近的重链和轻链回复的回复突变体(“10E8-R3”,其包括10E8gH03重链(SEQ ID NO:149)和10E8gL03轻链(SEQ ID NO:152)),观察到中和的最大提高(<2倍)。当回复突变体与来自于其他来源(例如下面讨论的深度测序)的重链/轻链配对时,观察到其他改进。
(4)其他突变
基于上面描述的中和数据、回复突变体分析、互补位丙氨酸扫描和提高疏水性设计,在10E8的10E8gH03重链变体和10E8的10E8gL03轻链变体中引入下面的其他突变,按照实施例1中所描述的标准方法来构建和生产抗体,并按照实施例2中描述的方法测试中和活性(图49)。
表1.其他10E8变体重链和轻链
(5)454深度焦磷酸测序以鉴定具有提高的效价的10E8系统发育变体
本实施例说明了在独立的454焦磷酸测序反应中确定的10E8样重链和轻链序列的鉴定和功能配对。从10E8中和性抗体的野生型序列开始,通过与野生型10E8互补链配对,对重链和轻链的克隆变体进行鉴定和功能评估。重链和轻链的系统发育树揭示出在野生型10E8序列周围的类似的分支拓扑结构,这允许根据重链和轻链的系统发育树分支距10E8的相对距离来匹配它们。通过评估从匹配和错配分支重构的一系列抗体的HIV-1中和以及与自体抗原的反应性,对系统发育配对对功能的影响进行定量。
在HIV-1感染的供体N152中鉴定到广泛中和性抗体10E8,其识别紧靠HIV-1gp41糖蛋白的跨膜区之前的膜近端外部区域(MPER)中的螺旋,并以0.32ug/ml的50%抑制浓度(IC50)中和98%的各种各样的HIV-1分离株。抗体10E8的重链源自于IgHV3-15和IgHJ1,具有22个氨基酸的第三互补决定区(CDR H3),并显示出21%的体细胞突变率。抗体10E8的轻链源自于IgVL3-19和IgLJ3,具有12个氨基酸的CDR L3,并显示出14%的体细胞突变率。如实施例6中所述,使用聚合酶链反应(PCR)进行供体B细胞转录本的深度测序,以从IgHV3家族扩增IgG重链序列并从IgVL3家族扩增IgG轻链序列。将来自于估计5百万个外周血单核细胞(PBMC)的mRNA用于反转录,以产生模板cDNA,并且在两种情况下,使用在V-基因前导序列起始点上游和J链终点下游的引物。
Roche 454焦磷酸测序为供体N152提供了843,084个重链读出序列和1,219,214个轻链读出序列(参见图50)。在使用生物信息学管线进行初步分析后,将36,318个重链序列指派给IgHV1-3等位基因家族,并将54,583个轻链序列指派给IgVL3-IgJ3等位基因家族(参见例如Wu等,Science,333,1593-1602,2011,和Zhu等,Frontiers in microbiology,3,315-315,2012)。分析读出序列与10E8的同一性以及与未突变的V-基因的趋异性,并将它们的频率作图在同一性/趋异性网格上(图50A和50B,左图)。值得注意的是,对于重链来说,观察到数个明确分离的高同一性岛和约25%的趋异性,并且对于轻链来说,观察到单个明确分离的高同一性岛和约15%的趋异性。高同一性-趋异性区域的基于网格的取样选择了61个重链序列和48个轻链序列。分析了这些序列与10E8的系统发育关系(图50C和50D),并且也对这些序列进行合成,用互补的野生型10E8链重构,并通过瞬时转染以96孔板形式进行表达。表达的10E8变体的酶联免疫吸附测定法(ELISA)鉴定到11条重链和24条轻链(这些重链和轻链的命名和序列示出在图51和图59中),它们在与配偶体10E8链配对时,结合于与HIV-1gp41的整个MPER相对应的肽(图50A和50B,右图)。在6种HIV-1分离株的小组中,观察到中和效价的高达~5倍的增加(图50E和50F)。
