CN104053910A - 诱导轮 - Google Patents

诱导轮 Download PDF

Info

Publication number
CN104053910A
CN104053910A CN201380005774.7A CN201380005774A CN104053910A CN 104053910 A CN104053910 A CN 104053910A CN 201380005774 A CN201380005774 A CN 201380005774A CN 104053910 A CN104053910 A CN 104053910A
Authority
CN
China
Prior art keywords
blade
inducer
air pocket
meridian plane
plane position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380005774.7A
Other languages
English (en)
Other versions
CN104053910B (zh
Inventor
渡边启悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Publication of CN104053910A publication Critical patent/CN104053910A/zh
Application granted granted Critical
Publication of CN104053910B publication Critical patent/CN104053910B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/145Means for influencing boundary layers or secondary circulations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2261Rotors specially for centrifugal pumps with special measures
    • F04D29/2277Rotors specially for centrifugal pumps with special measures for increasing NPSH or dealing with liquids near boiling-point

Abstract

本发明涉及在具有多个同一形状的叶片的诱导轮中,能够使气穴的动作稳定性最佳化的诱导轮形状。诱导轮具有同一形状的多个叶片,其中,叶尖侧的叶片负荷在叶片的前半部比叶片的后半部大,在设诱导轮的从周向的叶片角度为βb(度),设子午面距离为m(毫米)时,叶片角度增加率dβb/dm在叶尖侧从叶片前缘到无量纲子午面位置0.15为0.2以上,并且在中间跨度中从叶片前缘到无量纲子午面位置0.15为0.25以上。

