CN104025253A - 光伏电池中i-iii-vi2层和背接触层之间的改良界面 - Google Patents

光伏电池中i-iii-vi2层和背接触层之间的改良界面 Download PDF

Info

Publication number
CN104025253A
CN104025253A CN201280058156.4A CN201280058156A CN104025253A CN 104025253 A CN104025253 A CN 104025253A CN 201280058156 A CN201280058156 A CN 201280058156A CN 104025253 A CN104025253 A CN 104025253A
Authority
CN
China
Prior art keywords
layer
metal
contact layer
iii
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280058156.4A
Other languages
English (en)
Other versions
CN104025253B (zh
Inventor
斯蒂芬妮·安格尔
卢多维克·帕里西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electricite de France SA
Original Assignee
Nexcis SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexcis SAS filed Critical Nexcis SAS
Publication of CN104025253A publication Critical patent/CN104025253A/zh
Application granted granted Critical
Publication of CN104025253B publication Critical patent/CN104025253B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02614Transformation of metal, e.g. oxidation, nitridation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • H01L31/03928Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate including AIBIIICVI compound, e.g. CIS, CIGS deposited on metal or polymer foils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种制造具有光伏特性的I-III-VI2层的方法,包括:金属在衬底上的沉积以形成接触层,光伏层的前体在接触层上的沉积,以及添加了元素VI的前体的热处理以形成I-III-VI2层。元素VI通常在热处理过程中扩散到接触层(MO)中并且与金属结合在接触层上形成表面层(SUP)。在本发明的方法中,金属沉积包括一个步骤,在该步骤中,一种添加元素被添加到金属中以在接触层上形成一种化合物(MO-EA),作为元素VI的扩散阻挡层,从而能够精确地控制表面层的特性,特别是其厚度。