有功能的10E8重链源自于同一性/趋异性图中的三个明显的岛(图50A),并表现出与共同的克隆起源相一致的序列和突变模式(图51A)。突变簇集在CDR H1和H3中,并且也簇集在第一、第三和第四构架区(FR1、FR3和FR4)中。趋异性最高的序列gVRC-H11dN152具有25个氨基酸变化,对应于与野生型10E8重链具有19.1%的差异。有功能的10E8轻链源自于同一性/趋异性图中的数个区域,包括单个明显的岛和与主要轻链群体交叠的数个区域(图50B)。与重链类似,有功能的轻链表现出与共同的克隆起源相一致的突变模式(图51C)。突变簇集在CDR L1和CDR L2区域以及所有构架区中。趋异性最高的序列gVRC-L23dN152具有33个氨基酸变化,对应于与野生型10E8轻链具有30.3%的差异。
尽管有功能,但用10E8野生型互补链重构的10E8变体不代表天然的对。用于抗体表征的深度测序方法的已知缺点在于重链和轻链需要单独的测序反应,并且与天然个体发育和功能表型相关的关键信息丢失。因此,进行了基于进化的分析来提供足够的信息,以重演近似的天然配对。重链和轻链的成熟/进化应该是相关联的,这是因为它们作为蛋白发生物理结合,在同一细胞中存在它们的经受过相同的酶突变过程的进化基因,并且对同一免疫原做出响应要求协同的结构变化。此外,在抗体转录本的mRNA群体的单一cDNA文库中成对重链和轻链的取样应该是高度相关的,因为它们源自于相同的细胞。原则上,这种取样的相似性会引起系统进化树的相应的重链和轻链分支的频率的相关性。
经网格选择的并经过实验测试的10E8的重链和轻链的系统发育分析,发现大多数中和性抗体群集成接近并包括模板10E8的三个分支(图50C和50D)。重链的分支b1-H(或轻链的分支b1-L)含有10E8,分支b2-H(b2-L)是与b1-H最接近的分支,分支b3-H(b3-L)是第二最接近的分支。单个中和序列(gVRCH11dN152)占据更远的分支(b4-H)。由于454焦磷酸测序在每个可变抗体结构域中产生平均约5个错误,因此选择来自于每个分支的最强效的抗体作为代表,这是由于功能最强的抗体可能具有最少的由454错误损伤的功能。重构了12种抗体,包括从4个重链分支和3个轻链分支配对的重链/轻链的完整矩阵(图52A)。12种重构抗体中的11种表达足以评估中和的IgG水平,所述评估在5种HIV-1分离株的小组上进行。所有11种表达的抗体是中和性的。与距10E8的系统发育距离匹配的重链和轻链配对(例如b1-H与b1-L,b2-H与b2-L,和b3-H与b3-L),与错配的配对相比平均来说效价略高,但是差异不是统计学显著性的(图52B)。
还测试了匹配和错配的配对与自体抗原的反应性。值得注意的是,匹配的配对显示出显著更低的Hep2染色(p=0.049)(图52C)。
结果显示了对于10E8和供体N152来说,(i)可以如何使用同一性/趋异性网格取样来鉴定体细胞变体,(ii)可以如何使用系统发育树结构体系来接近天然配对,以及(iii)通过系统发育匹配配对的抗体显示出较低的自体反应性。这种降低的自体反应性可能与天然抗体经历的体内选择相关。对于在机理上可能比其他抗体更倾向于自体反应性的抗体如10E8来说,天然配对的这种重演可能是有用的。尽管使用深度测序时天然配对丢失,但是上面的结果表明可以使用重链和轻链系统发育树之间的拓扑学相似性来接近它们。因此,可能可以使用系统发育相似性或谱系分析作为筛选方法,因为它们为鉴定体细胞变体提供了唯一的计算手段。
(5)其他变体和组合
产生了鉴定到的重链和轻链以及鉴定到的重链和轻链变体的其他组合,以测试中和和自体反应性。某些重链和轻链的组合在图53-54中标出,包括在野生型10E8互补链背景中的基于中和的组合,以及基于系统发育配对的组合。这些配对的命名和序列信息被示出在图59中,例外的是对应于10E8gL03轻链种系回复突变体的“rL3”被示出在图47中并被列为SEQ ID NO:149。针对6种病毒的小组的中和值(IC50,单位为μg/ml)被显示在图55A-55C中,自体反应性值被显示在图56中。针对20种病毒的小组的中和值(IC50,单位为μg/ml)被显示在图57中。结果表明数个重链和轻链配对与野生型10E8相比显示出提高的中和活性,但是不具有提高的自体反应性,其包括重链HC6(gVRC-H2dn152;SEQ ID NO:154)与轻链10E8gL03(rL3;SEQ ID NO:152)的配对。