Description

诱导轮
技术领域
本发明涉及在具有同一形状的多个叶片的诱导轮中能够使气穴(cavitation)的动作稳定性最佳的诱导轮形状。
背景技术
以往,为提高泵的吸入性能,有在主轴的前端部安装被称为诱导轮的轴流型或斜流型的叶轮的情况。以往的诱导轮叶片的设计采取如下设计方法:设计沿着叶尖的叶片角度,并基于叶尖叶片角度,根据螺旋条件来决定沿着毂部的叶片角度。从诱导轮的叶尖的入口(前缘)到出口(后缘)之间的叶片角度为了满足对诱导轮要求的扬程,而被设计成:成为恒定或者阶梯状地增加、直线性地增加、二次线性地增加。
在诱导轮中,公知在泵入口压力降低时,因叶片上产生的气穴的发展,发生被称为旋转气穴或气穴浪涌(cavitation surge)等气穴动作的不稳定现象。但是,在以往的诱导轮设计方法中,没有提出抑制这些气穴不稳定现象的诱导轮叶片形状。
现有技术文献
专利文献
专利文献1:日本专利第4436248号公报
发明内容
本发明是鉴于上述情况而研发的,其目的是提供一种诱导轮,是使用如下预测评估方法导出的诱导轮,当最佳地设计泵等所使用的具有同一形状的多个叶片的诱导轮时,不使用时间成本及计算成本大的非稳态CFD,能够从稳态CFD的计算结果以更低成本预测评估气穴的动作稳定性,能够抑制气穴动作的不稳定现象。
为实现上述目的,本发明是使用预测评估具有同一形状的多个叶片的诱导轮的气穴的动作稳定性的方法导出的诱导轮。该预测评估方法是如下方法,利用CFD(Computational Fluid Dynamics;计算流体动力学)解析预测评估对象的流场,抽出各叶片的叶片面的特定方向的压力分布,特定各叶片的压力分布的特征性的压力分布形状的位置,将各位置的偏差作为表示气穴的动作稳定性的指标。
根据本发明的用于导出诱导轮的预测评估方法,利用CFD解析预测评估对象的流场,关于多个同一形状的叶片,求出各叶片的叶片面的特定方向的压力分布。例如,求出各叶片的子午面方向的叶片面静压分布。其次,特定各叶片的压力分布的特征性的压力分布形状的位置。例如,叶片面静压分布的情况下,对静压取极大值的子午面位置进行特定。然后,求出被特定的各位置的偏差,将各位置的偏差作为表示气穴的动作稳定性的指标。例如,在对静压取极大值的子午面位置进行特定的情况下,取极大值的位置的子午面位置的偏差大的情况下,评估为气穴动作的不稳定性大,取极大值的位置的子午面位置的偏差小的情况下,评估为气穴动作的稳定性大。
在各叶片的子午面中的叶尖附近,具有气穴发展的倾向,从而将特定方向的压力分布作为各叶片的子午面中的叶尖附近的压力分布。各叶片的负压面上的压力分布的极大值的位置不同是指各叶片的压力分布不同,从而能够认为气穴的分布也发生偏差。
为求出能够抑制气穴动作的不稳定现象的诱导轮形状,对于诱导轮的设计参数和所述气穴分布的偏差的大小进行灵敏度预测。该情况下,设计参数是叶尖侧的负荷分布的斜率(slope)即SLT,毂部侧的负荷分布的斜率(slope)即SLH,叶尖侧及毂部侧的发生率(Incidence)即INCT、INCH,自由涡流型或强制涡流型等的出口涡流形式。这些设计参数具有对气穴的动作稳定性影响大的参数和相反地影响小的参数。通过这些设计参数预测对气穴的动作稳定性的灵敏度,求出使气穴的动作稳定性最佳化的诱导轮形状。使所述气穴的动作稳定性最佳化包括气穴的动作稳定性最大、和在维持了诱导轮性能的基础上收敛于能够允许气穴的动作稳定性的范围内。
本发明限定了使通过上述方法得到的气穴的动作稳定性最佳化的诱导轮形状。
即,本发明的诱导轮是具有多个同一形状的叶片的诱导轮,其特征在于,叶尖侧的叶片负荷在叶片的前半部比叶片的后半部大,在设诱导轮的从周向的叶片角度为βb(度),设子午面距离为m(毫米)时,叶片角度增加率dβb/dm在叶尖侧从叶片前缘到无量纲子午面位置0.15为0.2以上,并且在中间跨度中从叶片前缘到无量纲子午面位置0.15为0.25以上。
根据本发明的优选方式,其特征在于,所述叶片角度增加率dβb/dm在叶尖侧从叶片前缘到无量纲子午面位置0.15为0.2~2.0,并且在中间跨度中从叶片前缘到无量纲子午面位置0.15为0.25~2.0。
根据本发明的优选方式,其特征在于,叶尖侧的叶片形状是如下的叶片形状:从叶片前缘到无量纲子午面位置0.2,叶片角度增加,从无量纲子午面位置0.2到0.5,叶片角度相对于子午面距离的增加率减小,从无量纲子午面位置0.5到约0.85,叶片角度再次增加,从无量纲子午面位置约0.85到叶片后缘,叶片角度减小,而且,中间跨度中的叶片形状是从叶片前缘到无量纲子午面位置0.2,叶片角度增加的叶片形状。
根据本发明的优选方式,其特征在于,所述叶尖侧的叶片形状是从无量纲子午面位置0.2到0.5,虽然叶片角度相对于子午面距离的增加率减小但叶片角度不减小的叶片形状。
本发明的泵的特征在于,具有:技术方案1至4中任一项所述的诱导轮;配置在所述诱导轮的下游侧的叶轮;支承所述诱导轮和所述叶轮的主轴。
发明的效果
根据本发明的诱导轮,能够得到高的吸入性能,并且能够抑制气穴动作的不稳定现象。
附图说明
图1是表示具有本发明的一实施方式的诱导轮的涡轮泵的一部分的剖视图。
图2是图1所示的诱导轮的立体图。
图3是用于说明3个叶片的诱导轮的吸入性能以及气穴动作的不稳定现象的发生范围及其种类的例子的图。
图4是关于图3所示的诱导轮的吸入性能,与由稳态CFD计算的结果进行比较的情况。
图5A表示从前方观察发生了由稳态CFD求出的气穴的诱导轮的形状。
图5B是表示诱导轮叶尖部附近的诱导轮各叶片的叶片面静压分布的图。
图6A是表示诱导轮内气穴空泡率50%以上的区域的体积Vc(用与诱导轮流路部体积Vind之比即Vc/Vind表示)相对于气穴数σ的变化的图。
图6B是表示诱导轮内气穴区域的分散VT相对于气穴数σ的变化的图。
图7是表示包含气穴的动作稳定性在内的诱导轮的设计最佳化的一例的流程图。
图8A是表示设计参数的例子的图,图8A表示对毂部侧和叶尖侧的诱导轮负荷分布进行设定的参数。
图8B是表示设计参数的例子的图,图8B表示设定出口涡流形式的参数。
图9A是表示设计参数对气穴体积带来的影响的图。
图9B是表示设计参数对气穴体积带来的影响的图。
图9C是表示设计参数对气穴分布的偏差带来的影响的图。
图10A是表示诱导轮负荷分布的图。
图10B是表示关于图10A的负荷分布的诱导轮通过CFD求出气穴空泡率50%的等值面的结果的图。
图10C是表示关于图10A的负荷分布的诱导轮通过CFD求出叶片面的NPSH(Net Positive Suction Head;净正吸入压头)的结果的图。
图11A是表示诱导轮负荷分布的图。
图11B是表示关于图11A的负荷分布的诱导轮通过CFD求出气穴空泡率50%的等值面的结果的图。
图11C是表示关于图11A的负荷分布的诱导轮通过CFD求出叶片面的NPSH(净正吸入压头)的结果的图。