Description

光伏电池中I-III-VI2层和背接触层之间的改良界面
现在有很多包括电能存储系统的电力系统本发明涉及一种具有光伏特性的I-III-VI2层的制造,特别是但不限于在太阳能电池中的应用。
一种具有与以光吸收薄膜形式存在的I-III-VI2相似或相同的化学计量的材料适于应用在这种电池中。元素I可以例如是铜Cu(周期分类中的第I栏)。元素III可以是铟In,镓Ga或者铝Al(周期分类中的第III栏)。元素VI可以例如是硫S或者硒Se(周期分类中的第VI栏)。I-III-VI2合金通常被称为CIGS(C指铜,I指铟,G指镓以及S指硫和/或硒)。
在一种经济而且能够简单地工业化实施的有利方法中,元素I和III作为前体,例如通过电解或溅射沉积在一种通常是钼Mo(以下通称为“金属”)的薄金属电接触层上。这种接触层事先,例如通过溅射沉积在一种金属衬底或玻璃衬底(以下通称为“衬底”)上。
然后例如在一个具有硫和/或硒环境的炉中,通过和I-III前体的高温反应加入元素VI。这一步骤被称为“硫化”或者“硒化”。获得的微晶态合金是合成物I-III-VI2并且具有黄铜矿结构;这种合成物的形成以下被称为“硫族元素化(chalcogenization)”。这种合金有利地具有光伏特性并且其作为一种薄膜的集成使其成为一种光电池制造的所选材料。
在形成光伏合金的硒化和/或硫化步骤中,可以观察到由于在接触层的金属以及在该步骤中添加的元素VI二者的结合而自发形成的一层合成物自然层。例如,在接触层的金属为钼并且元素VI是硒的例子中,可以在硒与接触层的Mo金属反应的硒化过程中,在接触层的钼以及上述CIGS之间的界面观察到MoSe2层的自然形成。
如此元素VI可以在热处理过程中扩散到接触层,通过与金属结合在接触层上形成一表面层。
由于许多原因,这个表面层(以MoSe2作为非限定性例子)是有益的。
例如,这个表面层有利地促进了I-III-VI2层和接触层的金属之间的准欧姆电接触。通过控制表面层的厚度和形态,特别是其结晶方向可以确定I-III-VI2层与接触层之间界面的结合性能以及电性能。
它也在激光蚀刻工艺的优化过程中起作用,特别是I-III-VI2层的优化。
该表面层的性能需要得到控制,特别是形态和/或厚度,来确保表面层平面内的这些特性的同一性(在平面(X,Y)上的同一性,Z轴为这些层的生长轴)。
本发明改善了现状。
它提出了一种制造具有光伏特性的I-III-VI2层的方法,包括:
-金属沉积在衬底上以形成接触层,
-光伏层的前体沉积在接触层上,以及
-前体的热处理中加入元素VI以形成I-III-VI2层。
如上所述,元素VI在热处理过程中扩散到接触层中并且与金属结合在接触层上形成上述类型的表面层。
在本发明的方法中,金属沉积包括一个步骤,在该步骤中一种添加元素被添加到金属中以在接触层上形成一种化合物,作为元素VI扩散的阻挡物,特别是为了控制有关厚度和/或形态的表面层特性。
本发明的一个优点包括元素VI扩散的阻挡物,其实际上在通常的金属沉积操作过程中以一种简单的方式形成。例如,当金属沉积发生在一个真空室中时,在金属沉积步骤中的一个步骤中添加元素结合到金属层中,无需暴露到大气中也没有改变室。正如下面给出的几个例子中可以看到的,在阻挡层沉积步骤过程中可非常简便地将添加元素引入到相同的室中。
例如,金属沉积可以通过利用载气(通常是氩气)溅射靶材的技术在真空下发生。这种技术通常被称为溅射或PVD(物理气相沉积)。在一个添加元素为,例如,氮(或者作为一种变体,氧)的实施例中,能够将添加元素添加到载有等离子体的气体中。这被称为金属靶材的反应溅射。
在沉积阻挡层的上述步骤中,在等离子气体中的混合物包括:
-氩以及
-例如氮
(例如比例为10~50%,尤其是15~25%范围内的氮)。
要注意的是作为一种变体,也能够直接在靶材中提供添加元素,从而沉积在带金属的衬底上,典型地是按照通过靶材的合成物确定的金属/添加元素的比例。
以更通用的术语来说,通过溅射含有所述金属的溅镀靶材沉积金属,然后通过一种含有所述添加元素的等离子体实施溅射以形成阻挡层并且,在一个变体中,在形成阻挡层的所述步骤中,溅射含有钼和添加元素(例如诸如钛的另一种金属,在与钼结合之后也形成了硒的阻挡物)的溅镀靶材。
在一个可能的实施例中,沉积阻挡层的步骤之后可以为不具有添加元素的金属沉积,以控制表面层的特性。
在一个变体中,沉积阻挡层的步骤结束了接触层的一般沉积。这种变体将表面层限制在一个非常小的厚度(在MoSe2的特定例子中仅为几钠米)。
优选地,所述沉积阻挡层的步骤之前是无所述添加元素的金属沉积,特别是为了确保接触层拥有优良的传导特性。
例如,衬底无需离开真空室并多次通过同一金属靶材前或一次通过在多个金属靶材,则金属可以通过溅射沉积在衬底上。例如,在金属靶材前的倒数第二次或最后一次通过可以利用反应溅射发生来形成阻挡层。
在一个具体方案实施例中,接触层的金属可以是钼(沉积在玻璃衬底或金属衬底上)。然而其他变体也是可以的。例如,金属衬底的情况下,可以选择一种镍的适配层,那么所述接触层的金属则为镍。在其他变体中,可以使用钛,铬,金和/或钌(以形成这些金属的氮化物和/或氧化物,作为阻挡材料)。
添加元素可以是以下元素的至少一种:
-氮,以形成一种作为阻挡材料的氮化物防止元素VI的扩散,
-氧,以形成一种作为阻挡材料的氧化物防止元素VI的扩散,以及
-一种金属(例如钛或铬,或其他)以形成一种作为防护材料的合金防止元素VI的扩散。
如上所述,元素VI可以是硒(或者硫或者二者的混合物)。
金属可以,例如,通过在真空中溅射靶材而沉积。在添加元素为氮(或氧)的示例性情况中,如上所述,等离子气体(通常为氩)可以包含一定比例的氮(或氧),比例范围例如为10~50%(例如在15~25%的范围内的大约20%)。
例如,如果通常一个衬底连续在金属溅射靶材前通过多次,这些不同的通过仅在氩气等离子体中进行,除了例如在倒数第二次通过期间,该次通过在所述金属靶材前进行,该靶材在含有例如氩和氮的混合物的等离子体中溅射。
于是形成“叠层”,其包括:
-一相对较厚的金属层,例如钼的金属层,为将来的光伏电池确保良好的背接触,
-一氮化钼薄层,形成防止元素VI的扩散的阻挡物,位于厚层之上,以及
-另一层纯钼的薄层,用途是与元素VI反应以形成所述表面层(例如MoSe2,如果元素VI是硒)。这个薄层之后被称为“牺牲层”。
通常基于元素I和III的前体,可以通过电解沉积。例如一项技术包括沉积一铜层,然后沉积一层或多层元素III(铟和/或镓),并且在元素VI的环境中热处理该叠层。
然而,一种可能的变体包括通过溅射沉积前体,最好在相同的用于获得接触层的沉积室中(再一次无需暴露在空气中且无需随后安放在第二个真空室中)。当然应该阐明,在溅射室中无法获得绝对真空。“在真空环境中溅射”这句话是指在形成过程中放置在足够避免金属层的污染的真空环境中(在小于10-5巴的室内的压力)。
如此阻挡层在光电池中构成了本发明实施方法的一个性能特点并且特别地本发明也涉及这种光电池,包括:
-一元素I,III和VI的合金层,该层具有光伏特性,以及
-一接触层,由在光电层下的一种金属构成。
一中间层,位于光电层和接触层之间,包括一种金属-元素VI的化合物(例如MoSe2)。
本发明的电池还包括位于金属-元素VI化合物层之下的一个层,该层包括一种添加元素,与所述金属构成了一种化合物以形成元素VI扩散的阻挡物。
本发明的电池的部分表示可以如图5B所示,该图将作为一个示例性实施例描述如下。
本发明的其他特点和优点在阅读下列出于说明性目的而表示的非限定性示例性实施例的详细描述以及查阅附图之后将更加明显,附图包括:
-图1阐明了根据上面提出的方法的一个实施例,作为前体的一个层I和III的叠层,
-图2阐明了一个示例性实施例,在该实施例中初次加热处理应用到先导中以结合元素I和III,
-图3阐明了元素VI存在时的二次热处理,
-图4阐明了在二次热处理之后最终获得的I-III-VI2合金层(标记C136),
-图5A阐明了在本发明的一个示例性实施例中,对应于图1的叠层中的接触层的细节,
-图5B阐明了本发明在相对于图3的二次热处理之后的接触层的细节,
-图6图示性阐明了实施本发明的装置,
-图7阐明了示例性实施例中在硒上实施的SIMS(二次离子质谱)测量的比较曲线(带阻挡层:曲线1,无阻挡层:曲线2),图中曲线3阐明了钼的测量结果以及曲线4为氮的测量结果,在该实施例中,在阻挡层的沉积过程中添加到钼中的元素为氮。
在一个示例性实施例中,例如通过溅射(或者PVD)沉积钼Mo层,其作为光伏电池的一个背接触层。该层厚度近似一微米,例如在0.3和0.8μm之间。本发明在实施该初次沉积方面的性能特点根据图5A,5B,6和7说明如下。
接下来,通过沉积创建多层元素I和III的叠层(例如C1为元素I层并且C3为元素III层)。可以这样安排,元素I的层C1与元素III的层C3间隔(如图1所示)。
在以下描述的一个特殊实施例中,下面的叠层通过电解沉积:
-一层150~200nm厚的铜层,
-一层300~500nm厚的铟层,
-一层100~200nm厚的镓层。
接着,叠层在温度大约为80℃~120℃的退火状态下退火(图2中的T°箭头)并且持续几十分钟的时间(例如大约30分钟),以最终获得一层I-III前体层C13。
接下来,如图3所示,在添加元素VI例如硫和/或硒(图3中“EL6”箭头)的同时实施热处理。添加元素VI的状态可能相当于例如注入硒蒸汽,在几分钟内温度从500升到700℃的退火。这样,硒EL6能够与层C13的铜,铟和/或镓反应,同时温度保持在500~700℃。获得一层均匀且优质的合金I-III-VI2层C136,如图4所示。然而,元素VI也与接触层的金属反应,并且金属-元素VI的化合物(例如MoSe2)的表面层SUP自然生成。
在本发明中,意图是想控制该层SUP的特性(特别是厚度和形态)。现在将描述实现此目的的一个实施例的具体案例,参考图6。衬底SUB可以沉积在一个薄膜沉积室的一个可移动样品台上。该室CHAMB确保了非常低压的条件(“近似于真空”,例如小于10-5巴)以避免被当前正在沉积的层中非所需物质的污染。
该室包括待沉淀的金属源(例如钼),可能是以溅镀靶材的形式,暴露在氩或另一种惰性气体的等离子体的作用下。通过这种方式溅射的金属原子沉积在衬底SUB上。如上所述,支撑衬底的设备可以通过一种确保钼层沉积的均匀性的方式移动。例如,在该来源前可经过衬底SUB N次(例如N=4)。在根据本发明的一个实施例中,在这些通过的至少一次通过过程中(第j次通过),氮PN的大约20%被引入到等离子体中。
在图5A中以横截面视图的形式表示出在添加元素VI之前由这种实施例形成的薄膜叠层。特别是,Mo的薄膜具有一种结构,其中包括:
-衬底SUB上的钼Mo(相当“纯”或至少“可导电”)
-钼和一种添加元素例如此处描述的示例性实施例中的氮的混合物MO-EA,这种混合物有利地形成了防止元素VI(例如硒和/或硫)在图3的热处理过程中的移动的阻挡物。
-以及钼Mo(“牺牲层”),表示为SAC,在与之后I-III层的界面上,在热处理之前。
在该具体案例实施例中,例如N=4而且j=3,参考图6使用在前面使用过的符号。
现在参考图5B,表面层SUP在热处理之后在阻挡层MO-EA上形成,其作为“牺牲”层SAC的钼与例如产生于元素VI的添加的硒(在“硒化”步骤中)之间反应的产物,具有通常可见的化合物MoSe2
这是表面层SUP,其特性(特别是厚度和形态)由用于防止元素VI扩散的阻挡层MO-EA密切控制。
下面的表格给出了依照图6所显示的钼层沉积的详细特点,如添加元素VI之前所显示的(图5A)。
典型地,在硒化热处理之前(图5A),与衬底接触的钼层可以为接近450nm的厚度。然后阻挡层MO-EA可以是低于100nm的厚度,并且牺牲层SAC的厚度大约可以为60nm。
在硒化热处理之后(图5B),形成了表面层SUP。该层的平面x,y的厚度的变化(z为层厚度的轴)小于或大约等于10%,根据利用透射电子显微镜(TEM)测量的测量值。
这种变化相对于现有技术中通常可见的MoSe2层(其无阻挡层)的变化是很小的。特别是这种现有技术中的MoSe2层显示出非常不均匀的形态。其在平面x,y的厚度以无序且不均匀的方式变化。相反,通过本发明方法获得的MoSe2层更薄并且显示出更加均匀的形态。
在图5A和5B中显示的这种实施例中,允许特定厚度的牺牲层SAC的存在。然而,在图5A和5B中所示的实施例的一个变体中,可能以阻挡层MO-EA“终止”钼层(利用上述符号,因此j=N)。在这些情况下,通过TEM显微镜已经观察到,仍可以获得MoSe2的表面层,但是非常薄(小于10nm厚)。
因此,本发明允许控制表面层SUP的厚度,或者甚至将其减小到近似几钠米的厚度。
表面层的厚度因此可以根据实施选择最优化。如果阻挡层在与I-III前体的界面上,则表面层的厚度可以减小到近似小于10nm。这种厚度已经可以足够为该Mo-VI层提供所期望的特性(优良的接触质量,激光蚀刻的效用和/或其他)。
更一般地说,表面层的厚度从而可以比先前技术控制地更精确。如上所述,通过TEM显微镜所获取的该层厚度测量值相比先前技术显示出在该层平面上的改进的均匀性,具有小于10%的平均变化,这也显示了通过本发明方法获取的表面层的形态改进。
与衬底接触的Mo层的厚度通常近似于450nm以便能够保证好的导电性并且帮助获得I和III前体在电沉积中的优良均匀性。然而由于通过根据本发明的表面层SUP所获得的电沉积性能的改进,厚度也可以减小,从而将减小制造成本(特别是钼沉积的成本)。
MO-EA阻挡层的厚度也可以是50nm。即使如此,优化关于阻挡层厚度的钼氮化率可以减小阻挡层的厚度,进一步减小制造成本。为此,可以在保持相同的处理(压力,功率,等等)参数的同时,控制在氩等离子体中的N2气体流量(以%表示)。
图7显示了在硒上实施SIMS(次级离子质谱)测量的比较曲线(具有阻挡层:曲线1,不具有阻挡层:曲线2),其中曲线3表示钼的测量结果(作为对比以虚线表示)以及曲线4表示氮的测量值。SIMS曲线需要解释,并要记住曲线的起始处(在左侧)与层的上表面相对应,而曲线的末端(在右侧)与深入层的界面相对应。很明显在无阻挡层时,对于硒(无阻挡层)的曲线2中观察到的突出部分,尽管对钼(曲线3)具有强信号,仍然与在钼层中大量存在的硒有关。相反,当存在氮以形成阻挡层(曲线4)时,可以观察到硒(曲线1)的存在明显减少。
当然,本发明并不限于上述作为示例的实施例;可以延伸到其他变体。
形成具有钼的阻挡层的原子类型可以是氮,或者氧,或者钛或者铬,用于在生长步骤中与钼结合并且形成元素VI的扩散的阻挡物。
元素VI可以是上述硒,或者硫。

Claims (10)

1.用于制作具有光伏特性的I-III-VI2层的方法,包括:
-将金属沉积在衬底上以形成接触层,
-将光电层的前体沉积在接触层上,以及
-前体的热处理中加入元素VI以形成I-III-VI2层,
元素VI在热处理过程中扩散到接触层并且与金属结合从而在接触层上形成一表面层(SUP),
其特征在于,金属沉积包括一个步骤,在该步骤中,添加元素被添加到金属中以在接触层上形成化合物(MO-EA),所述化合物作为元素VI扩散的阻挡物。
2.根据权利要求1所述的方法,其特征在于,所述步骤之后是无所述添加元素的金属沉积。
3.根据权利要求1所述的方法,其特征在于,所述步骤终止了接触层的沉积。
4.根据以上权利要求中的任一项所述的方法,其特征在于,所述步骤之前是无所述添加元素的所述金属的沉积。
5.根据以上权利要求中的任一项所述的方法,其特征在于,通过溅射含有所述金属的靶材(CT)沉积金属,在所述步骤中溅射通过含有所述添加元素的等离子体协助。
6.根据权利要求1至4中的任一项所述的方法,其特征在于,在所述步骤期间通过溅射含有金属以及添加元素的靶材(CT)而沉积金属。
7.根据以上权利要求中的任一项所述的方法,其特征在于,金属为钼。
8.根据以上权利要求中的任一项所述的方法,其特征在于,添加元素为以下元素中的至少一种元素:
-氮,以形成作为元素VI的阻挡材料的氮化物,
-氧,以形成作为元素VI的阻挡材料的氧化物,以及
-金属以形成作为元素VI的阻挡材料的合金。
9.根据以上权利要求中的任一项所述的方法,其特征在于,元素VI为硒。
10.光伏电池包括:
-含有元素I,III以及VI的合金层,所述合金层具有光伏特性,以及
-包含一种金属的接触层,其位于光电层之下,
光电层和接触层之间的中间层,由金属-元素VI的化合物构成,
其特征在于,在金属-元素VI化合物层的下,所述电池还包括一个含有添加元素同所述金属形成化合物的层,该层用以阻挡元素VI。
CN201280058156.4A 2011-12-05 2012-11-22 光伏电池中i-iii-vi2层和背接触层之间的改良界面 Active CN104025253B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1161172A FR2983642B1 (fr) 2011-12-05 2011-12-05 Interface perfectionnee entre une couche i-iii-vi2 et une couche de contact arriere, dans une cellule photovoltaique.
FR1161172 2011-12-05
PCT/FR2012/052703 WO2013083897A1 (fr) 2011-12-05 2012-11-22 Interface perfectionnée entre une couche i-iii-vi2 et une couche de contact arrière, dans une cellule photovoltaïque

Publications (2)

Publication Number Publication Date
CN104025253A true CN104025253A (zh) 2014-09-03
CN104025253B CN104025253B (zh) 2018-07-27

Family

ID=47436051

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280058156.4A Active CN104025253B (zh) 2011-12-05 2012-11-22 光伏电池中i-iii-vi2层和背接触层之间的改良界面

Country Status (11)

Country Link
US (1) US9478695B2 (zh)
EP (1) EP2801104B1 (zh)
JP (1) JP2015505156A (zh)
KR (1) KR20140105474A (zh)
CN (1) CN104025253B (zh)
BR (1) BR112014013407A2 (zh)
FR (1) FR2983642B1 (zh)
MA (1) MA35655B1 (zh)
TN (1) TN2014000204A1 (zh)
TW (1) TW201324837A (zh)
WO (1) WO2013083897A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101027749A (zh) * 2004-03-15 2007-08-29 索洛动力公司 用于太阳能电池制造的沉积半导体薄层的技术和装置
CN101331589A (zh) * 2005-11-02 2008-12-24 索洛动力公司 用于太阳能电池和组件制造的沉积半导体层的技术和装置
US20100258191A1 (en) * 2009-04-13 2010-10-14 Miasole Method and apparatus for controllable sodium delivery for thin film photovoltaic materials
TW201042065A (en) * 2009-05-22 2010-12-01 Ind Tech Res Inst Methods for fabricating copper indium gallium diselenide (CIGS) compound thin films

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456172A (ja) 1990-06-21 1992-02-24 Fuji Electric Co Ltd CuInSe↓2薄膜の形成方法
JP3097805B2 (ja) * 1994-10-03 2000-10-10 矢崎総業株式会社 太陽電池とその製造方法並びにめっき方法
US6784096B2 (en) * 2002-09-11 2004-08-31 Applied Materials, Inc. Methods and apparatus for forming barrier layers in high aspect ratio vias
JP2006080371A (ja) * 2004-09-10 2006-03-23 Matsushita Electric Ind Co Ltd 太陽電池及びその製造方法
US7732229B2 (en) * 2004-09-18 2010-06-08 Nanosolar, Inc. Formation of solar cells with conductive barrier layers and foil substrates
JP4663300B2 (ja) 2004-11-18 2011-04-06 本田技研工業株式会社 カルコパイライト型薄膜太陽電池の製造方法
US20070093006A1 (en) * 2005-10-24 2007-04-26 Basol Bulent M Technique For Preparing Precursor Films And Compound Layers For Thin Film Solar Cell Fabrication And Apparatus Corresponding Thereto
US8389852B2 (en) * 2006-02-22 2013-03-05 Guardian Industries Corp. Electrode structure for use in electronic device and method of making same
US7547569B2 (en) 2006-11-22 2009-06-16 Applied Materials, Inc. Method for patterning Mo layer in a photovoltaic device comprising CIGS material using an etch process
US7875945B2 (en) * 2007-06-12 2011-01-25 Guardian Industries Corp. Rear electrode structure for use in photovoltaic device such as CIGS/CIS photovoltaic device and method of making same
KR20090034079A (ko) 2007-10-02 2009-04-07 엘지전자 주식회사 이셀렌화몰리브덴층을 포함하는 태양전지 및 그의 제조방법
FR2922364B1 (fr) * 2007-10-12 2014-08-22 Saint Gobain Procede de fabrication d'une electrode en oxyde de molybdene
JP4829926B2 (ja) * 2008-05-29 2011-12-07 本田技研工業株式会社 太陽電池及び太陽電池の製造方法
KR100995829B1 (ko) * 2008-09-16 2010-11-23 주식회사 동부하이텍 반도체 소자 및 그의 제조방법
CN101752454B (zh) 2008-12-04 2014-08-13 上海空间电源研究所 具有陷光结构的超薄铜铟镓硒薄膜太阳电池的制备方法
JP5114683B2 (ja) * 2009-09-07 2013-01-09 新日鐵住金株式会社 太陽電池用ガラス基板の裏面電極及びその製造方法
KR101172132B1 (ko) * 2009-09-30 2012-08-10 엘지이노텍 주식회사 태양전지 및 이의 제조방법
WO2011046388A2 (ko) * 2009-10-15 2011-04-21 엘지이노텍주식회사 태양광 발전장치 및 이의 제조방법
US20110294254A1 (en) * 2009-12-28 2011-12-01 Jackrel David B Low cost solar cells formed using a chalcogenization rate modifier
US8889469B2 (en) * 2009-12-28 2014-11-18 Aeris Capital Sustainable Ip Ltd. Multi-nary group IB and VIA based semiconductor
JP2011198883A (ja) * 2010-03-18 2011-10-06 Fujifilm Corp 光電変換素子
FR2982422B1 (fr) * 2011-11-09 2013-11-15 Saint Gobain Substrat conducteur pour cellule photovoltaique

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101027749A (zh) * 2004-03-15 2007-08-29 索洛动力公司 用于太阳能电池制造的沉积半导体薄层的技术和装置
CN101331589A (zh) * 2005-11-02 2008-12-24 索洛动力公司 用于太阳能电池和组件制造的沉积半导体层的技术和装置
US20100258191A1 (en) * 2009-04-13 2010-10-14 Miasole Method and apparatus for controllable sodium delivery for thin film photovoltaic materials
TW201042065A (en) * 2009-05-22 2010-12-01 Ind Tech Res Inst Methods for fabricating copper indium gallium diselenide (CIGS) compound thin films

Also Published As

Publication number Publication date
KR20140105474A (ko) 2014-09-01
WO2013083897A1 (fr) 2013-06-13
TW201324837A (zh) 2013-06-16
MA35655B1 (fr) 2014-11-01
FR2983642A1 (fr) 2013-06-07
EP2801104A1 (fr) 2014-11-12
EP2801104B1 (fr) 2021-06-09
BR112014013407A2 (pt) 2017-06-13
CN104025253B (zh) 2018-07-27
TN2014000204A1 (fr) 2015-09-30
US9478695B2 (en) 2016-10-25
US20140315346A1 (en) 2014-10-23
JP2015505156A (ja) 2015-02-16
FR2983642B1 (fr) 2014-01-03

Similar Documents

Publication Publication Date Title
Lin et al. Preparation of Cu2ZnSnS4 (CZTS) sputtering target and its application to the fabrication of CZTS thin-film solar cells
Olgar Optimization of sulfurization time and temperature for fabrication of Cu2ZnSnS4 (CZTS) thin films
US20090215224A1 (en) Coating methods and apparatus for making a cigs solar cell
WO2006070800A1 (ja) プリカーサ膜及びその製膜方法
WO2009142308A1 (ja) Cis系薄膜太陽電池の製造方法
Tsega et al. Morphological evolution and structural properties of Cu2ZnSn (S, Se) 4 thin films deposited from single ceramic target by a one-step sputtering process and selenization without H2Se
Jung et al. Phase evolution pathways of kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 thin films during the annealing of sputtered Cu-Sn-Zn metallic precursors
US20120266958A1 (en) Methods of forming ruthenium-group iiia alloys
Feng et al. Searching for a fabrication route of efficient Cu 2 ZnSnS 4 solar cells by post-sulfuration of co-sputtered Sn-enriched precursors
Lee et al. Effect of pre-annealing on the phase formation and efficiency of CZTS solar cell prepared by sulfurization of Zn/(Cu, Sn) precursor with H2S gas
Mkawi et al. Influence of precursor thin films stacking order on the properties of Cu2ZnSnS4 thin films fabricated by electrochemical deposition method
Baji et al. Post-selenization of stacked precursor layers for CIGS
Chen et al. Impact of SnS buffer layer at Mo/Cu2ZnSnS4 interface
EP2784828A1 (en) Czts thin-film solar cell, and method for producing same
Olgar Improvement in the structural and optical properties of Cu2SnS3 (CTS) thin films through soft-annealing treatment
US8779283B2 (en) Absorber layer for thin film photovoltaics and a solar cell made therefrom
Johnson et al. Effects of 2 nd Phases, Stress, and Na at the Mo/Cu 2 ZnSnS 4 Interface
EP2702615B1 (en) Method of preparing a solar cell
Kondrotas et al. Investigation of selenization process of electrodeposited Cu–Zn–Sn precursor for Cu2ZnSnSe4 thin-film solar cells
US8119513B1 (en) Method for making cadmium sulfide layer
CN101807620B (zh) 用于薄膜光伏的吸收层及由其制成的太阳能电池
KR101410968B1 (ko) 씨아이지에스 박막태양전지 제조방법
CN104025253A (zh) 光伏电池中i-iii-vi2层和背接触层之间的改良界面
Lim et al. Influence of stacking order and intermediate phase at low temperature on Cu 2 ZnSnS 4 thin film formation for solar cell
Lui et al. Preparation of Cu2Sn3S7 Thin‐Film Using a Three‐Step Bake‐Sulfurization‐Sintering Process and Film Characterization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190211

Address after: France

Patentee after: Electricite De France

Address before: French ruse

Patentee before: Nexcis