开发了其他重链变体,将其与10E8轻链或10E8轻链变体互补,并测试中和活性(参见图58A和58B)。10E8变体重链HC6(gVRC-H2dn152;SEQ ID NO:154)的第74位(Kabat编号系统)处的丝氨酸残基被另外地突变成丙氨酸、精氨酸、缬氨酸或酪氨酸。这些变体的序列被提供为SEQ ID NO:189(HC6S74A)、SEQ ID NO:190(HC6S74R)、SEQ ID NO:191(HC6S74V)、SEQ ID NO:192(HC6S74Y)。将这些10E8变体重链与“rL3”10E8轻链变体(10E8gL03;SEQ IDNO:149)互补,并测试得到的抗体针对20种HIV病毒的小组的中和活性,所述小组包括分别来自于进化枝A、B、C、AG和G的6、8、4、1和1种病毒。中和测定法按照实施例1中的描述进行,概述了这些测定法的结果的图被显示在图58A(示出了IC50值)和图58B(显示了IC80值)中。
通过减少暴露于溶剂的疏水性残基的数目,开发了其他重链和轻链突变体,以产生具有增加的溶解性的gp41结合抗体。选择表位识别所不需要的残基(基于454深度测序数据以及基于结构的蛋白质重新设计),用于用极性或带电荷残基进行置换。构建了下面的10E8样重链和轻链(Kabat氨基酸置换分别参考HC6(SEQ ID NO:154)和rL3(SEQ ID NO:152)重链和轻链)
轻链:
10E8gL03_hp_L01(SEQ ID NO:197;I44K)
10E8gL03_hp_L02(SEQ ID NO:198;S2Y,V10T,L14A,I44V,L106P)
10E8gL03_hp_L03(SEQ ID NO:199;V10T,L14A,I44K,L106P)
重链:
HC6_S77Y_hp_H01(SEQ ID NO:200;L18Q,S74Y)
HC6_S77Y_hp_H02(SEQ ID NO:201;L72D,S74Y,I75K,F77T,M84T)
HC6_S77Y_hp_H03(SEQ ID NO:202;L18Q,W55K,S74Y,M84T)
HC6_S77Y_hp_H04(SEQ ID NO:203;L18Q,W55K,L72D,S74Y,I75K,F77T,M84T)
还构建了HC6的部分种系回复突变体构建物:
HC6rH03S77Y(SEQ ID NO:204;S23A,N73D,S74Y,E81Q,N82bS,R83K,M84T,S87T,L89V,F91Y,R105Q)
构建了其他10E8轻链变体。这些变体包括10E8野生型轻链的变体、10E8轻链部分种系回复突变体rL3和上面的三个轻链溶解性变体。这些构建物含有单一突变R23Q,其去除潜在的整合蛋白结合位点。Q是在10E8轻链中第23位处的种系同一性。其他突变体如10E8_L_R23Q(SEQ ID NO:205);10E8gL03_R23Q(SEQ ID NO:206);10E8gL03_hp_L01_R23Q(SEQID NO:207);10E8gL03_hp_L02_R23Q(SEQ ID NO:208);10E8gL03_hp_L03_R23Q(SEQ IDNO:209)所示。本领域普通技术人员将会认识到,10E8或本文中公开的任何10E8变体轻链可变区可以任选地包括R23Q置换。
(6)10E8突变的概述
上面描述的10E8置换概述在作为图60A和60B(重链置换)以及图61A和61B(轻链置换)给出的表中。
显然,可以改变或修改所描述的方法或组合物的精确细节,而不背离所描述的实施方式的精神。我们要求保护落在权利要求书的范围和精神之内的所有这样的修改和改变。