图12A是表示诱导轮负荷分布的图。
图12B是表示关于图12A的负荷分布的诱导轮通过CFD求出气穴空泡率50%的等值面的结果的图。
图12C是表示关于图12A的负荷分布的诱导轮通过CFD求出叶片面的NPSH(净正吸入压头)的结果的图。
图13A是表示将图10A、10B、10C所示的诱导轮和图11A、11B、11C所示的诱导轮装入试验泵并确认泵性能的结果的图。
图13B是表示将图10A、10B、10C所示的诱导轮和图11A、11B、11C所示的诱导轮装入试验泵并确认泵吸入性能的结果的图。
图14A是表示关于图10A、10B、10C所示的诱导轮仅通过在诱导轮出口叶尖侧测定的静压系数来观察的吸入性能曲线的图。
图14B是表示关于图11A、11B、11C所示的诱导轮仅通过在诱导轮出口叶尖侧测定的静压系数来观察的吸入性能曲线的图。
图15是表示诱导轮的子午面方向位置、叶片角度βb、叶片角度的子午面方向变化率dβb/dm的图。
图16是用于说明无量纲子午面方向位置的变化的定义的图。
图17A是表示比较例1、本发明例1、本发明例2的设计子午面形状的图。
图17B是对于比较例1、本发明例1、本发明例2的设计子午面形状的情况下的中间跨度的角度分布进行比较的图形。
图17C是对于比较例1、本发明例1、本发明例2的设计子午面形状的情况下的叶尖侧的角度分布进行比较的图形。
图18A是表示比较例1、本发明例1、本发明例2的中间跨度中的从叶片前缘(m=0)到叶片中间部(m=0.50)为止的叶片角度的子午面方向变化率dβb/dm的图。
图18B是表示比较例1、本发明例1、本发明例2的叶尖侧的从叶片前缘(m=0)到叶片中间部(m=0.50)为止的叶片角度的子午面方向变化率dβb/dm的图。
图19A是表示使用与比较例1、本发明例1、本发明例2同样的负荷分布分别设计的诱导轮叶片即比较例2、本发明例3、本发明例4的设计子午面形状的图。
图19B是对于比较例2、本发明例3、本发明例4的设计子午面形状的情况下的中间跨度的角度分布进行比较的图形。
图19C是对于比较例2、本发明例3、本发明例4的设计子午面形状的情况下的叶尖侧的角度分布进行比较的图形。
图20A是表示比较例2、本发明例3、本发明例4的中间跨度中的从叶片前缘(m=0)到叶片中间部(m=0.50)为止的叶片角度的子午面方向变化率dβb/dm的图。
图20B是表示比较例2、本发明例3、本发明例4的叶尖侧的从叶片前缘(m=0)到叶片中间部(m=0.50)为止的叶片角度的子午面方向变化率dβb/dm的图。
具体实施方式
以下,参照附图详细说明本发明的抑制了气穴动作不稳定性的诱导轮的实施方式。在图1至图20中,对于相同或等同的构成要素标注相同的附图标记,并省略重复的说明。
图1是表示具有本发明的一实施方式的诱导轮的涡轮泵的一部分的剖视图。图1所示的涡轮泵具有:诱导轮1;配置在诱导轮1的下游侧的叶轮2;支承诱导轮1和叶轮2的主轴3。诱导轮1的轴心与叶轮2的轴心一致,诱导轮1伴随主轴3的旋转以与叶轮2相同的转速旋转。
泵的工作流体从图1的箭头F所示的方向流入诱导轮1。流入诱导轮1的工作流体在诱导轮1内产生气穴的同时升压,进而利用下游的叶轮2升压到泵的要求扬程。此时,通过诱导轮1,工作流体升压直到在叶轮2中不产生气穴的压力,与单独利用叶轮2时相比,泵的吸入性能显著提高。
图2是图1所示的诱导轮的立体图。诱导轮1具有多个叶片,在图2中,示出了具有3个叶片的诱导轮。如图2所示,诱导轮1的3个叶片从叶片前缘1le朝向叶片后缘1te形成为螺旋状。各叶片从主轴3侧的诱导轮毂部1H朝向诱导轮叶尖1T沿半径方向延伸。在图2中,叶片的背面侧是压力面Ps,前面侧是负压面Ss。
以下,关于诱导轮产生的气穴动作的不稳定现象进行说明。
图3是用于说明3个叶片的诱导轮的吸入性能以及气穴动作的不稳定现象的发生范围及其种类的例子的图。在图3中,横轴表示气穴数σ,纵轴表示诱导轮压力系数ψts。气穴数σ根据泵入口压力Pt、工作流体的饱和蒸汽压Pv、工作流体的密度ρ和诱导轮叶尖部周速度Ut而计算出。即,气穴数σ=2(Pt-Pv)/ρUt2。诱导轮压力系数ψts根据诱导轮压头H、诱导轮叶尖部周速度Ut和重力加速度g而计算出。即,诱导轮压力系数ψts=gH/Ut2
图3是描绘了使用图2所示的诱导轮并相对于设计流量(设计点流量)Qd而对实际的流量Q进行各种变更来进行实验的结果的图。在实验中,对发生气穴动作的不稳定现象的范围进行了调查。在图3中,示出了相对于设计流量Qd的流量比Q/Qd为1.0、0.9、0.8、0.7的4个流量。
图中,由实线和虚线包围的区域是发生气穴动作的不稳定现象的范围。图中,用以下的标记表示气穴动作的不稳定现象的种类。
AC:非对称气穴(各叶片的气穴成为非对称分布的现象)
RC:旋转气穴(气穴沿周向从叶片向叶片传播的现象)
CS:气穴浪涌(气穴在诱导轮内沿诱导轮上下游方向振动的现象)
MCS:弱气穴浪涌式变动
以往的课题是预测评估这些气穴的动作稳定性,构建稳定的诱导轮的设计方法。但是,在气穴的动作稳定性的预测中,如上所述地使用非稳态CFD,存在时间成本及计算成本变得过大的问题。
因此,在本发明中,采用了通过时间成本小的稳态CFD评估气穴动作的稳定性的设计方法。
以下,关于通过稳态CFD评估气穴动作的稳定性的方法进行说明。
图4是关于图3所示的诱导轮的吸入性能,对于流量比Q/Qd为1.0和0.8的情况,对由稳态CFD计算的结果进行比较的图。图中,7个圆形状的部分示出了从前方观察由稳态CFD求出的发生气穴的诱导轮的形状。在从前方观察到的诱导轮的形状中,黑色部分是气穴空泡率50%的等值面,示出了在诱导轮叶片面上发展的气穴分布。从图中可知,在从上列的左侧开始第二个及第三个形状中,用黑色部分表示的气穴的分布发生偏差。
在图4中,流量比Q/Qd为0.8的情况下,RC所示的范围是在实验中发生气穴动作的不稳定现象即旋转气穴的范围。在该RC所示的范围中,如图所示,确认了在稳态CFD中,在诱导轮的各叶片上发展的气穴分布发生偏差。即,确认了在稳态CFD中气穴分布发生偏差的范围与在实验中出现气穴动作的不稳定性的运转区域(显示为RC)一致。确认了在不发生旋转气穴的流量比1.0中,由稳态CFD求出的气穴分布不发生偏差。即,示出了根据稳态CFD的结果评估诱导轮各叶片上发展的气穴分布的偏差来由此能够评估气穴动作的不稳定性的可能性。
因此,为定量地评估气穴分布的偏差,如图5A所示地发生气穴分布的偏差的情况下,如图5B所示地将诱导轮叶尖部附近的诱导轮各叶片的叶片面静压分布上产生的偏差作为评估指标。
图5A表示从前方观察由稳态CFD求出的产生了气穴的诱导轮的形状。在图中,黑色部分是气穴空泡率50%的等值面,示出了在诱导轮叶片面上发展的气穴分布。从图5A的黑色部分的分布可知,在3个叶片(叶片1、叶片2、叶片3)上产生的气穴分布发生了偏差。
图5B是表示诱导轮叶尖部附近的诱导轮各叶片的叶片面静压分布的图。在图5B中,纵轴采用与饱和蒸汽压之差的压头NPSH(m)表示叶片面静压,横轴表示标准化的子午面位置m,m=0表示诱导轮入口,m=1表示诱导轮出口。在图5B中,示出了诱导轮叶尖侧(跨度=0.975)的叶片面静压分布。这里,跨度(span)是指从诱导轮毂部1H到诱导轮叶尖1T之间的径向位置。诱导轮毂部1H的位置为跨度=0,诱导轮叶尖1T的位置为跨度=1。NPSH(净正吸入压头)为零的范围是气穴主要在叶片面静压为饱和蒸汽压的部分中发展的范围。观察叶片面静压分布的负压面侧的静压分布时可知,静压从NPSH为零的叶片面静压是饱和蒸汽压的部分朝向诱导轮出口侧急增,各叶片(叶片1、叶片2、叶片3)分别在(1)、(2)、(3)所示的子午面位置取得极大值。如图5A所示可知,在气穴分布按每个叶片发生偏差的状态下,表示静压的极大值的子午面位置(1)、(2)、(3)也发生偏差。该偏差大的情况下,评估为气穴动作的不稳定性大,偏差小的情况下,评估为气穴动作的不稳定性小。
这里,作为表示偏差的定量性的指标,用以下的数式(1)求出表示负压面静压的极大值的子午面位置(1)、(2)、(3)的分散VT
VT={(m1-mave)2+(m2-mave)2+(m3-mave)2}/3···(1)
m1、m2、m3:表示负压面静压的极大值的(1)、(2)、(3)的子午面位置
mave:m1、m2、m3的平均值(m1+m2+m3)/3
图6A、6B是对于Q/Qd=1.0、Q/Qd=0.9和Q/Qd=0.8的情况示出了诱导轮内气穴空泡率50%以上的区域的体积Vc(用与诱导轮流路部体积Vind的比例Vc/Vind表示)和分散VT相对于气穴数σ的变化的图。图6A表示气穴体积的变化,图6B表示气穴分布的偏差的变化。在图6A、6B中,如图3所示,通过实验确认的气穴不稳定现象的发生区域标记为RC、CS、AC+MCS。观察图6A、6B时能够确认,通过实验确认的气穴不稳定现象的发生区域和通过稳态气穴解析求出的Vc/Vind、VT的变化具有相关性。即,Q/Qd=0.8的情况下,在气穴的发展发生偏差的气穴数σ(σ=0.077→0.072下的变化)中,发生旋转气穴(RC)。而且,在减少气穴数σ而得到的范围即σ=0.055→0.050下的分散VT的增加部分中,发生气穴浪涌(CS)。在这些VT增加的σ下,相对于σ的减少来说Vc/Vind的增加率大。
Q/Qd=0.9的情况下,在气穴的发展发生偏差的气穴数σ(σ=0.066→0.06下的变化)中,发生了伴随弱浪涌式变动的非对称气穴(AC+MCS)。而且,在减少气穴数σ而得到的范围即σ=0.055→0.050下的VT、Vc/Vind的增加部分中,发生了气穴浪涌(CS)。
根据以上的结果,通过稳态气穴流动解析结果求出的表示诱导轮内气穴发展动作的Vc/Vind、VT能够作为气穴不稳定现象的发生容易度的指标。例如,在诱导轮设计过程中,通过稳态气穴流动解析结果,对同一气穴数σ下的分散VT的大小进行比较,由此能够判断气穴不稳定性的优劣。
另外,这里,评估了各叶片的诱导轮叶尖侧的叶片面静压分布下的极大值的位置的分散VT,但基于稳态CFD的计算结果评估各叶片的气穴分布的偏差时,即使评估各叶片的气穴体积/规定压力以下的体积的偏差和/或各叶片的气穴区域的形状的偏差,也能够同样地判断气穴不稳定性的优劣。
即,通过稳态CFD从各叶片的叶片面抽出连续的规定压力以下的区域例如饱和蒸汽压以下的区域,与气穴空泡率的情况同样地特定所抽出的各区域所占的体积,能够评估各体积的偏差来判断气穴不稳定性的优劣。
另外,通过稳态CFD从各叶片的叶片面抽出连续的规定压力以下的区域例如饱和蒸汽压以下的区域,特定所抽出的各区域的形状,能够评估各形状自身的偏差来判断气穴不稳定性的优劣。
以上,本发明人准备了使特定的设计参数不同的多个预测对象的形状,使用稳态CFD预测相对于气穴的动作稳定性来说的灵敏度,实施了包含气穴的动作稳定性在内的诱导轮的设计最佳化。
图7是表示包含气穴的动作稳定性在内的诱导轮的设计最佳化的流程图。如图7所示,作为第一步骤S1进行设计参数的研究。图8A、8B是表示设计参数的例子的图,图8A表示对毂部侧和叶尖侧的诱导轮负荷分布进行设定的参数,图8B表示对出口涡流形式进行设定的参数。
在图8A中,横轴表示标准化的子午面位置,m=0表示诱导轮入口,m=1表示诱导轮出口,纵轴表示诱导轮负荷分布(rVθ为角动量,m为子午面位置)。如图8A所示,作为设计参数采用叶尖侧的负荷分布的斜率(slope)即SLT和毂部侧的负荷分布的斜率(slope)即SLH。另外,作为设计参数采用叶尖侧及毂部侧的发生率(Incidence)即INCT、INCH。
在图8B中,横轴表示跨度(span),跨度=0.0表示诱导轮毂部的位置,跨度=1.0表示诱导轮叶尖的位置,纵轴表示诱导轮出口的跨度方向无量纲rVθ *分布(与欧拉压头系数相当)。在图中,rVθ *类型1是自由涡流型,rVθ *类型2、rVθ *类型3是叶尖侧比毂部侧大的强制涡流型。如图8B所示,作为设计参数采用rVθ *类型1、rVθ *类型2、rVθ *类型3的出口涡流形式,在以下的说明中,将这些出口涡流形式记作RVT。
如上所述,进行了设计参数的研究之后,作为第二步骤S2,如图7所示,进行通过实验计划法对设计参数的分配。这里,实验计划法是指,在想要改善成为对象的工艺和物品等的特性而实现最佳化的情况下等,通过少的实验次数(模拟次数)对于被认为对其特性带来影响的因素是什么以及该因素的效果是多大程度进行定量的统计性的实验方法。
以下,作为第三步骤S3,进行通过三维反解法对诱导轮叶片形状的计算。该三维反解法是UCL(University College London)的Dr.Zangeneh在1991年提倡的方法,限定叶片面的负荷分布,通过数值计算决定满足其负荷分布的叶片面形状的设计方法。该三维反解法的理论的详细情况记载于公知文献(Zangeneh,M.,1991,“ACompressible Three-Dimensional Design Method for Radial and MixedFlow Turbo machinery blades”,Int.J.Numerical Methods in Fluids,Vol.13,pp.599-624)。
本发明的诱导轮通过该三维反解法进行叶片形状的计算。
然后,作为第四步骤S4,进行通过稳态CFD对性能参数的评估。如图7所示,该评估对象是扬程、效率等的一般性能、吸入性能、气穴动作的不稳定性等。
图9A、9B、9C是表示对设计参数的气穴体积及气穴的偏差带来的影响的图。
如利用图8A、8B说明的那样,设计参数是RVT、INCT、INCH、SLT、SLH这5个,使用这5个设计参数,分别如低(low)、中(middle)、高(high)这样地改变等级(Level),通过稳态CFD求出叶片形状,由此求出27个叶片形状。
图9A表示对于27个叶片形状,从在100%Qd及气穴数σ=0.066下通过CFD求出气穴体积Vc的结果导出的、对设计参数的气穴体积Vc带来的影响。在图9A中,横轴表示设计参数的等级,纵轴表示标准化的气穴体积Vc。从图9A可知,在叶尖部的发生率(INCT)大的情况下,气穴体积Vc大,在叶尖部的发生率(INCT)小的情况下,气穴体积小。其他参数(RVT、INCH、SLT、SLH)对于气穴体积Vc没有那么大的影响。
图9B表示同样地对于27个叶片形状,从在120%Qd及气穴数σ=0.15下通过CFD求出气穴体积Vc的结果导出的、对设计参数的气穴体积Vc带来的影响。在图9B中,横轴表示设计参数的等级,纵轴表示标准化的气穴体积Vc。从图9B可知,在叶尖部的发生率(INCT)小的情况下,气穴体积Vc大,在叶尖部的发生率(INCT)大的情况下,气穴体积Vc小。其他参数(RVT、INCH、SLT、SLH)对气穴体积Vc没有那么大的影响。由此可知,在超过设计流量的大流量下,通过增大叶尖部的发生率(INCT),吸入性能提高。
图9C表示同样地对于27个叶片形状,在80%Qd及气穴数σ=0.071下,从通过CFD求出气穴的偏差的结果导出的对设计参数的气穴的偏差带来的影响。偏差Vc’的数值的大小也表示各叶片的诱导轮叶尖侧(跨度=0.975)的叶片面静压分布下的极大值的位置的偏差,Vc’从数式(1)的分散VT被求出,Vc’=VT 1/2。在图9C中,横轴表示设计参数的等级,纵轴表示气穴的偏差的程度。从图9C可知,在叶尖部的发生率(INCT)大的情况下,气穴的偏差Vc’大,在叶尖部的发生率(INCT)小的情况下,气穴的偏差Vc’小。另外,在叶尖部斜率(SLT)大的情况下,气穴的偏差Vc’大,在叶尖部斜率(SLT)小的情况下,气穴的偏差Vc’小。而且,在RVT小的情况下,气穴的偏差Vc’大,在RVT大的情况下,气穴的偏差Vc’小。其他参数(INCH、SLH)对气穴的偏差Vc’没有那么大的影响。
从图9A、9B、9C所示的结果能够如下地判断。
(1)通过气穴体积的大小观察到的气穴的发展程度,叶尖侧发生率(INCT)的影响明显,其他参数的影响小。
(2)RVT、INCT、SLT对Q/Qd=0.8下的气穴的偏差的影响大。即,能够预测:在RVT小(自由涡流设计)、INCT大(叶尖侧发生率大)、SLT大(后半负荷型)的情况下,气穴的偏差大,气穴动作的不稳定性大,在RVT大(强制涡流设计)、INCT小(叶尖侧发生率小)、SLT小(前半负荷型)的情况下,气穴的偏差小,气穴动作的稳定性大。
将从以上结果求出的被预测为气穴动作最不稳定的设计结果(比较例1)、以及被预测为吸入性能高且气穴动作稳定的设计结果(本发明例1和本发明例2)作为代表性的设计结果,并如下所示。
表1表示被预测为气穴动作最不稳定的比较例1、以及被预测为吸入性能高且气穴动作稳定的本发明例1和本发明例2的设计参数。
[表1]
如表1所示,在比较例1中,RVT为低(low),INCT为高(high),SLT为高(high)。因此,从图9C可知,关于对气穴的偏差影响最大的3个设计参数(RVT、INCT、SLT),都选定了气穴发生偏差的条件。从图9C可知,关于其他的设计参数(INCH、SLH),在哪个条件下,对气穴的偏差都没有那么大的影响。
与之相对,在本发明例1及本发明例2中,RVT为高(high),INCT为高(high),SLT为低(low)。因此,从图9B可知,关于对大流量下的吸入性能(气穴体积的大小)影响最大的设计参数(INCT),选定吸入性能最佳的条件,另外,另一方面,从图9C可知,关于对气穴的偏差带来影响的3个设计参数(RVT、INCT、SLT)中的INCT以外的2个,都选定气穴体积的偏差最少的条件。从图9A、9B、9C可知,关于其他的设计参数(INCH、SLH),在哪个条件下,对吸入性能和气穴的偏差都没有那么大的影响。
图10A是表示决定比较例1的诱导轮的形状时所使用的负荷分布的形状的图。图10B、10C是关于比较例1的诱导轮通过CFD求出气穴空泡率50%的等值面及叶片面上的NPSH(净正吸入压头)的结果的图,图10B表示求出气穴空泡率50%的等值面的结果,图10C表示求出叶片面上的NPSH的结果。如图10A所示,在比较例1中,叶尖侧的负荷分布的斜率(slope)成为向右上倾斜。因此,在比较例1中,SLT大,后半部分的负荷变大(后半负荷型)。另外,如图10C所示,在比较例1中,观察叶片面静压分布的负压面侧的静压分布时,静压从NPSH为零的叶片面静压是饱和蒸汽压的部分朝向诱导轮出口侧急增,各叶片(叶片1、叶片2、叶片3)分别在(1)、(2)、(3)所示的子午面位置取得极大值。像这样,表示静压的极大值的子午面位置(1)、(2)、(3)的偏差大的情况下,能够评估为气穴动作的不稳定性大。
图11A是表示决定本发明例1的诱导轮的形状时所使用的负荷分布的形状的图。图11B、11C是表示关于本发明例1的诱导轮通过CFD求出诱导轮负荷分布、气穴空泡率50%的等值面及叶片面上的NPSH(净正吸入压头)的结果的图,图11B表示求出气穴空泡率50%的等值面的结果,图11C表示求出叶片面上的NPSH的结果。如图11A所示,在本发明例1中,叶尖侧的负荷分布的斜率(slope)成为向右下倾斜。因此,在本发明例1中,SLT小,前半部分的负荷变大(前半负荷型)。另外,如图11B所示,在黑色部分所示的诱导轮的各叶片面上发展的气穴分布没有发生偏差。而且,如图11C所示,在本发明例1中,观察叶片面静压分布的负压面侧的静压分布时,静压从NPSH为零的叶片面静压是饱和蒸汽压的部分朝向诱导轮出口侧急增,各叶片(叶片1、叶片2、叶片3)都在子午面位置m=0.45左右取得极大值。像这样,表示静压的极大值的子午面位置的偏差小的情况下,能够评估为气穴动作的稳定性大。
图12A是表示决定本发明例2的诱导轮的形状时所使用的负荷分布的形状的图。图12B、12C是表示关于本发明例2的诱导轮通过CFD求出气穴空泡率50%的等值面及叶片面上的NPSH(净正吸入压头)的结果的图,图12B表示求出气穴空泡率50%的等值面的结果,图12C表示求出NPSH的结果。如图12A所示,在本发明例2中,叶尖侧的负荷分布的斜率(slope)成为向右下倾斜。因此,在本发明例2中,SLT小,前半部分的负荷变大(前半负荷型)。另外,如图12B所示,在黑色部分所示的诱导轮的各叶片面上发展的气穴分布没有发生偏差。另外,如图12C所示,在本发明例2中,观察叶片面静压分布的负压面侧的静压分布时,静压从NPSH为零的叶片面静压是饱和蒸汽压的部分朝向诱导轮出口侧急增,各叶片(叶片1、叶片2、叶片3)都在子午面位置m=0.45附近取得极大值。像这样,表示静压的极大值的子午面位置的偏差小的情况下,能够评估为气穴动作的稳定性大。
图13A、13B是表示将图10A、10B、10C所示的比较例1的诱导轮和图11A、11B、11C所示的本发明例1的诱导轮装入试验泵,确认泵性能的结果的图。图13A表示分别装入了比较例1的诱导轮及本发明例1的诱导轮的泵中的扬程特性和效率,图13B表示分别装入了比较例1的诱导轮及本发明例1的诱导轮的泵中的吸入比速度。如图13A所示可知,装入了比较例1的诱导轮和本发明例1的诱导轮的泵的扬程特性和效率除了Q/Qd>1.7以上的过大流量侧以外几乎相同,没有变化。如图13B所示可知,装入了本发明例1的诱导轮的泵与装入了比较例1的诱导轮的泵相比,吸入性能在大流量侧、小流量侧都更好。由此,确认了与通过最佳化设计过程预测的本发明例1的诱导轮的吸入性能相关的优势。
图14A、14B是表示关于比较例1的诱导轮和本发明例1的诱导轮通过在诱导轮出口叶尖侧测定的静压系数观察到的吸入性能曲线的图。在图14A、14B中,出现气穴不稳定现象的区域在图中用围合线反映。
如图14A所示,在比较例1的诱导轮中,在流量比Q/Qd=0.9、0.8和0.7时,发生了旋转气穴(RC)。另外,在流量比Q/Qd=1.0和0.9时,发生了非对称气穴(AC)。而且,在流量比Q/Qd=1.0的气穴浪涌将要发生之前和流量比Q/Qd=0.9、0.8时,在气穴数σ=0.1附近,发生了弱气穴浪涌式变动(MCS)。
如图14B所示,在本发明例1的诱导轮中,旋转气穴(RC)仅在流量比Q/Qd=0.8时发生。另外,没有发生非对称气穴(AC)。在流量比Q/Qd=1.0和0.9时,在比发生气穴浪涌时大的气穴数σ下,发生了弱气穴浪涌式变动(MCS),但与比较例1的诱导轮相比,可知气穴不稳定现象整体上减弱,是稳定性更高的诱导轮。
以上,通过实验确认了通过最佳化过程预测的本发明例1的诱导轮的稳定性和吸入性能的优势。
以下,对比较例1、本发明例1、本发明例2中的诱导轮的叶片角度分布进行比较。图15是表示诱导轮的子午面方向位置和叶片角度βb、叶片角度的子午面方向变化率dβb/dm的图。即,图15表示诱导轮叶片的形状(上侧的图)和放大虚线部的图(下侧的图),在放大图中,示出了无量纲子午面方向位置m处的叶片的中弧线(camberline)和周向所成的角(叶片角度)βb和叶片角度的子午面方向的变化率dβb/dm。
图16是用于说明无量纲子午面方向位置的变化的定义的图。即,图16表示在诱导轮的子午面形状上以2个点特定的无量纲子午面位置和放大具有2个点的部分的图,在放大图中示出了2个点m1、m2的关系。这里,设无量纲子午面方向位置的变化为Δm时,m2=m1+Δm,Δm=((ΔZ)2+(Δr)2)0.5
图17A是表示比较例1、本发明例1、本发明例2的设计子午面形状的图。如图17A所示,在本设计例中,叶尖侧是与主轴的轴向平行的直线,毂部侧是曲线形状。
图17B及图17C是对于比较例1、本发明例1、本发明例2的设计子午面形状的情况下的中间跨度和叶尖侧的角度分布进行比较的图形。在图17B、17C中,横轴表示无量纲子午面位置(m),纵轴表示叶片角度(βb)。如图17B、17C所示,在气穴动作稳定的本发明例1、本发明例2中,叶尖侧的叶片形状的特征是,从叶片前缘到无量纲子午面位置0.2,叶片角度增加,从无量纲子午面位置0.2到0.5,相对于子午面距离的叶片角度的增加率减少,但从无量纲子午面位置0.5到约0.85,叶片角度再次增加,从无量纲子午面位置约0.85到叶片后缘,叶片角度减小,而且,中间跨度中的叶片形状的特征是,从叶片前缘到无量纲子午面位置0.2,叶片角度增加。此外,本发明例1、本发明例2的叶尖侧的叶片形状是从无量纲子午面位置0.2到0.5,虽然叶片角度的增加率减小但叶片角度自身不减小的叶片形状。
图18A及图18B分别表示比较例1、本发明例1、本发明例2的中间跨度和叶尖侧的从叶片前缘(m=0)到叶片中间部(m=0.50)之间的叶片角度的子午面方向变化率dβb/dm的图。
从图18A及图18B可知,在气穴动作稳定的本发明例1、本发明例2中,其特征是,叶片角度增加率dβb/dm在叶尖侧从叶片前缘到无量纲子午面位置0.15为0.2以上,并且在中间跨度中从叶片前缘到无量纲子午面位置0.15为0.25以上。更详细来说,在本发明例1、本发明例2中,其特征是,叶片角度增加率dβb/dm在叶尖侧从叶片前缘到无量纲子午面位置0.15为0.2~2.0,并且在中间跨度中从叶片前缘到无量纲子午面位置0.15为0.25~2.0。
图19A是表示使用与比较例1、本发明例1、本发明例2同样的负荷分布分别设计的诱导轮叶片的比较例2、本发明例3、本发明例4的设计子午面形状的图。如图19A所示,在本设计例中,在毂部侧、叶尖侧双方,都是与主轴的轴向平行的直线形状。
图19B及图19C是对比较例2、本发明例3、本发明例4的设计子午面形状的情况下的中间跨度和叶尖侧的角度分布进行比较的图形。在图19B、19C中,横轴表示无量纲子午面位置(m),纵轴表示叶片角度(βb)。如图19B、19C所示,在气穴动作稳定的本发明例3、本发明例4中,叶尖侧的叶片形状的特征是,从叶片前缘到无量纲子午面位置0.2,叶片角度增加,从无量纲子午面位置0.2到0.5,叶片角度相对于子午面距离的增加率减小,但从无量纲子午面位置0.5到约0.85,叶片角度再次增加,从无量纲子午面位置约0.85到叶片后缘,叶片角度减少,而且,中间跨度中的叶片形状的特征是,从叶片前缘到无量纲子午面位置0.2,叶片角度增加。此外,本发明例3、本发明例4的叶尖侧的叶片形状是从无量纲子午面位置0.2到0.5,虽然叶片角度的增加率减小但叶片角度自身不减小的叶片形状。
图20A及图20B分别表示比较例2、本发明例3、本发明例4的中间跨度和叶尖侧的从叶片前缘(m=0)到叶片中间部(m=0.50)的叶片角度的子午面方向变化率dβb/dm的图。
从图20A及图20B可知,在气穴动作稳定的本发明例3、本发明例4中,其特征是,叶片角度增加率dβb/dm在叶尖侧从叶片前缘到无量纲子午面位置0.15为0.2以上,并且在中间跨度中从叶片前缘到无量纲子午面位置0.15为0.25以上。更详细来说,在本发明例3、本发明例4中,其特征是,叶片角度增加率dβb/dm在叶尖侧从叶片前缘到无量纲子午面位置0.15为0.2~2.0,并且在中间跨度中从叶片前缘到无量纲子午面位置0.15为0.25~2.0。
这些特征与比较例1、本发明例1、本发明例2相同。
至此关于本发明的实施方式进行了说明,但本发明不限于上述实施方式,在其技术思想的范围内,当然能够以各种不同的形态实施。
工业实用性
本发明能够用于在具有多个同一形状的叶片的诱导轮中,能够使气穴的动作稳定性最佳的诱导轮形状。
附图标记的说明
1    诱导轮
1le  叶片前缘
1te  叶片后缘
1H   诱导轮毂部
1T   诱导轮叶尖
2    叶轮
3    主轴

Claims (5)

1.一种诱导轮,具有多个同一形状的叶片,其特征在于,叶尖侧的叶片负荷在叶片的前半部比叶片的后半部大,在设诱导轮的从周向的叶片角度为βb(度)、设子午面距离为m(毫米)时,叶片角度增加率dβb/dm在叶尖侧从叶片前缘到无量纲子午面位置0.15为止为0.2以上,并且在中间跨度中从叶片前缘到无量纲子午面位置0.15为止为0.25以上。
2.如权利要求1所述的诱导轮,其特征在于,所述叶片角度增加率dβb/dm在叶尖侧从叶片前缘到无量纲子午面位置0.15为止为0.2~2.0,并且在中间跨度中从叶片前缘到无量纲子午面位置0.15为止为0.25~2.0。
3.如权利要求1或2所述的诱导轮,其特征在于,叶尖侧的叶片形状是如下的叶片形状:从叶片前缘到无量纲子午面位置0.2为止,叶片角度增加,从无量纲子午面位置0.2到0.5为止,叶片角度相对于子午面距离的增加率减小,从无量纲子午面位置0.5到大约0.85为止,叶片角度再次增加,从无量纲子午面位置大约0.85到叶片后缘为止,叶片角度减小,
而且,中间跨度中的叶片形状是从叶片前缘到无量纲子午面位置0.2为止,叶片角度增加的叶片形状。
4.如权利要求3所述的诱导轮,其特征在于,所述叶尖侧的叶片形状是从无量纲子午面位置0.2到0.5为止,虽然叶片角度相对于子午面距离的增加率减小但叶片角度不减小的叶片形状。
5.一种泵,其特征在于,具有:
权利要求1至4中任一项所述的诱导轮;
配置在所述诱导轮的下游侧的叶轮;以及
支承所述诱导轮和所述叶轮的主轴。
CN201380005774.7A 2012-01-18 2013-01-17 诱导轮 Active CN104053910B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012008333 2012-01-18
JP2012-008333 2012-01-18
PCT/JP2013/050787 WO2013108832A1 (ja) 2012-01-18 2013-01-17 インデューサ

Publications (2)

Publication Number Publication Date
CN104053910A true CN104053910A (zh) 2014-09-17
CN104053910B CN104053910B (zh) 2016-11-23

Family

ID=48799256

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380005774.7A Active CN104053910B (zh) 2012-01-18 2013-01-17 诱导轮

Country Status (6)

Country Link
US (1) US9964116B2 (zh)
EP (1) EP2806169A4 (zh)
JP (1) JP6026438B2 (zh)
KR (1) KR101968372B1 (zh)
CN (1) CN104053910B (zh)
WO (1) WO2013108832A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107923408A (zh) * 2015-09-14 2018-04-17 株式会社 Ihi 诱导轮及泵

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6677608B2 (ja) * 2016-09-05 2020-04-08 株式会社東芝 水力機械の壊食予測装置および予測方法
KR20190026302A (ko) 2017-09-05 2019-03-13 이종천 인듀서
KR102163586B1 (ko) 2018-10-23 2020-10-08 한국항공우주연구원 일체형 다단 인듀서
JP7140030B2 (ja) * 2019-03-28 2022-09-21 株式会社豊田自動織機 燃料電池用遠心圧縮機
US11835058B2 (en) * 2020-04-23 2023-12-05 Mitsubishi Heavy Industries Marine Machinery & Equipment Co., Ltd. Impeller and centrifugal compressor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86204176U (zh) * 1986-06-16 1987-06-10 中国石化销售公司山西省石油公司 有诱导轮的多级卧式离心泵
JPH05332300A (ja) * 1991-03-29 1993-12-14 Natl Aerospace Lab 高速ポンプのインデューサ装置
JPH09144699A (ja) * 1995-11-17 1997-06-03 Ishikawajima Harima Heavy Ind Co Ltd インデューサの不安定流動抑制装置
US6435829B1 (en) * 2000-02-03 2002-08-20 The Boeing Company High suction performance and low cost inducer design blade geometry
CN2572073Y (zh) * 2002-08-21 2003-09-10 北京建大流体技术研究院 一种具有变导程叶片型线的螺旋轴流泵叶轮
CN1682034A (zh) * 2002-07-12 2005-10-12 株式会社荏原制作所 导流叶轮及带导流叶轮的泵
JP2005330865A (ja) * 2004-05-19 2005-12-02 Mitsubishi Heavy Ind Ltd インデューサ
CN201363320Y (zh) * 2009-01-13 2009-12-16 北京巡航高科技有限公司 切线旋涡泵

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3163119A (en) 1961-07-03 1964-12-29 North American Aviation Inc Inducer
US3951565A (en) 1974-12-09 1976-04-20 Rockwell International Corporation High suction inducer
DE69420745T2 (de) * 1994-06-10 2000-04-27 Ebara Corp Zentrifugal-oder halbaxialturbomaschinen
FR2765639B1 (fr) 1997-07-04 2004-11-26 Europ Propulsion Equipement d'inducteur pour pompe a grande capacite d'aspiration
JP2003065298A (ja) * 2001-08-29 2003-03-05 Ishikawajima Harima Heavy Ind Co Ltd 遠心圧縮機
US7097414B2 (en) 2003-12-16 2006-08-29 Pratt & Whitney Rocketdyne, Inc. Inducer tip vortex suppressor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86204176U (zh) * 1986-06-16 1987-06-10 中国石化销售公司山西省石油公司 有诱导轮的多级卧式离心泵
JPH05332300A (ja) * 1991-03-29 1993-12-14 Natl Aerospace Lab 高速ポンプのインデューサ装置
JPH09144699A (ja) * 1995-11-17 1997-06-03 Ishikawajima Harima Heavy Ind Co Ltd インデューサの不安定流動抑制装置
US6435829B1 (en) * 2000-02-03 2002-08-20 The Boeing Company High suction performance and low cost inducer design blade geometry
CN1682034A (zh) * 2002-07-12 2005-10-12 株式会社荏原制作所 导流叶轮及带导流叶轮的泵
CN2572073Y (zh) * 2002-08-21 2003-09-10 北京建大流体技术研究院 一种具有变导程叶片型线的螺旋轴流泵叶轮
JP2005330865A (ja) * 2004-05-19 2005-12-02 Mitsubishi Heavy Ind Ltd インデューサ
CN201363320Y (zh) * 2009-01-13 2009-12-16 北京巡航高科技有限公司 切线旋涡泵

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107923408A (zh) * 2015-09-14 2018-04-17 株式会社 Ihi 诱导轮及泵

Also Published As

Publication number Publication date
EP2806169A4 (en) 2016-04-20
KR20140123949A (ko) 2014-10-23
JPWO2013108832A1 (ja) 2015-05-11
US20150010394A1 (en) 2015-01-08
WO2013108832A1 (ja) 2013-07-25
JP6026438B2 (ja) 2016-11-16
KR101968372B1 (ko) 2019-08-13
CN104053910B (zh) 2016-11-23
EP2806169A1 (en) 2014-11-26
US9964116B2 (en) 2018-05-08

Similar Documents

Publication Publication Date Title
CN104053910A (zh) 诱导轮
Kim et al. Design optimization of a centrifugal pump impeller and volute using computational fluid dynamics
Kim et al. Optimization of vane diffuser in a mixed-flow pump for high efficiency design
Pei et al. Multi-point optimization on meridional shape of a centrifugal pump impeller for performance improvement
CN107592896B (zh) 用于对涡轮转子叶片进行造型的方法
Chakraborty et al. Numerical analysis on effects of blade number variations on performance of centrifugal pumps with various rotational speeds
Schmucker et al. Two-way coupled fluid structure interaction simulation of a propeller turbine
Tesch et al. An experimental investigation of a tandem stator flow characteristic in a low speed axial research compressor
JP5770993B2 (ja) インデューサ又は羽根車のキャビテーション挙動安定性を予測評価する方法
Jese et al. High head pump-turbine: Pumping mode numerical simulations with a cavitation model for off-design conditions
Ju et al. Optimization of centrifugal impellers for uniform discharge flow and wide operating range
Mao et al. Applications of different turbulence models in simulations of a large annular volute-type pump with the diffuser
Abbas Cavitation in centrifugal pumps
Zhang et al. Numerical investigation on performance of the adjustable ejector
Peng et al. Research on wear properties of centrifugal dredge pump based on liquid-solid two-phase fluid simulations
CN104598674B (zh) 基于能量梯度理论的分流叶片进口直径确定方法
Chen et al. Study on the impact of fouling on axial compressor stage
Li Validating full cavitation model with an experimental centrifugal pump
EP1977083A1 (en) Turbine blade with recessed tip
CN206162530U (zh) 基于熵产和叶片载荷联合约束设计方法制造的离心泵叶轮
Moon et al. Effects of geometry on sealing effectiveness of a rim seal
Huang et al. Numerical investigation of condensing flow of low pressure steam turbine at different flow rate conditions
Ma et al. Effects of axial non-uniform tip clearances on aerodynamic performance of a transonic axial compressor
Wei et al. Cavitating flow investigation inside centrifugal impellers for a condensate pump
Litfin et al. On the Effect of Trailing Edge Under-Filing on the Apparent Slip Factor of Centrifugal Impellers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant