CN103975097A - 用于生产硅单晶和多晶硅锭的方法 - Google Patents

用于生产硅单晶和多晶硅锭的方法 Download PDF

Info

Publication number
CN103975097A
CN103975097A CN201280048056.3A CN201280048056A CN103975097A CN 103975097 A CN103975097 A CN 103975097A CN 201280048056 A CN201280048056 A CN 201280048056A CN 103975097 A CN103975097 A CN 103975097A
Authority
CN
China
Prior art keywords
silicon
silicon melt
ppma
phosphorus
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280048056.3A
Other languages
English (en)
Inventor
R.特罗斯塔德
K.弗里伊斯塔德
A.K.索兰德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
REC Solar AS
Original Assignee
Elkem Solar AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elkem Solar AS filed Critical Elkem Solar AS
Publication of CN103975097A publication Critical patent/CN103975097A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/006Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/007Mechanisms for moving either the charge or the heater
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/04Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • C30B15/04Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt adding doping materials, e.g. for n-p-junction
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及用于当从容器中含有的硅熔体提拉硅单晶和定向固化多晶硅铸锭时增加p-型材料的量的方法,其中硅熔体初始含有0.12ppma至5ppma硼和0.04ppma至10ppma磷。单晶的提拉和多晶硅铸锭的定向固化在低于600mbar的压力下进行,将惰性气体连续供应至硅熔体的表面并从硅熔体的表面连续除去,从而在固化工艺期间从熔融的硅连续除去磷,导致在硅单晶的提拉期间和多晶硅铸锭的定向固化期间硅熔体中硼和磷之间的比例基本上恒定。

Description

用于生产硅单晶和多晶硅锭的方法
技术领域
本发明涉及用于由含有硼和磷掺杂剂的熔融的硅生产硅单晶和多晶硅锭的方法。
背景技术
近年来,已经由补充有来自电子芯片行业的适合的碎料、切屑和废料的超纯初生电子级聚硅(ultra pure virgin electronic grade poly-silicon)(EG-Si)生产了光电太阳能电池。由于电子行业最近经历了衰退,已经对闲置的聚硅生产能力进行调整,以使得适于生产PV太阳能电池的低成本级别可用。这使得本来紧张的太阳能级别硅原料(SoG-Si)质量市场暂时得以缓解。随着对电子装置的需求恢复正常水平,聚硅生产能力的主要份额预计会被分配回供应电子行业,使得PV行业缺乏供应。目前,SoG-Si专用的、低成本来源的缺乏以及所导致的供应缺口形成已被视为PV行业进一步发展最严重的障碍之一。
近年来,进行了一些尝试以开发不依赖于电子行业价值链的SoG-Si的新来源。这些努力包括:为当前的聚硅工艺路线引入新技术以显著降低成本,以及开发冶金精炼工艺,将大量可用的冶金级硅(MG-Si)纯化至必需的纯度。
当生产PV太阳能电池时,在专用铸造炉中制备SoG-Si原料的装载物,熔融,并提拉硅单晶或定向固化熔融的硅为多晶方锭。熔化前,含有SoG-Si原料(含有可忽略量的硼和磷)的装载物掺杂有硼或磷,以分别产生p-型或n-型锭。
除极少数情况外,当今生产的商业太阳能电池基于p-型硅锭材料。控制单一掺杂剂(例如硼或磷)的加入以获得材料中优选的电阻率,例如在0.5-1.5 ohm cm范围内。这对应于当预期为p-型锭时加入0.02 - 0.2 ppma硼,并且使用内在质量(几乎纯的硅,具有可忽略含量的掺杂剂)SoG-Si原料。掺杂程序假定其它掺杂剂(在该实施例情况下为磷)的含量可忽略不计(P< 1/10 B)。
在2003年12月29日提交的挪威专利申请第20035830号中,公开了用于生产定向固化的Czochralski硅、浮区(float zone)硅或多晶硅锭或薄硅板或硅带,用于基于通过冶金精炼工艺由冶炼级硅生产的硅原材料来制备片的方法。硅原料含有0.2 ppma至10 ppma硼和0.1至10 ppma磷。硼和磷在硅中具有不同的分配系数。因此,硼在硅中的平衡分配系数为0.8,而磷在硅中的平衡分配系数仅为0.35。由于磷的分配系数低,定向固化期间其余硅熔体中磷的含量将会增加,并且当硼和磷之间的比例([ppma硼]/[ppma磷])变得低于根据挪威专利申请第20035830号生产的硅锭的特定数值时,将在锭高度约2/3位置发生类型变化,从p-型变化为n-型。因此,所生产的多晶锭将含有p-型硅和n-型硅两者。
为了提高含有硼和磷两者的硅锭的p-型材料的该低产量,在EP-A 1848843中拟定增加定向固化工艺期间的硼,以保持其余熔体中硼和磷之间的固定比例,以便用增加量的p-型材料固化多晶锭。然而,定向固化工艺期间少量硼的加入难以控制,具有加入太多或太少硼的风险。这可能会影响固化的锭的电阻率特征。此外,电阻率通常从硅锭的下端向上端增加,导致接近结晶结束时从p-型材料向n-型材料的转变。
当从含有硼和磷两者的硅熔体提拉硅单晶时,存在相同的挑战。
除了获得其中90-99%的单晶和多晶锭为p-型的硅单晶和多晶硅锭以外,重要的是对于单晶和多晶锭的高度具有平稳的电阻率特征;即,从单晶和多晶锭的底端到顶端电阻率变化尽可能地小,因为当单晶和多晶锭被切成片时,这样将会提供具有相同电阻率的硅片。为了获得这一点,硼和磷含量应当对于单晶和多晶锭的高度具有最小变化。
众所周知,可通过在真空下处理硅熔体从硅熔体除去磷。然而,从硅除去磷的这一方式始终作为提拉单晶之前或通过定向固化生产多晶锭之前的单独步骤进行。由于磷比硼更具挥发性,在真空处理硅熔体以便除去磷期间,硅熔体的硼含量不会受到影响。
发明描述
本发明的目的是提供用于增加p-型材料的量的方法,以及当提拉硅单晶时和当由含有硼和磷的硅熔体生产定向固化的多晶硅锭时,获得平稳的电阻率特征。
因此,本发明涉及用于当硅熔体提拉硅单晶和定向固化多晶硅锭时增加p-型材料的量的方法,其中所述硅熔体初始含有0.12 ppma至5 ppma硼和0.04 ppma至10 ppma磷,所述方法的特征在于单晶的提拉和多晶硅锭的定向固化在低于600 mbar的压力下进行,并且其中将惰性气体连续供应至硅熔体的表面并从硅熔体的表面连续除去,从而在固化工艺期间从熔融的硅连续除去磷,导致在硅单晶的提拉期间和多晶硅锭的定向固化期间硅熔体中硼和磷之间的比例基本上恒定。
根据优选的实施方案,工艺期间的压力保持低于200 mbar,且更优选低于50 mbar。
根据另一优选实施方案,供应至硅熔体的表面的惰性气体是氩气。
为了进一步改进硅单晶的提拉期间和从硅熔体定向固化多晶硅锭期间的磷去除,优选熔体表面的面积大于硅熔体的深度。因此,优选熔体的直径和高度之间的比例为至少1:1,且更优选为大于1.5:1。
最终,优选在硅单晶的提拉期间和多晶硅锭的定向固化期间搅拌硅熔体,以便进一步改进磷去除。硅熔体的搅拌可以任何已知方式进行,但是优选通过排列于含有硅熔体的容器外面的感应线圈进行。
通过本发明的方法已经发现,由于固化工艺期间磷的连续去除,熔融的硅中并从而在硅单晶中以及定向固化的多晶硅锭中的硼和磷之间的比例保持恒定,导致对于硅单晶的高度和定向固化的多晶锭的高度电阻率恒定。
附图简述
图1是显示根据由含有硼和磷硅熔体制备的现有技术来制备的定向固化的硅锭的电阻率的示意图。图2是显示根据本发明的方法从硅熔体提拉的单晶的电阻率,并与电阻率的模型计算值进行对比的示意图。
发明详述
实施例1(现有技术)
从初始含有0.26 ppma硼和0.27 ppma磷的硅熔体拉伸硅单晶。测量所生产的硅锭中的电阻率,并与定向固化期间未去除磷的模型电阻率计算值进行对比,且如从图1可见,在约75 %锭高度处,锭从p-型材料变为n-型材料。图1进一步显示,所测量的电阻率数值很符合使用模型计算的电阻率数值。
实施例2 (本发明)
分别从含有0.33 ppma硼和0.36 ppma磷以及0.52 ppma硼和0.36 ppma磷的硅原料提拉两种硅单晶。单晶的提拉在20 mbar压力下进行,并将氩气连续供应至硅熔体的表面并从硅熔体的表面连续除去。测量所生产的单晶在不同高度下的电阻率,并与基于单晶提拉期间的磷去除的模型电阻率计算值进行对比。
结果示于图2中。图2中的结果显示,对于前85至90 %的单晶高度,电阻率特征几乎恒定,且仅在约99%的单晶高度发生从p-型向n-型的变化。所测量的电阻率数值非常符合使用在单晶的提拉期间磷去除的模型计算的电阻率数值。因此,所测量的电阻率图明确显示,在单晶的提拉期间已连续除去磷,并且确认获得对于单晶的高度硼和磷之间基本上恒定的比例。
因此,通过本发明有可能基本上增加固化为p-型的定向固化的锭部分,以及获得对于单晶的高度和多晶锭的高度具有恒定电阻率的硅单晶和多晶硅锭。

Claims (8)

1.一种用于当从容器中含有的硅熔体提拉硅单晶和定向固化多晶硅锭时增加p-型材料的量的方法,其中所述硅熔体初始含有0.12 ppma至5 ppma硼和0.04 ppma至10 ppma磷,其特征在于所述单晶的提拉和所述多晶硅锭的定向固化在低于600 mbar的压力下进行,并且将惰性气体连续供应至所述硅熔体的表面并从所述硅熔体的表面连续除去,从而在所述固化工艺期间从熔融的硅连续除去磷,导致在所述硅单晶的提拉期间和所述多晶硅锭的定向固化期间所述硅熔体中硼和磷之间的比例基本上恒定。
2.根据权利要求1所述的方法,其特征在于所述工艺在低于200 mbar的压力下进行。
3.根据权利要求2所述的方法,其特征在于所述工艺在低于50 mbar的压力下进行。
4.根据权利要求1-3所述的方法,其特征在于供应的惰性气体是氩气。
5.根据权利要求1-4所述的方法,其特征在于所述硅熔体的直径与所述硅熔体的深度之间的比例为至少1:1。
6.根据权利要求5所述的方法,其特征在于所述硅熔体的直径与所述硅熔体的深度之间的比例为至少1.5:1。
7.根据权利要求1-5所述的方法,其特征在于在所述硅单晶的提拉期间和所述多晶硅锭的定向固化期间搅拌所述硅熔体。
8.根据权利要求7所述的方法,其特征在于所述硅熔体的搅拌是通过使用排列在含有所述硅熔体的容器外面的感应线圈来进行的。
CN201280048056.3A 2011-10-06 2012-09-24 用于生产硅单晶和多晶硅锭的方法 Pending CN103975097A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NO20111360 2011-10-06
NO20111360A NO335110B1 (no) 2011-10-06 2011-10-06 Fremgangsmåte for fremstilling av silisiummonokrystall og multikrystalline silisiumingoter
PCT/NO2012/000055 WO2013051940A1 (en) 2011-10-06 2012-09-24 Method for producing silicon mono-crystals and multi-crystalline silicon ingots

Publications (1)

Publication Number Publication Date
CN103975097A true CN103975097A (zh) 2014-08-06

Family

ID=48043966

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280048056.3A Pending CN103975097A (zh) 2011-10-06 2012-09-24 用于生产硅单晶和多晶硅锭的方法

Country Status (3)

Country Link
CN (1) CN103975097A (zh)
NO (1) NO335110B1 (zh)
WO (1) WO2013051940A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112639176A (zh) * 2018-08-29 2021-04-09 信越半导体株式会社 单晶培育方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3010721B1 (fr) * 2013-09-17 2017-02-24 Commissariat Energie Atomique Procede de fabrication d'un lingot de silicium presentant une concentration homogene en phosphore

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1140656A (en) * 1966-06-13 1969-01-22 Siemens Ag Improvements in or relating to the manufacture of rod-shaped silicon monocrystals
GB1228406A (zh) * 1966-06-13 1971-04-15
US3615261A (en) * 1969-04-02 1971-10-26 Motorola Inc Method of producing single semiconductor crystals
JPS61227986A (ja) * 1985-03-30 1986-10-11 Shin Etsu Handotai Co Ltd 単結晶シリコン棒の製造方法
CN101091009A (zh) * 2004-12-27 2007-12-19 埃尔凯姆太阳能公司 制备定向凝固硅锭的方法
CN101423220A (zh) * 2008-11-17 2009-05-06 上海普罗新能源有限公司 一种多温区硅材料提纯与铸锭的方法及其装置
CN101560693A (zh) * 2009-04-22 2009-10-21 浙江碧晶科技有限公司 一种含有掺杂元素的太阳能级硅晶体的制备方法
JP2010059032A (ja) * 2008-09-05 2010-03-18 Sumco Corp 垂直シリコンデバイス用シリコンウェーハ及びその製造方法、垂直シリコンデバイス用シリコン単結晶引き上げ装置、並びに、垂直シリコンデバイス
CN102162124A (zh) * 2011-04-06 2011-08-24 天津市环欧半导体材料技术有限公司 一种提高重掺砷单晶轴向电阻率均匀性的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07309693A (ja) * 1994-05-17 1995-11-28 Hitachi Ltd 単結晶製造方法
NO333319B1 (no) * 2003-12-29 2013-05-06 Elkem As Silisiummateriale for fremstilling av solceller
US20090039478A1 (en) * 2007-03-10 2009-02-12 Bucher Charles E Method For Utilizing Heavily Doped Silicon Feedstock To Produce Substrates For Photovoltaic Applications By Dopant Compensation During Crystal Growth
US7651566B2 (en) * 2007-06-27 2010-01-26 Fritz Kirscht Method and system for controlling resistivity in ingots made of compensated feedstock silicon
FR2940806B1 (fr) * 2009-01-05 2011-04-08 Commissariat Energie Atomique Procede de solidification de semi-conducteur avec ajout de charges de semi-conducteur dope au cours de la cristallisation
JP5077966B2 (ja) * 2009-08-27 2012-11-21 シャープ株式会社 シリコンインゴットの製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1140656A (en) * 1966-06-13 1969-01-22 Siemens Ag Improvements in or relating to the manufacture of rod-shaped silicon monocrystals
GB1228406A (zh) * 1966-06-13 1971-04-15
US3615261A (en) * 1969-04-02 1971-10-26 Motorola Inc Method of producing single semiconductor crystals
JPS61227986A (ja) * 1985-03-30 1986-10-11 Shin Etsu Handotai Co Ltd 単結晶シリコン棒の製造方法
CN101091009A (zh) * 2004-12-27 2007-12-19 埃尔凯姆太阳能公司 制备定向凝固硅锭的方法
JP2010059032A (ja) * 2008-09-05 2010-03-18 Sumco Corp 垂直シリコンデバイス用シリコンウェーハ及びその製造方法、垂直シリコンデバイス用シリコン単結晶引き上げ装置、並びに、垂直シリコンデバイス
CN101423220A (zh) * 2008-11-17 2009-05-06 上海普罗新能源有限公司 一种多温区硅材料提纯与铸锭的方法及其装置
CN101560693A (zh) * 2009-04-22 2009-10-21 浙江碧晶科技有限公司 一种含有掺杂元素的太阳能级硅晶体的制备方法
CN102162124A (zh) * 2011-04-06 2011-08-24 天津市环欧半导体材料技术有限公司 一种提高重掺砷单晶轴向电阻率均匀性的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
黄有志,等: "《直拉单晶硅工艺技术》", 31 July 2009, 化学工业出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112639176A (zh) * 2018-08-29 2021-04-09 信越半导体株式会社 单晶培育方法
CN112639176B (zh) * 2018-08-29 2022-09-02 信越半导体株式会社 单晶培育方法

Also Published As

Publication number Publication date
NO20111360A1 (no) 2013-04-08
WO2013051940A1 (en) 2013-04-11
NO335110B1 (no) 2014-09-15

Similar Documents

Publication Publication Date Title
AU2005333767B2 (en) Method for producing directionally solidified silicon ingots
US7931883B2 (en) Silicon feedstock for solar cells
EP2173660B1 (en) Method for controlling resistivity in ingots made of compensated feedstock silicon
CN101999013A (zh) 通过添加掺杂杂质制造光伏级晶体硅的方法及光伏电池
Arnberg et al. State-of-the-art growth of silicon for PV applications
Kraiem et al. High performance solar cells made from 100% UMG silicon obtained via the PHOTOSIL process
US8888911B2 (en) Method of producing single crystal silicon
EP1742277A2 (en) Polycrystalline silicon for solar cells and method for producing the same
CN101435105A (zh) 低含氧量硅晶体的制备方法
Ren et al. Removal of metal impurities by controlling columnar grain growth during directional solidification process
CN105019022A (zh) 一种镓锗硼共掺准单晶硅及其制备方法
CN104746134B (zh) 采用补偿硅料的n型单晶硅拉制方法
CN103975097A (zh) 用于生产硅单晶和多晶硅锭的方法
CN101812728A (zh) 一种n型晶体硅的制备方法
JP2009215135A (ja) シリコン単結晶インゴットの製造方法
CN205241851U (zh) 一种单晶炉加热系统
CN104928761B (zh) 一种硅片母合金的制备方法
Riemann et al. Floating zone crystal growth
Arnberg et al. Solidification of silicon for electronic and solar applications
CN106012010A (zh) 一种二次添加掺杂剂的方法和装置
CN113272479A (zh) 控制硅熔融物中的掺杂剂浓度以增强铸锭质量
JP2020033219A (ja) 単結晶育成方法
CN105755538A (zh) 一种掺锡冶金多晶硅铸锭的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Kristiansand

Applicant after: Norway solar energy company

Address before: Kristiansand

Applicant before: Elkem Solar AS

RJ01 Rejection of invention patent application after publication

Application publication date: 20140806

RJ01 Rejection of invention patent application after publication