Claims (41)

1.一种分离的人类单克隆抗体,其包含:
重链可变区,所述重链可变区包含分别由SEQ ID NO:1的第26-33位、51-60位和99-120位氨基酸组成的重链互补决定区(HCDR)1、HCDR2和HCDR3;和
轻链可变区,所述轻链可变区包含分别由SEQ ID NO:2的第26-31位、49-51位和88-99位氨基酸组成的轻链互补决定区(LCDR)1、LCDR2和LCDR3;其中
所述抗体特异性结合gp41和是中和性的。
2.权利要求1的分离的人类单克隆抗体,其中所述重链可变区包含SEQ ID NO:1、3、5、149、154、189-192、200-201、或204之一所示的氨基酸序列并且还包含至多10个氨基酸置换,其中所述氨基酸置换在所述重链可变区的构架区中。
3.权利要求1的分离的人类单克隆抗体,其中所述抗体的重链可变区包含SEQ ID NO:1、3、5、149、154、189-192、200-201、或204之一所示的氨基酸序列。
4.权利要求1的分离的人类单克隆抗体,其中所述轻链可变区包含SEQ ID NO:2、4、6、150-152或164-186之一所示的氨基酸序列。
5.权利要求1的分离的人类单克隆抗体,其中所述轻链可变区包含SEQ ID NO:2、4、6、150-152或164-186之一所示的氨基酸序列并且还包含至多10个氨基酸置换,其中所述氨基酸置换在所述轻链可变区的构架区中。
6.权利要求1的分离的人类单克隆抗体,其中:
所述重链可变区包含SEQ ID NO:154所示的氨基酸序列,并且所述轻链可变区包含SEQID NO:152所示的氨基酸序列;或者
所述重链可变区包含SEQ ID NO:192所示的氨基酸序列,并且所述轻链可变区包含SEQID NO:152所示的氨基酸序列。
7.权利要求1的分离的人类单克隆抗体,其中所述重链可变区包含SEQ ID NO:1所示的氨基酸序列,并且所述轻链可变区包含SEQ ID NO:2所示的氨基酸序列。
8.权利要求1的分离的人类单克隆抗体,其中所述抗体是IgG、IgM或IgA抗体。
9.权利要求1的分离的人类单克隆抗体,其中所述抗体以低于50μg/ml的抑制浓度(IC50)中和图17C-17F中列出的至少98%的HIV-1分离株。
10.权利要求1的分离的人类单克隆抗体,其中所述抗体以低于1μg/ml的抑制浓度(IC50)中和图17C-17F中列出的至少72%的HIV-1分离株。
11.权利要求1-10任一项的分离的人类单克隆抗体的抗原结合片段,其中所述片段是Fab片段、Fab'片段、F(ab)'2片段、单链Fv蛋白(scFv)或二硫键稳定的Fv蛋白(dsFv)。
12.权利要求11的抗原结合片段,其中所述片段是Fab片段。
13.权利要求11的分离的抗原结合片段,其连接到Fc结构域和/或IL-15。
14.权利要求1-10任一项的分离的人类单克隆抗体,其连接到可检测标记物。
15.一种支架蛋白,其包含权利要求11的抗原结合片段。
16.一种分离的核酸分子,其编码权利要求1-10任一项的抗体。
17.权利要求16的分离的核酸分子,其可操作地连接到启动子。
18.一种表达载体,其包含权利要求16的分离的核酸分子。
19.一种分离的核酸分子,其编码权利要求11-13任一项的抗原结合片段。
20.权利要求19的分离的核酸分子,其可操作地连接到启动子。
21.一种表达载体,其包含权利要求19的分离的核酸分子。
22.一种分离的宿主细胞,其被权利要求16的核酸分子转化。
23.一种组合物,其包含:
(a)权利要求1-10任一项的抗体;以及
(b)药学可接受的载体。
24.一种组合物,其包含:
(a)权利要求11-13任一项的抗原结合片段;以及
(b)药学可接受的载体。
25.权利要求1-10任一项的分离的人类单克隆抗体在制备通过下列方法用于在对象中检测人免疫缺陷病毒(HIV)-1感染的诊断药剂或试剂盒中的应用,所述方法包括:
将来自于所述对象的生物样品与权利要求1-10任一项的分离的人类单克隆抗体在足以形成免疫复合物的条件下相接触;以及
检测来自于所述对象的样品上所述免疫复合物的存在,其中来自于所述对象的样品上所述免疫复合物的存在指示所述对象具有HIV-1感染。
26.权利要求25的应用,其中所述分离的人类单克隆抗体被直接标记。
27.权利要求25的应用,其中所述接触是体内的。
28.权利要求25的应用,其中所述接触是体外的。
29.权利要求25-28任一项的应用,其中所述方法还包括:
将所述样品与特异性结合所述分离的人类单克隆抗体或抗原结合片段的第二抗体相接触;以及
检测所述第二抗体与所述样品的结合;
其中与所述第二抗体与对照样品的结合相比所述第二抗体与所述样品的结合的增加,检测到所述对象存在HIV-1感染。
30.治疗有效量的权利要求1-10任一项的抗体在制备通过下列方法用于在对象中预防或治疗人免疫缺陷病毒(HIV)-1感染的药物中的应用,所述方法包括向所述对象施用治疗有效量的权利要求1-10任一项的抗体,由此预防或治疗HIV-1感染。
31.权利要求30的应用,其中所述方法是用于治疗HIV-1感染的方法,并且其中所述对象患有获得性免疫缺陷综合征(AIDS)。
32.权利要求30的应用,其中所述方法还包括向所述对象施用其他抗病毒剂。
33.权利要求32的应用,其中所述其他抗病毒剂包含核苷类似物反转录酶抑制剂、核苷酸反转录酶抑制剂、非核苷反转录酶抑制剂、蛋白酶抑制剂、进入或融合抑制剂、成熟抑制剂或广谱抑制剂或其组合。
34.权利要求30的应用,其中所述方法还包括向所述对象施用一种或多种其他抗体或编码这样的抗体的核酸,其中所述其他抗体特异性结合gp120和/或gp41。
35.权利要求30的应用,其中所述方法还包括向所述对象施用有效量的IL-15。
36.权利要求30的应用,其中所述方法还包括测量所述对象中的HIV-1病毒滴度。
37.一种试剂盒,其包含:
(a)权利要求1-10任一项的抗体;以及
(b)使用所述试剂盒的说明书。
38.权利要求1-10任一项的分离的单克隆抗体在制备用于在对象中抑制或预防1型人免疫缺陷病毒感染的药物中的用途。
39.权利要求11-13任一项的抗原结合片段在制备用于在对象中抑制或预防1型人免疫缺陷病毒感染的药物中的用途。
40.权利要求16的核酸分子在制备用于在对象中抑制或预防1型人免疫缺陷病毒感染的药物中的用途。
41.权利要求19的核酸分子在制备用于在对象中抑制或预防1型人免疫缺陷病毒感染的药物中的用途。
CN201280065580.1A 2011-11-07 2012-11-07 gp41中和性抗体及其用途 Active CN104080805B (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201161556660P 2011-11-07 2011-11-07
US61/556,660 2011-11-07
US201261672708P 2012-07-17 2012-07-17
US61/672,708 2012-07-17
US201261698480P 2012-09-07 2012-09-07
US61/698,480 2012-09-07
US201261702703P 2012-09-18 2012-09-18
US61/702,703 2012-09-18
PCT/US2012/063958 WO2013070776A1 (en) 2011-11-07 2012-11-07 Neutralizing gp41 antibodies and their use

Publications (2)

Publication Number Publication Date
CN104080805A CN104080805A (zh) 2014-10-01
CN104080805B true CN104080805B (zh) 2017-02-22

Family

ID=48290514

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280065580.1A Active CN104080805B (zh) 2011-11-07 2012-11-07 gp41中和性抗体及其用途

Country Status (7)

Country Link
US (4) US9475862B2 (zh)
EP (1) EP2776463B1 (zh)
CN (1) CN104080805B (zh)
BR (1) BR112014010823B1 (zh)
RU (1) RU2624046C2 (zh)
WO (1) WO2013070776A1 (zh)
ZA (1) ZA201403264B (zh)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11357866B2 (en) * 2013-04-03 2022-06-14 The Administrators Of The Tulane Educational Fund Expression of HIV inhibitors by mesenchymal stem cells
US9951118B2 (en) * 2013-08-02 2018-04-24 The Regents Of The University Of California Engineering antiviral T cell immunity through stem cells and chimeric antigen receptors
US20180265885A1 (en) * 2015-01-29 2018-09-20 Plantvax, Inc. Highly expressed protective plant-derived broadly neutralizing hiv monoclonal antibodies for use in passive immunotherapy
WO2016149710A2 (en) * 2015-03-19 2016-09-22 Duke University Hiv-1 neutralizing antibodies and uses thereof
CA2979708A1 (en) * 2015-03-19 2016-09-22 Duke University Hiv-1 neutralizing antibodies and uses thereof
CA2983034A1 (en) 2015-04-17 2016-10-20 Igm Biosciences, Inc. Multi-valent human immunodeficiency virus antigen binding molecules and uses thereof
CN104830908B (zh) * 2015-06-02 2018-04-10 中国食品药品检定研究院 假病毒包装系统及其用途
CN116789841A (zh) 2015-10-25 2023-09-22 赛诺菲 用于预防或治疗hiv感染的三特异性和/或三价结合蛋白
EP3371214A1 (en) * 2015-11-03 2018-09-12 THE UNITED STATES OF AMERICA, represented by the S Neutralizing antibodies to hiv-1 gp41 and their use
EP3383902A1 (en) 2015-12-05 2018-10-10 Centre Hospitalier Universitaire Vaudois Hiv binding agents
KR101873815B1 (ko) * 2016-03-04 2018-07-03 (주)진매트릭스 재조합 단백질의 가용화를 위한 조성물, 그 방법 및 이를 이용한 재조합 항원의 생산 방법
CR20180539A (es) 2016-04-13 2019-02-15 Sanofi Sa Proteínas de unión triespecíficas y/o trivalentes
RS64771B1 (sr) 2016-04-13 2023-11-30 Sanofi Sa Trispecifični i/ili trovalentni vezujući proteini
CN105801694A (zh) * 2016-05-03 2016-07-27 上海科新生物技术股份有限公司 一种抗心磷脂/β2糖蛋白I复合物的嵌合抗体
EP3478324A1 (en) 2016-07-01 2019-05-08 GlaxoSmithKline Intellectual Property (No.2) Limited Antibody-drug conjugates and therapeutic methods using the same
WO2018053328A1 (en) * 2016-09-16 2018-03-22 Duke University Bispecific molecules comprising an hiv-1 envelope targeting arm
CN107383190B (zh) * 2017-08-03 2020-09-25 深圳市慢性病防治中心 人源抗HIV gp41特异性抗体及其应用
US11186649B2 (en) 2017-10-10 2021-11-30 Sanofi Anti-CD38 antibodies and methods of use
EP4257600A3 (en) 2018-07-03 2024-01-10 Gilead Sciences, Inc. Antibodies that target hiv gp120 and methods of use
AU2019357467A1 (en) 2018-10-09 2021-05-27 Sanofi Trispecific anti-CD38, anti-CD28, and anti-CD3 binding proteins and methods of use for treating viral infection
US11613576B2 (en) 2019-04-09 2023-03-28 Sanofi Trispecific binding proteins, methods, and uses thereof
TW202104274A (zh) 2019-04-09 2021-02-01 法商賽諾菲公司 用於治療hiv感染之三特異性及/或三價結合蛋白
EP3980072A4 (en) * 2019-06-05 2023-06-14 University of Georgia Research Foundation COMPOSITIONS AND METHODS FOR THE PREVENTION OR TREATMENT OF PULMONARY ARTERIAL HYPERTENSION RELATED TO HUMAN IMMUNE DEFICIENCY VIRUS
KR20220047277A (ko) 2019-07-16 2022-04-15 길리애드 사이언시즈, 인코포레이티드 Hiv 백신, 및 이의 제조 및 사용 방법
WO2021016529A1 (en) * 2019-07-25 2021-01-28 The Johns Hopkins University Methods and compositions for hepatitis c virus (hcv)
CN114651003A (zh) 2019-09-10 2022-06-21 黑曜石疗法公司 用于可调调节的ca2-il15融合蛋白
EP4045532A4 (en) * 2019-10-14 2024-02-28 Scripps Research Inst LARGELY NEUTRALIZING HUMAN ANTIBODIES AGAINST HIV ENV PROXIMAL-EXTERNAL MEMBRANE REGION FOR VACCINE DESIGN AND INTERVENTION
CN111253493B (zh) * 2020-03-05 2021-03-23 武汉科技大学 一种靶向hiv病毒囊膜双位点的嵌合抗原受体及其表达载体和应用
CR20230101A (es) 2020-08-25 2023-04-28 Gilead Sciences Inc Moléculas de unión a antígeno multi- específicas contra el vih y métodos de uso
CN116390945A (zh) * 2020-09-24 2023-07-04 博德研究所 无细胞抗体工程化平台和针对SARS-CoV-2的中和抗体
TW202406932A (zh) 2020-10-22 2024-02-16 美商基利科學股份有限公司 介白素2-Fc融合蛋白及使用方法
WO2023114951A1 (en) 2021-12-17 2023-06-22 Viiv Healthcare Company Combination therapies for hiv infections and uses thereof
WO2024015741A1 (en) 2022-07-12 2024-01-18 Gilead Sciences, Inc. Hiv immunogenic polypeptides and vaccines and uses thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005111079A3 (en) * 2004-05-14 2006-06-08 Us Sec Dep Of Health And Human Hiv vaccine immunogens and immunization strategies to elicit broadly-neutralizing anti-hiv-1 antibodies against the membrane proximal domain of hiv gp41
WO2010089402A9 (en) * 2009-02-06 2010-11-04 Mymetics Corporation Splitting gp41

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE474915T1 (de) 2003-11-19 2010-08-15 Us Gov Health & Human Serv Verfahren zur induktion der entwicklung und terminalen differenzierung von gedächtnis-b- zellen
RU2393873C2 (ru) * 2005-05-02 2010-07-10 Майметикс Корпорейшн Антитело или его фрагмент, имеющие нейтрализующую активность в отношении вич, но не в отношении il2
US20090232826A1 (en) 2005-05-02 2009-09-17 Mymetics Corporation Antibody or a fragment thereof, having neutralizing activity against hiv but not against il2
EP1910513B1 (en) * 2005-07-01 2016-08-10 John Schrader Methods of isolating antibody secreting cells from blood samples of immunized animals and generating monoclonal antibodies from said antibody secreting cells.
EP1997830A1 (en) * 2007-06-01 2008-12-03 AIMM Therapeutics B.V. RSV specific binding molecules and means for producing them
US8703486B2 (en) * 2008-09-23 2014-04-22 UNIVERSITé LAVAL Method for polyclonal immunoglobulin G production by human B cells
US20110064760A1 (en) * 2009-08-14 2011-03-17 Cho Michael W Polypeptides comprising epitopes of hiv gp41 and methods of use
WO2011038290A2 (en) 2009-09-25 2011-03-31 The U. S. A., As Represented By The Secretary, Department Of Health And Human Services Neutralizing antibodies to hiv-1 and their use
WO2011046623A2 (en) 2009-10-16 2011-04-21 Duke University Hiv-1 antibodies
EP2316920A1 (en) * 2009-10-30 2011-05-04 BioNTech AG Clonal expansion of B cells
CA2786664C (en) * 2010-01-08 2020-03-10 Immusoft Corporation Vectors and methods for transducing b cells
WO2011092593A2 (en) * 2010-01-20 2011-08-04 Institute For Research In Biomedicine Hiv-1 neutralizing antibodies and uses thereof
WO2013163427A1 (en) * 2012-04-25 2013-10-31 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Antibodies to treat hiv-1 infection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005111079A3 (en) * 2004-05-14 2006-06-08 Us Sec Dep Of Health And Human Hiv vaccine immunogens and immunization strategies to elicit broadly-neutralizing anti-hiv-1 antibodies against the membrane proximal domain of hiv gp41
WO2010089402A9 (en) * 2009-02-06 2010-11-04 Mymetics Corporation Splitting gp41

Also Published As

Publication number Publication date
US9475862B2 (en) 2016-10-25
US20140342407A1 (en) 2014-11-20
US20140348785A1 (en) 2014-11-27
US20160333076A1 (en) 2016-11-17
US9783595B2 (en) 2017-10-10
RU2624046C2 (ru) 2017-06-30
US10047148B2 (en) 2018-08-14
CN104080805A (zh) 2014-10-01
ZA201403264B (en) 2017-08-30
US20180002406A1 (en) 2018-01-04
BR112014010823A2 (pt) 2017-09-12
RU2014118462A (ru) 2015-12-20
EP2776463B1 (en) 2017-09-20
WO2013070776A8 (en) 2014-06-12
US10047147B2 (en) 2018-08-14
BR112014010823B1 (pt) 2021-02-17
EP2776463A4 (en) 2015-03-25
WO2013070776A1 (en) 2013-05-16
EP2776463A1 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
CN104080805B (zh) gp41中和性抗体及其用途
CN103403026B (zh) Hiv-1中和抗体及其用途
CN104271597B (zh) Hiv-1的中和抗体及其用途
ES2789348T3 (es) Anticuerpos neutralizantes para GP120 y sus usos
CN103842382B (zh) 拮抗cd40之抗体多肽
He et al. Targeted isolation of diverse human protective broadly neutralizing antibodies against SARS-like viruses
Bianchini et al. Human neutralizing antibodies to cold linear epitopes and subdomain 1 of the SARS-CoV-2 spike glycoprotein
CN103797029A (zh) 人类免疫缺陷病毒中和抗体及其使用方法
Martinez et al. Targeted isolation of diverse human protective broadly neutralizing antibodies against SARS-like viruses

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant