CN103930570A - 核酸转录方法 - Google Patents

核酸转录方法 Download PDF

Info

Publication number
CN103930570A
CN103930570A CN201280056141.4A CN201280056141A CN103930570A CN 103930570 A CN103930570 A CN 103930570A CN 201280056141 A CN201280056141 A CN 201280056141A CN 103930570 A CN103930570 A CN 103930570A
Authority
CN
China
Prior art keywords
nucleic acid
oligonucleotide
thing
sequence
template
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280056141.4A
Other languages
English (en)
Other versions
CN103930570B (zh
Inventor
A·塞茨
P·默尔
M·A·纳波拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lexogen GmbH
Original Assignee
Lexogen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP11181546A external-priority patent/EP2570487A1/en
Application filed by Lexogen GmbH filed Critical Lexogen GmbH
Publication of CN103930570A publication Critical patent/CN103930570A/zh
Application granted granted Critical
Publication of CN103930570B publication Critical patent/CN103930570B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6853Nucleic acid amplification reactions using modified primers or templates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1096Processes for the isolation, preparation or purification of DNA or RNA cDNA Synthesis; Subtracted cDNA library construction, e.g. RT, RT-PCR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本发明涉及产生模板核酸的扩增的核酸部分的方法,所述方法包括:获得所述模板核酸,使至少一种寡核苷酸引物与所述模板核酸退火,使至少一种寡核苷酸终止物与所述模板核酸退火,以模板特异性方式延伸所述至少一种寡核苷酸引物,直至延伸的产物核酸到达退火的寡核苷酸终止物的位置,从而延伸反应被终止,其中在所述延伸反应中所述寡核苷酸终止物不被延伸,以及其中延伸的产物核酸被连接到所述寡核苷酸终止物的3’末端,所述终止物本身也可以是引物。本发明还涉及其应用以及进行所述方法的试剂盒。

Description

核酸转录方法
发明领域
本发明涉及通过扩增指定的序列部分扩增或分析核酸样品的领域。
发明背景
本领域熟知并确立了许多基于扩增的方法以扩增和检测靶核酸。通常被称作PCR的聚合酶链反应使用变性、引物对与相反链的退火及引物延伸的多次循环,以指数增加靶序列的拷贝数(US4,683,195,US4,683,202,US4,800,159,US5,804,375)。在称作RT-PCR的变化方式中,使用逆转录酶从RNA中产生互补DNA(cDNA),然后通过PCR扩增cDNA以产生DNA的多个拷贝(US5,322,770,US5,310,652)。
PCR反应通常包括进行如下多次循环:
(A)第一引物与核酸链中在靶核酸序列的一端的位点杂交(退火),第二引物与互补核酸链中相应于靶序列的相反端的位点杂交;
(B)从各引物合成(延伸)核酸序列;及
(C)使在步骤(B)中产生的双链核酸变性,以形成单链核酸。
变性通常在80-100℃进行,杂交(退火)通常在40-80℃进行,延伸通常在50-80℃进行。一个典型的循环是:变性,大约94℃进行1分钟;杂交,大约58℃进行大约2分钟;延伸,大约72℃进行大约1分钟。实际的方案依赖于例如引物和靶序列的长度和序列以及使用的酶。
PCR可以根据各种不同的应用进行修改。例如,GB2293238描述了降低非特异性引发和扩增核酸序列的方法。公开了阻断“引物”(或者寡核苷酸)以产生错配及通过产生与扩增引物的竞争性引物退火反应而降低非特异性引发。例如,使用包含在3’位置的ddNTP的随机阻断引物的混合物,以防止延伸反应的起始。只有正确的扩增引物取代其阻断引物并可以起始扩增反应。
已经确立了使用特异性结合样品中不希望的靶寡核苷酸分子的阻断引物以防止其在未阻断的寡核苷酸分子的PCR反应中扩增的方法。未阻断的寡核苷酸可以被扩增而无需进一步的保证靶特异性的措施-在不存在可扩增的不希望被扩增的竞争性寡核苷酸分子的条件下(US2002/0076767A1和US6,391,592B1;WO99/61661)。
WO02/086155中揭示了一种类似的方法,其中阻断寡核苷酸与不希望的模板结合导致延伸反应的提前终止。所述阻断寡核苷酸特异性结合混合物中的一种模板,而其它模板自由扩增。
US5,849,497描述了在PCR期间使用阻断寡核苷酸及缺少5’核酸外切酶活性的DNA聚合酶。这种DNA聚合酶不能消化阻止扩增的阻断寡核苷酸。已经选择这种系统以避免使用PNA(肽核酸)作为阻断寡核苷酸。WO2009/019008中描述了一种类似的系统,然而,考虑使用PNA和LNA等作为阻断寡核苷酸。
所有这些方法的共同点是不希望的模板的扩增通过特异性阻断寡核苷酸的杂交而被特异性阻抑。
在专利申请WO98/02449A1(US6,090,552)中,描述了“三元扩增(triamplification)”DNA扩增方法。其基于使用被延伸的及与阻断物连接的发夹引物。引物与阻断物均结合至一模板DNA链。第二种引物结合互补DNA链。所述阻断物和一种引物与含有供体的引物和含有FRET(荧光共振能量转移)的受体部分的阻断物部分互补。引物的延伸及延伸产物与阻断物的连接导致荧光降低,因为在阻断物引物杂交体中其不再紧密相邻。这种三元扩增方法限于使用模板DNA并且不涉及RNA方法。
WO94/17210A1涉及使用靶DNA的反义和有义链的多个引物的PCT方法。
Seyfang et al.[1]描述了使用多个磷酸化寡核苷酸以在DNA链中导入突变。使用缺少任何可检测的链置换活性或者5’-3’核酸外切酶活性的T4DNA聚合酶,其不适于RNA模板。
Hogrefe et al.[2]描述了使用QuikChange多位点定向诱变试剂盒产生随机化氨基酸文库。使用在与已知单链靶DNA互补的中心含有3个简并核苷酸的特异性引物。所述试剂盒使用PfuTurbo DNA聚合酶,其不适于RNA模板。
RNA的分析通常是从RNA逆转录为cDNA开始,因为DNA比RNA更稳定,现存分析DNA的许多方法。无论使用什么方案分析cDNA,重要的是在逆转录(RT)期间产生的cDNA在序列和浓度方面尽可能密切代表需要分析的RNA。
逆转录通常使用逆转录酶进行。这些酶需要寡核苷酸引物,引物与RNA杂交以起始(引发)cDNA的模板依赖性聚合。两个最常使用的引发策略是寡聚dT引发和随机引发。
寡聚dT引发用于3’末端具有多聚A尾的mRNA的RT。所述寡聚dT在3’末端引发RNA,逆转录酶拷贝mRNA直至其5’末端。这种方法的一个缺点是需要高品质的mRNA,因为任何mRNA降解均将导致mRNA的3’末端的强过度表现(overrepresentation)。
即使使用未降解的mRNA,cDNA分子由于提前的聚合终止事件而仍可以被截短。常见的原因是在高结构化的RNA区域中二级和三级结构形成。特别是当GC含量较高时,逆转录酶也许不阅读通过这些区域,因此cDNA被截短。mRNA需要被拷贝的长度较长则发生这种事件的可能性增加。因此,寡聚dT引发的cDNA可以示出朝向过度表现RNA的3’末端的强偏差(bias)。因此,3’末端引发具有浓度偏差,导致在3’末端或其附近的序列增加及5’末端方向序列表现逐渐降低(见图15三角形所示,qPCR偏差测量)。这在定量方法中存在问题,例如在确定特定基因的表达程度中,在差异分析或者在细胞的完全表达谱分析中。
已经揭示了克服RNA二级结构终止的方法,特别是当长mRNA需要被逆转录为全长cDNA时。一种这样的方法例如包括混合两种逆转录酶,一种是高度进行性(processive)的如MMLV或AMV及其突变体,首先将反应混合物在正常温度范围保温以合成第一链,加上使用具有逆转录活性的耐热酶组合物,然后将反应混合物在抑制二级mRNA结构存在的温度下保温以产生第一链(美国专利US6,406,891)。然而,逆转录酶的缓冲液含有高浓度的MgCl2(3-10mM)或者Mn2+(例如针对Tth DNA聚合酶),并且RNA是高度不稳定的及易于在较高温度下破坏和/或降解,特别是在存在二价阳离子的条件下。在两种温度之间循环以避开二级结构的方法也可以导致在高温期间产生的短RNA片段随机引发。这种短RNA片段由MMLV-H或者其它病毒逆转录酶作为引物使用[3]。再次,这将导致在合成cDNA中的偏差。
另一方法是随机引发,其具有在沿着RNA的多个部位杂交的优势,并因此也阻断这些序列参与二级结构形成。在随机引发随机序列的寡核苷酸群中,使用随机六聚体模板在核酸链内任何部位引发RT。逆转录或者使用DNA作为模板的规则转录均使用随机引发。当分析产物DNA时,发现随机引发没有对于样品中的所有靶产生相等的逆转录效力[4,5]。此外,当测量特异性靶时,在模板核酸输入与产物DNA输出之间无线性关系[4,5]。事实上,已经示出使用随机引物可导致过高估计一些模板拷贝数,与序列特异性引发的模板相比高直至19倍[6]。尽管对这些现象的导致原因进行了许多思考,但是还未提出确凿的合理说明。
发明目的
本发明人观测到在这种随机引发的cDNA文库中存在普遍偏差,形式是在RNA分子5’末端的序列部分当与3’末端序列部分相比时是过度表现的。这种现象的原因有待在随机引发与逆转录酶的强链置换活性的组合中发现。由于RNA具有高度二级结构,因此逆转录酶不得不发挥强链置换活性以克服这种二级结构并有效地产生cDNA。鉴于逆转录酶的强链置换活性,当使用随机寡核苷酸引发时,任何RNA的5’侧在cDNA文库中将以几倍表现。在具有与模板RNA上更3’位置退火的引物的(如随机)引物组合的延伸期间发生相似作用(延伸引物方向中的上游引物),其中逆转录酶将置换与模板RNA上更5’位置杂交的所有引物的延伸产物(延伸产物方向中的下游引物)。因此,随机引发是一种DNA合成方法,其具有过度表现指定模板核酸的5’末端的较强偏差(也见图1的问题示意图及图15的qPCR偏差测量)。除了使用随机物(例如随机六聚体)进行cDNA文库制备及放射标记DNA探针[7,8],其也用于检测单核苷酸多态性(SNP)以及小规模染色体事件,主要是插入或缺失[5,6]。已经揭示了比较基因组杂交(CGH)以解释不同基因组之间全基因组序列拷贝数变化(CNV),如肿瘤DNA与来自附近未受影响的组织的正常DNA之间遗传区域的不同扩增或缺失[9,10]。
目前DNA文库的最全面的分析方法是第二代测序(NGS)[参见11的综述]。NGS是以高通量方式通过聚合平行测序的上位术语。NGS基于从小片段中获取测序读段(read)。在cDNA文库的产生中,mRNA在cDNA合成之前被片段化,或者单链或双链cDNA被片段化。然而,模板核酸的任何片段化(化学或者物理方式)导致非指定的及不可预见的偏差,并且会耗尽模板。在NGS中,完整的序列是通过比对这些读段而获得的,这由于为了装配为完整序列的小读段的绝对数而是一个挑战性工作。迄今为止,许多读段仅提供了有限的信息。例如,许多读段不能唯一地指定,并因此被弃去。序列产生由于序列片段的表现偏差而被进一步阻碍。
因此,需要改良的方法以扩增模板核酸,产生较小的扩增量偏差,例如用于NGS或者用于DNA文库的产生,以改良原始模板的序列浓度的表现。
发明概述
因此,本发明提供了一种产生模板核酸的扩增的核酸部分的方法,所述方法包括:
获得所述模板核酸,
使至少一种寡核苷酸引物与所述模板核酸退火,
使至少一种寡核苷酸终止物与所述模板核酸退火,
以模板特异性方式延伸所述至少一种寡核苷酸引物,直至延伸产物核酸到达退火的寡核苷酸终止物的位置,从而延伸反应被终止,其中在所述延伸反应中,所述寡核苷酸终止物不被延伸,及
其中延伸的产物核酸在3’末端邻近所述寡核苷酸终止物的位置被标记,和/或其中被延伸的产物核酸与所述寡核苷酸终止物的5’末端连接;因此获得扩增的核酸部分。
另一方面,本发明提供了一种产生模板核酸的扩增的核酸的方法,所述方法包括:
获得所述模板核酸,,
使第一寡核苷酸引物与所述模板核酸退火,
使至少一种另外的寡核苷酸引物与所述模板核酸退火,
以模板特异性方式延伸第一寡核苷酸引物,直至延伸产物核酸到达所述另外的寡核苷酸引物中的一种的位置,从而延伸反应被终止,及以模板特异性方式延伸至少一种另外的寡核苷酸引物,其中延伸的产物核酸在3’末端邻近所述另外的寡核苷酸引物的位置被标记,和/或其中被终止的延伸的产物核酸连接到所述另外的寡核苷酸引物的5’末端;因此获得扩增的核酸部分。在这种方法中,所述另外的寡核苷酸引物作为终止物,阻止到达退火的终止物位置的扩增反应的进一步延伸,并且自身作为引物,即作为延伸的起始物。
所述模板核酸可包含或者基本上由RNA或DNA组成,在优选的实施方案中所述模板是RNA。
在一优选的方面,本发明提供了一种产生模板核酸的扩增的核酸的方法,所述模板核酸是RNA,所述方法包括:
获得所述模板RNA,
使第一寡核苷酸引物与所述模板RNA退火,
使至少一种另外的寡核苷酸引物与所述模板RNA和/或至少一种寡核苷酸终止物退火,
以模板特异性方式延伸所述第一寡核苷酸引物,直至延伸产物核酸到达所述另外的寡核苷酸引物或所述寡核苷酸终止物中的一种的位置,从而延伸反应被终止,其中在所述延伸反应中,所述任选的寡核苷酸终止物不被延伸,和/或所述至少一种另外的寡核苷酸引物以模板特异性方式被延伸。在优选的实施方案中,延伸的产物核酸连接到所述寡核苷酸终止物或者另外的引物的5’末端。
另一方面,本发明提供了使用本发明的方法产生一或多种模板核酸的序列文库,其包含所述模板核酸的优选重叠的、扩增的核酸部分的混合物。序列文库是DNA片段的集合,其可以通过本领域已知的任何方法贮存和拷贝。例如,序列文库可以通过分子克隆方法获得。序列文库也可以使用DNA片段末端上的通用序列通过例如PCR扩增。
本发明还涉及产生模板核酸的扩增的核酸部分或者产生上述序列文库的试剂盒。本发明的试剂盒包含逆转录酶、包含增加Tm(解链温度)的修饰的随机寡核苷酸引物以及不适于核苷酸延伸并且包含增加Tm的修饰的随机寡核苷酸终止物,任选进一步包含一或多种反应缓冲液,所述缓冲液包含Mn2+或Mg2+,连接酶,优选具有DNA连接活性的DNA连接酶或者RNA连接酶,PEG。
如下详细公开解释了本发明的所有方面和实施方案。
发明详述
本发明提供了一种产生扩增的核酸或者扩增核酸的方法。这种产生也可涉及单一扩增反应,例如一个转录循环,或者更多个。其包括通过RNA或DNA依赖性聚合产生RNA或DNA。因此,扩增核酸包括基于RNA或DNA模板核酸的RNA核苷酸聚合或者基于RNA或DNA模板核酸的DNA核苷酸聚合。优选地,所述方法包括一个逆转录、RNA依赖性DNA聚合的步骤或循环。
本发明的方法包括使用与模板核酸杂交的至少两种短寡核苷酸。至少一种寡核苷酸具有引物功能,即其可以作为核苷酸聚合起始物以进行聚合酶依赖性扩增,即转录。通过加入核苷酸以模板依赖性方式的引物延伸在本文称作延伸(elongation)或延长(extension)。这种反应的产物被称作延伸产物或者延长产物。RNA或DNA聚合酶将核苷酸加入其碱基与模板链的核碱基配对的给定寡核苷酸链。杂交和退火被理解为是互补核苷酸的碱基配对。互补核苷酸或碱基是能碱基配对的那些核苷酸或碱基,如A与T(或U),G与C,G与U。
至少一种另外的寡核苷酸具有终止物功能。这意味着在上游引物(以延伸产物方向)起始的延伸(延长)反应达到具有终止物功能的下游(以延伸产物方向)寡核苷酸,所述延伸反应被阻止进一步延伸。相对于模板核酸上的核苷酸位置,这意味着一旦从与相对于具有终止物功能的寡核苷酸的模板核酸的3’末端退火的引物开始的延伸反应达到所述寡核苷酸(终止物),则所述延伸反应被阻止进一步延伸。延伸反应可以通过具有终止物功能的寡核苷酸与模板核酸的强力杂交而被终止,由此其不被聚合酶置换。
具有终止物功能的寡核苷酸也可以是引物。其可以在第一引物下游(延伸反应方向,模板方向上游)杂交,并终止所述第一引物的延伸反应。随之(或者同时),其自身可以作为延伸起始物,产生转录产物-随之也可以在再下游(相对于延伸反应方向)具有终止物功能的寡核苷酸的位置被终止。
“上游”是朝向指定核酸或寡核苷酸的5’末端(3’-5’)方向。“下游”是朝向指定核酸或寡核苷酸的3’末端(5’-3’)方向。由于寡核苷酸以反向方式杂交,因此引物的下游涉及杂交的模板核酸的上游方向。这是指下游寡核苷酸(或者寡聚物,或者引物或者终止物或者阻断物)是这样的寡聚物,其与模板核酸的相对于已经与模板核酸的更下游部分杂交的上游寡核苷酸(或者寡聚物,或者引物或者终止物或者阻断子)更上游部位杂交。因此,当使用术语“下游寡核苷酸”或者“上游寡核苷酸”时,除非特别指出,所述方向性总是指延伸产物的方向。本发明的聚合酶依赖性延伸反应是5’-3’方向,下游。
如本文所用,“包含”应理解为是指一个开放的定义,允许另外的具有相似或其它特征的成员。“由…组成”应理解为是关于限定特征范围的一个封闭的定义。
如本文所用,“引物”也可以是指寡核苷酸引物。“终止物(stopper)”也是指寡核苷酸终止物。“寡聚物”用于描述寡核苷酸引物及寡核苷酸终止物。
寡核苷酸终止物是这样的一种寡核苷酸,其可以终止上文所述延伸反应,并且不起始进一步的延伸反应,例如寡核苷酸在其3’位置不能接受(共价结合)进一步的核苷酸。这种核苷酸为本领域已知,通常缺少3’OH,例如在ddNTS(双脱氧核苷酸)中。
因此,本发明实质上提供了两种方法,一种方法利用寡核苷酸终止物,一种方法利用另外的寡核苷酸引物。除了这个不同之外,所述方法包含发明相似性,以提供限定的及充分定义的扩增产物,其可以以良好控制的方式被扩增,最重要的是在模板核酸全长具有单一的浓度分布。本发明的扩增产物可以进一步鉴定和使用。它们是获得的不被弃去的希望产物,就像在模板抑制方法中一样。本发明产生了更好地表现需要被分析的模板分子的扩增的核酸产物,制备了那些分子以与随后的分析方法如第二代测序方法无缝整合或者作为序列文库。如果终止物同时是引物,可以基于仅一个模板分子提供一个连续序列。当各个产物序列共价结合如连接时,扩增的产物的这个连续序列可以提供为单一分子。可以进行这种结合或连接反应,同时与模板链杂交,以保证所述产物以与模板链(当然是反向互补链)相同的顺序结合。
本发明的优势在使用根据本发明被扩增的长模板核酸时是最突出的。这种模板的长度可以是至少100个碱基,至少1000个碱基(1kb),至少2kb,至少4kb,至少6kb,至少10kb,至少20kb,至少30kb,至少40kb,至少50kb。
在逆转录的情况中,本发明的一个实施方案涉及逆转录RNA分子的方法,包括使至少两种引物与模板RNA分子杂交,利用RNA依赖性DNA聚合酶延伸引物,其中上游引物的延伸产物(在模板方向下游)不置换下游引物的延伸产物(在模板方向上游)。这个实施方案通常基本上包括引物延伸反应,其使用第一引物,所述引物被延伸但在也被延伸的第二引物处终止(不置换)。
然而,对于通过延伸产物完全表现指定模板,延伸的核苷酸的直接连接不是必须要求的。模板核酸的样品通常含有具有相同序列的许多模板分子。通过使用多于一种的引物和终止物组合,可以由许多延伸产物完全表现这种序列。许多短的延伸产物通常是完全表现模板的核酸文库需要的。因此本发明提供了通过提供延伸的产物制备核酸文库的方法。所述文库可含有在混合物中的延伸产物。优选地,所述延伸产物,特别是相同序列的模板,含有重叠的序列部分。重叠的序列部分易于完全序列装配,如在NGS方法中是需要的,并且是提供可用于克隆任何特异性序列(其中在达到单个延伸的核酸的大小限制时没有被中断或者中断有限)的文库所希望的。
在逆转录情况中,本发明的这种实施方案涉及逆转录RNA分子的方法,包括使至少两种寡核苷酸(一种是引物,一种是终止物)与模板RNA分子杂交,并利用RNA依赖性DNA聚合酶延伸该引物,其中上游引物的延伸产物(在模板方向下游)终止在(不置换)下游终止物的位置(在模板方向上游)。所述终止物不被延伸。这个实施方案通常基本上包含使用第一引物进行引物延伸反应,第一引物被延伸但是终止于(不置换)不被延伸的寡核苷酸终止物。
可以组合本发明的实施方案,例如通过使用至少两种引物和一种终止物,第一上游引物在下游延伸,延伸反应终止在也在下游延伸的第二下游引物的位置,该延伸反应随之终止于寡核苷酸终止物的位置。
在特定的实施方案中,不使用不可被延伸的寡核苷酸终止物。在这种实施方案中,仅可延伸的引物在扩增/转录期间可使用。
在其它的实施方案中,希望获得已经终止于寡核苷酸终止物的扩增产物。为此,技术人员可例如通过熟知的方法选择这种延伸的核酸,如通过标记,包括固定在固相(如珠或固体表面)或者通过附上条码序列或序列标签。延伸的产物也可以与寡核苷酸终止物连接-和与具有终止物功能的引物连接相似,以提供如上述一长产物分子。可以组合与寡核苷酸终止物的标记及连接,例如通过标记所述寡核苷酸终止物及将延伸产物与标记的寡核苷酸终止物连接。当然,寡核苷酸终止物的标记可以在与延伸产物连接后进行。这种标记使得可以简便操作、选择和/或扩增延伸的产物。例如,序列标签可用于所述延伸的及如此标记的延伸产物的进一步选择扩增,通过使用与这种标签杂交及可起始所述(前述)延伸的核酸产物的扩增反应(例如PCR)的引物。如果获得大量不同的延伸产物及许多产物用相同序列标签标记,这是特别有利的。在序列文库的情况中,这种方法使得可以简便扩增整个文库-所有序列的量在原始模板的整个长度的表现一致。
在优选的实施方案中,使用多于一种的寡核苷酸引物,其功能与第一引物相似,但是具有不同的引物序列,所述序列与靶模板退火。特别地,本发明的方法的这个实施方案进一步包括一种另外的寡核苷酸引物与所述模板核酸的退火,及延伸所述另外的寡核苷酸引物直至延伸产物核酸达到另一寡核苷酸引物或寡核苷酸终止物的位置。在特别优选的实施方案中,使用至少1种、至少2种、至少3种、至少4种、至少5种、至少6种、至少7种、至少8种、至少9种、至少10种、至少15种、至少20种、至少30种、至少40种、至少50种或者更多种不同的寡核苷酸引物。“不同的寡核苷酸引物”应理解为其引物序列不同,但是当然可共有其它相似序列部分,如序列标签。这种序列标签优选用于延伸产物的进一步的扩增反应中,使用与序列标签退火的引物进行。因此,使用一种引物,可以扩增所有潜在不同的产物。在一个特别的实施方案中,寡核苷酸引物是随机引物。“随机引物”应理解为是具有不同引物序列部分的不同引物的混合物,由于至少一部分引物序列的随机合成而具有高度可变性。随机引物潜在地覆盖所述序列的整个组合区域。随机引物的随机序列引物部分可覆盖1、2、3、4、5、6、7、8或更多个核苷酸,其随机选自A、G、C或T(U)。关于引物序列的杂交序列,T和U在本文可互换使用。随机序列部分的完全组合的可能区域是mn,其中m是使用的核苷酸类型的数目,优选所有四种A、G、C、T(U),n是随机核苷酸的数目。因此,其中表现每种可能的序列的随机六聚体由46=4096个不同序列组成。
同样,在本发明的任一方法中也可以使用一种以上的寡核苷酸终止物。所述另外的终止物与第一终止物作用相似,但是与模板对齐的序列不同。对于另外的终止物,与上文关于另外的引物的描述相同,当然也具有差别,所述终止物不适于延伸反应。因此,为了前后一致,与模板杂交的寡核苷酸终止物区域也被称作“引物序列”。所述引物序列的长度可以是4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22或更多个核苷酸。本发明因此提供了如上述的一种方法,进一步包括一种另外的寡核苷酸终止物与所述模板核酸退火,及在所述延伸反应中所述寡核苷酸终止物不被延伸。在优选的实施方案中,使用至少1种、至少2种、至少3种、至少4种、至少5种、至少6种、至少7种、至少8种、至少9种、至少10种、至少15种、至少20种、至少30种、至少40种、至少50种或者更多种不同的寡核苷酸终止物。所述寡核苷酸终止物可以是随机寡核苷酸终止物,包含与模板退火的随机引物序列。如上文关于寡核苷酸引物所述,寡核苷酸终止物也可以共有相似的序列部分,如可用于扩增或鉴别产物的标签或条码。这种标记使得可以在包含本发明扩增产物的序列文库中简便地鉴别。
如在导言中所述,无延伸反应(及其终止)控制的(随机)引发的cDNA文库扭曲了序列部分的真实RNA表现。甚至在例如短mRNA模板(200-1000nt)上,可以发生多个引发事件及具有链置换,RNA分子的5’侧比3’侧存在于更多拷贝中(见图1)。因此,当测量某一基因转录物的浓度时,当探查在5’或3’末端的序列部分时将获得不同数值。短的随机探针通常用于微阵列和定量PCR分析。这样导致测量的浓度严重扭曲。此外,这种扭曲当对比长与短转录物时更明显,因为高丰度的长转录物的5’末端比较短转录物的5’末端表现更高。当整体分析转录物的浓度时,如在高通量测序(例如下一代测序)中,除了扭曲浓度之外,检测罕见的短转录物变得比检测罕见的长转录物甚至更不容易。由于基因转录物及其剪接变体的不同表达是表型分析的重要部分,因此重要的是转录物的每个序列部分以正确的丰度表现在产生的cDNA文库中。
这些问题由本发明解决。应用本发明的方法提供了充分限定的转录物,在从大量RNA分子中产生cDNA期间终止在引物或者终止物位置(优选具有逆转录酶的抑制的链置换),例如在产生mRNA分子的cDNA文库中,使得相等地表现RNA分子的每个部分。例如,mRNA可以用随机引物引发,如被修饰以保证随机引物不被逆转录酶置换的随机六聚体。可以从模板RNA分子多个位点起始逆转录的任何随机引物均可使用。
本发明还提供使得获得的延伸产物共价结合(例如通过连接)的方法,所述延伸产物以与模板杂交形式提供(见图2c)。这样可以产生全长的扩增的核酸分子。
使用具有5’磷酸的引物,已经发现“短的”延伸的核酸-其基本是模板链的互补链的片段-可以连接而仍与模板杂交。这样将产生长的及在大多数情况中全长的扩增核酸分子,其是模板的直接表现。能保存模板全长序列的信息是重要的,例如当需要分析基因的剪接变体时。基本上当多个外显子基因的剪接是复杂的时,单一剪接接合的分析自己不产生关于包含的转录变体的全长序列的明确信息。然而,在mRNA的情况中的仅寡聚dT引发或者从来自任何核酸模板的3’连接的一般接头中的引发将导致模板5’侧的低表现。换句话说,模板越长,则分子越不可能被逆转录为全长分子。从图15中可以看出,当使用标准寡聚dT引发的RT时,平均6kb以后的仅~10%的RNA分子被逆转录为全长分子。正如本发明所提供的方法,在一个实施方案中,从模板分子的两或多个位置开始聚合,延伸反应终止在下游引物位置,上游引物的延伸产物可以连接到下游引物的5’末端。通过共价结合这两个延伸产物,当与模板杂交时,产生较长的序列。接着,当使用许多不同的引物时,样品中存在的所有模板均可以被转录,及通过连接短的延伸产物,可以产生模板的全长的扩增拷贝(见图2c,d)。
同样,根据本发明的利用寡核苷酸终止物的实施方案,可以进行与延伸的产物的连接,以获得在引物与终止物之间的序列扩增充分定义的扩增的核酸。
在优选的实施方案中,所述寡核苷酸引物和/或寡核苷酸终止物在5’末端是磷酸化或者腺苷酸化的。这种措施有助于简便地使寡核苷酸引物或终止物与另一核酸如延伸产物在一或几个步骤中使用连接酶连接。在一些实施方案中,特别是当使用许多种引物和终止物的混合物时,可以仅给终止物提供这种修饰以保证延伸的核酸与终止物连接并防止与其它引物连接。
可以使用本领域已知的任何连接酶,如T4RNA连接酶、T4DNA连接酶、T4RNA连接酶2、Taq DNA连接酶和大肠杆菌连接酶。
为了防止任何非杂交的引物或者终止物连接,本发明的一个优选实施方案使用双链特异性连接酶如T4RNA连接酶2或者T4DNA连接酶。双链DNA是T4DNA连接酶的天然底物,DNA-RNA杂交体是不良底物[29]。为了克服这种无效性,可以用Mn2+代替Mg2+作为酶的二价离子[30]。在本发明的一个实施方案中,示出在连接反应中加入PEG增加RNA杂交体中DNA分子的连接效力,甚至在含有Mg2+的连接酶缓冲液中。
任选地,腺苷酸化缺陷的(例如截短的)T4RNA连接酶可用于连接,其依赖于与RNA的杂交体中存在腺苷酸化DNA片段(用T4DNA连接酶腺苷酸化只发生在双链核酸中)。其可以另外加入连接反应中以进一步增加效力。所述连接只发生在杂交体中,先前认为是非常低效的连接形式[31]。在US6,368,801中,描述了RNA杂交体中2个DNA分子(在其3’和5’末端具有核糖核苷酸)由T4RNA连接酶的连接。然而,T4RNA连接酶不是特异于杂交体的,因为其连接5’或3’末端含有脱氧核糖核苷酸的所有单链核酸(RNA与DNA,RNA与RNA,DNA与DNA,条件是在3’和5’末端存在脱氧核糖核苷酸)。本发明包括在连接反应中加入PEG,其使得可以在RNA杂交体中发生连接反应。PEG已经用于单链连接反应,作为分子拥挤剂,通过降低有效反应体积而增加供体寡核苷酸连接酶复合物与受体(3’OH)相互作用的可能性[32]。在此相比之下,供体寡核苷酸连接酶复合物已经紧邻受体,以及PEG通过将双螺旋缩合成更接近DNA:DNA螺旋的构象而改变RNA:DNA杂交体的构象,由此通常特异地连接具有DNA链的杂交体中的两个DNA分子的T4DNA连接酶可以连接具有RNA分子的杂交体中的两个DNA分子。或者,可以使用T4RNA连接酶2,其是双链特异性连接酶。
其它添加剂如Tween-20、NP-40可以另外加入,或者代替PEG以在RNA杂交体中有效连接。在本发明范围内,连接反应需要12%-25%的最终PEG-8000(v/v)。可以使用多种PEG分子量和化合物,技术人员将意识到所述添加剂的身份和浓度可以变化以优化结果。在本发明中,PEG的有效量是足以在RNA杂交体中发挥连接活性的量。在20μl RT反应中,发现在RNA杂交体中连接的最佳PEG浓度是20%。然而,本领域技术人员已知任选可以增加或者减少所述反应体积和PEG浓度(例如减少体积,增加PEG量或浓度),以潜在地进一步优化在RNA杂交体中由T4DNA连接酶或者T4RNA连接酶2对2个DNA分子的连接效力。其它添加剂如1mM HCC和/或焦磷酸酶可进一步增加在RNA杂交体中的连接效力。
预腺苷酸化的寡核苷酸可以插入在所述反应中并和截短的T4RNA连接酶一起使用,条件是在连接反应之前已经除去任何未杂交的寡核苷酸。如之前在本发明的另一实施方案中所提及,除了T4DNA连接酶之外可以加入截短的T4RNA连接酶2,以在RNA杂交体中进一步加强DNA片段的连接。
因此,优选所述连接酶是双链特异性连接酶,如T4DNA连接酶或者T4RNA连接酶2,及其中优选使用浓度在12%-25%之间的聚乙二醇。
除了代表性模板扩增合成之外,本发明的另一益处是改良的产生长产物核酸的效力,特别是cDNA合成,获得较高的检测敏感性及较长的产物(见实施例5和6)。
在优选的实施方案中,任一寡核苷酸引物均可包含序列标签。这种序列标签是独特的预选的核酸序列形式的标记,可用于检测、识别或者扩增用所述标签标记的序列。优选地,同样的序列标签连接至多于一种的寡核苷酸引物,特别优选连接至所有寡核苷酸引物。这种序列标签优选不能与模板退火,例如与互补核酸杂交。序列标签可以连接至寡核苷酸终止物的5’末端,以免防止引物在其3’末端的延伸反应。
在优选的实施方案中,任一寡核苷酸终止物均可包含序列标签。这种序列标签是独特的预选的核酸序列形式的标记,可用于检测、识别或者扩增用所述标签标记的序列。优选地,同样的序列标签连接至多于一种的寡核苷酸终止物,特别优选连接至所有寡核苷酸终止物。这种序列标签优选不能与模板退火,例如与互补核酸杂交。序列标签可以连接至寡核苷酸终止物的3’末端。在该位置,所述标签不阻碍延伸产物核酸与终止物的5’末端的接触,获得充分限定的产物。其也使得延伸的产物可以与寡核苷酸终止物连接。或者,所述标签可以在所述终止物的5’末端上,然而,无法与模板杂交,以便所述延伸反应仍达到所述终止物的引物区域的5’末端。所述标签优选包含游离的5’末端,由此延伸的产物可以与所述标签连接,以由所述标签标记延伸的产物。可以容易地与产物连接的所述标签的游离5’末端优选提供在延伸的产物的3’末端附近。这可以通过例如提供该标签与寡核苷酸终止物的互补区杂交而实现,所述互补区与所述标签杂交,并附着于寡核苷酸终止物的引物区的5’末端(实例参见图4)。
延伸的产物当其达到寡核苷酸终止物(或者另一引物)、优选终止物的位置时的创造性标记步骤可以使用本领域易于获得的任何已知方式实现。这种方式包括附着生色团、荧光团或者简单相分离,通过与固相结合而并洗涤所述固相以除去所有未结合的核酸,从而分离标记的核酸。在优选的实施方案中,所述标记步骤包括与序列标签连接。序列标签可以附着于所述寡核苷酸引物或者寡核苷酸终止物。标记也可以包括与包含序列标签的所述寡核苷酸引物或者寡核苷酸终止物连接。
对于许多下游分析而言,优选寡核苷酸如引物、终止物、阻断剂或者接头被去除。特别地,当必需或需要利用通用接头序列扩增文库时,可优选去除未连接的接头。
这可以通过例如尺寸排阻实现,在合适的床中保留寡核苷酸(较短),并回收文库(较长)。另一可能性是使较长的文库与基于硅石的载体结合,而不保留较短的寡聚物。也可以进行这种辨别,当仍在具有模板的杂交体中时,在寡聚体的单链型(single strandedness)与文库的双链型(doublestrandedness)之间进行区分。基于长度的纯化的另一可能性是基于PEG沉淀的方法。PEG浓度越高,可以沉淀的核酸越短。例如,发现使用12.5%PEG沉淀,所有小片段(低于60个核苷酸)将留在溶液中,仅cDNA和接头连接的文库沉淀。
在优选的实施方案中,使用基于珠的清除方法。分离生物素标记的寡聚dT引物的寡聚dT偶联的珠或者链霉亲和素珠可商购。基于珠的清除具有可以在所述珠上进行RT和连接这两个反应的额外优势。在mRNA与寡聚dT(生物素标签的或者在珠上)及与起始物和终止物杂交之后,可以洗去任何过量的未杂交的起始物和终止物,之后开始RT反应。因此,在本发明优选的实施方案中,所述模板核酸固定在固相或者固体支持物上,优选固定在珠上。然后可以洗涤与所述模板核酸杂交的扩增的核酸。
本发明的另一实施方案是可以在一个反应步骤中进行RT和连接反应,简便地通过在逆转录反应中在常规的逆转录反应缓冲液中加入连接酶(如T4DNA连接酶或者T4RNA连接酶2)、10%PEG和0.4μM ATP而进行。尽管可以使用30分钟保温,但是在37℃保温2小时获得更好的产量。在另一洗涤步骤(4次洗涤)之后,可以将RNA水解以获得双标签(di-tagged)的cDNA文库,然后可插入PCR反应中。RT和连接反应也可以在两个连续反应步骤中进行,通过洗涤所述珠简便地再缓冲所述反应。然而,在本发明优选的实施方案中,同时进行RT/连接反应,因为这样获得与两个步骤方案相似的产量,但是具有减少转送和保温时间的优势。同时的RT和连接反应可以通过在具有模板核酸的一个反应混合物中加入DNA聚合酶和连接酶而进行。
在本发明的优选方法中,所述延伸的产物被扩增。扩增可包括使用标签特异性引物以扩增包含5’和/或3’标签的延伸的产物,分别来自于标签标记的寡核苷酸引物和/或终止物。优选通过PCR进行扩增。在随后的扩增循环中适于引物杂交的序列标签在本文也称作“接头”。
目前针对高通量测序如NGS的小cDNA片段的任何制备均包括RNA的片段化,在大多数情况中包括多步骤程序以导入5’和3’接头标签以进行扩增和条码编码。例如,Epicentre’s ScriptSeqTMmRNA-Seq文库制备试剂盒使用末端标签技术(US2009/0227009A1)及化学片段化的RNA的随机引发(去除核糖体RNA)。然而,mRNA的任何片段化(化学或物理)引出不确定的和不可预见的偏差。另外,在片段化方案期间,一部分RNA被降解或者失去。因此,本发明完美地适于产生充分限定较短大小的cDNA文库而不需要RNA片段化。
此外,当RNA被片段化时,产生许多额外的5’末端。逆转录酶具有当其达到模板RNA的5’末端时加入几个非模板核苷酸及使用这些核苷酸引发第二链合成的倾向。因此,当RNA被片段化时,产生更多的5’末端,并因此起始更多的第二链合成。在RNA测序期间的一个重要问题是RNA从哪个DNA链被转录。特别是在有义和反义转录分析中,需要测序的文库的高链型(strandedness)(链信息保守性)。因此,由于在本发明中不需要RNA消化,因此与包括RNA片段化的文库制备方法相比在产生的cDNA文库中可以实现更高程度的链型(见实施例9)。
当然这种方法可以用于产生任何种类模板核酸的片段,不限于RNA。这种片段由本发明的延伸的产物或者扩增的核酸部分提供。模板核苷酸序列也可以是DNA。因此,使用本发明所述技术制备文库也可以从基因组DNA或PCR产物开始。由于逆转录酶也接受DNA模板[33],因此所有步骤可基本如这个发明所述进行。任选地,如果DNA用作模板,也可以使用DNA依赖性聚合酶。
对于许多分析方法如NGS,优选在cDNA的3’和/或5’末端上存在明确的通用接头序列。这种接头序列可例如作为PCR扩增的引发位点以富集文库,或者作为在固体表面上桥接扩增的引发位点,或者引发测序反应。因此,在本发明范围内,接头序列与扩增的核酸部分连接。然而,优选5’接头序列用引物直接导入(见图3(L1))。在此,5’接头序列是用于引发聚合酶的序列的5’延伸。
或者或此外,接头序列可以导入在延伸的核酸产物的3’末端,例如通过使用终止物寡聚物进行(图3.(S1,Sm)),所述终止物寡聚物3’末端上添加有接头序列(图3.(L2))。终止物寡聚物的5’末端可以与延伸产物的3’末端连接(图3b)。特异性裂解反应保证了终止物寡聚物的5’末端不被链置换。因此,在优选的实施方案中,在逆转录反应中加入终止物寡核苷酸,及其中所述终止物寡核苷酸具有3’接头序列延伸。
在另一种形式中,如图5和8所示,起始物和终止物寡核苷酸彼此至少部分杂交。5’磷酸化的终止物寡核苷酸可以仍与模板链杂交(如图8a-d,f-h所示),或者与模板链不杂交(见图8e)。在这种情况中,称作起始物的延伸的寡聚物必须是终止链置换的实际寡聚物并因此优选含有终止链置换的修饰。从更上游的起始物延伸的链将终止在下一个起始物,先前被称作终止物的与起始物杂交的磷酸化的寡聚物与延伸的cDNA链连接。
在8e中,示出更详尽描述的起始物/终止物组合。关于接头序列L1和L2的详细描述可见于图9的描述。
最后,起始物和终止物寡聚物的序列标签(接头)可以接合(见图8h),以将序列标签导入cDNA中,但是保持各个延伸产物序列顺序,因为其现在通过其起始物终止物序列标签彼此共价连接。
优选在延伸反应期间使用具有较低或没有末端转移酶活性的聚合酶,在到达终止物寡聚物的5’末端位置时在延伸产物的3’末端不加入非模板化的核苷酸,因为3’突出端降低连接反应的特异性和效力。具有低末端转移酶活性的逆转录酶例如是Superscript III(Invitrogen),无末端转移酶活性的RT是例如AMV-RT。
或者或此外,末端转移酶活性及因此的第二链合成可以通过加入放线菌素D而被抑制。放线菌素D可以这样的量加入聚合反应中,所述量与未加入放线菌素相比避免第二链合成和/或降低聚合酶的链置换。在优选的实施方案中,将放线菌素D加入RT反应中,终浓度为大约50μg/ml,也可以使用较高或较低浓度,如5μg/ml-200μg/ml。
此外或另外,突出端可以由单链特异性核酸酶消化,优选3’-5’核酸外切酶,例如但不限于核酸外切酶I(3’-5’ssDNA消化)、Exo T5(3’-5’ss或者dsDNA消化)。
本发明的目标之一是控制通过扩增的核酸产物获得的序列文库中导入任何偏差,这在大多数情况中意味着使偏差最小化。作为随机或半随机引发序列的延伸导入的接头序列也可以参与与模板杂交。这样在产生的文库中将加入偏差。因此优选至少位于引物或终止物序列邻近的接头的核苷酸与模板的杂交被抑制。这可以通过不同方式实现。例如,可以在反应中加入具有接头序列的反向互补序列的寡核苷酸(见图5c-f,图6c-f)。在那种情况中,反向互补物将与模板竞争与接头序列杂交,通过使用过量的反向互补物,接头序列在引发RT或杂交终止物寡聚物中的参与可以被有效终止。
优选提供具有核苷酸修饰的反向互补,通过使用例如LNA,增强接头:反向互补物杂交体的稳定性。然而,可以使用增强结合能力的任何其它修饰(见图6e,图7e)。
此外,优选加入引物和/或终止物作为逆转录的预制连接物。这意味着基本上所有接头序列与其反向互补链杂交,由此接头序列参与杂交反应被抑制。
因此,在优选的实施方案中,将寡核苷酸的接头序列部分的反向互补序列加入反应中,优选已经与寡核苷酸引物杂交,及进一步优选所述反向互补寡聚物的Tm通过例如导入修饰如LNA、2’氟代核苷酸或者PNA而升高。
在优选的实施方案中,反向互补序列与接头序列共价连接(见图6g,7g)。这可以是与接头序列直接连续或者通过核苷酸发夹或间隔物如C3、C6、C12或者任何其它部分连接。此外,这个部分可以是增强连接物形成的修饰。如前文所述,优选反向互补的核苷酸被修饰为增强与接头序列的杂交。因此,优选接头序列的反向互补与接头序列直接连接或者通过核苷酸发夹或间隔物如C3、C6、C12或者任何其它部分连接。
在最优选的实施方案中,引物上的序列标签(L1)和终止物上的序列标签(L2)包含至少部分互补序列,其使得起始物与终止物可以形成杂交体(见图5和8)。以此方式,所述序列标签(接头)序列不与模板链杂交,及作为额外的益处,终止物-连接将在下一起始事件紧邻发生,使起始与终止事件之间的任何缺口最小化。因此,在本发明优选的实施方案中,至少一或多种或者所有寡核苷酸终止物与至少一种另外的寡核苷酸引物杂交。在另一实施方案或者另外的组合实施方案中,至少一或多种、优选所有寡核苷酸引物与寡核苷酸终止物杂交。特别优选寡核苷酸终止物任一种和寡核苷酸引物任一种各自包含序列标签,且优选其中寡核苷酸引物的序列标签与寡核苷酸终止物的序列标签至少部分互补,从而使得所述寡核苷酸终止物与寡核苷酸引物彼此至少在各自的序列标签部分杂交。
由于任何游离的3’OH在聚合或连接期间均可作为接受体,因此优选任何游离3’OH(除了在寡核苷酸引物上的之外)均被阻断(见图6f,图7f)。本领域已知许多阻断基团。可供参考但不限于二脱氧核糖核苷酸、C-间隔物和磷酸基团。此外,引发连接物中反向互补的3’末端也可以提供为具有突出端(见图6d)。相应地,终止连接物的接头序列可以提供为具有3’突出端(见图7d)。因此,优选不参与引物延伸反应的寡核苷酸的3’OH被阻断和/或在提供在杂交体中的情况中,所述3’末端具有跨过5’末端的突出端。
当接头序列与引物和/或终止物寡核苷酸一起导入时,接头序列之间的序列反映模板RNA序列。由于在聚合期间引物或终止物与模板的错误杂交比掺入错误核苷酸更加可能,因此引物序列和/或终止物序列比聚合的序列更可能含有错误。因此,当例如在NGS实验中测序文库中,可优选含有测序引物的接头序列与引物延伸产物紧邻。这个问题的一个解决方案在图4中示出。在此,L2序列与已经导入在终止物寡核苷酸5’侧的其反向互补序列杂交。以此方式,一旦聚合酶到达并终止在终止寡聚物,则L2序列可以与引物延伸产物连接。然而,所述寡聚物的终止序列的序列不包括在所述文库中。因此,从L2序列起始任何测序反应将不包括潜在的错误杂交的终止物序列。因此,优选接头序列在所述终止寡核苷酸的5’末端上,且接头序列的反向互补序列的5’末端与链置换终止的延伸产物的3’末端连接作为序列标签。相同原理用于图8e所示起始物-“终止物”组合,唯一不同是负责终止的寡聚物实际上是下一文库片段的起始物。
因此,在优选的实施方案中,寡核苷酸引物或者寡核苷酸终止物与作为寡核苷酸标记的序列标签杂交。特别优选的所述序列标签优选与在所述寡核苷酸引物或寡核苷酸终止物的5’末端上的部分杂交。所述引物或终止物3’方向紧邻所述引物或终止物与所述序列标签杂交的核苷酸的接下去例如1、2、3、4、5、6或更多个核苷酸与模板杂交。这样使得所述标签的5’末端位于另一引物的延伸产物的3’末端附近,其位于具有杂交的序列标签的寡核苷酸引物或寡核苷酸终止物的上游,由此所述另外的引物的3’末端可以与所述序列标签的5’末端连接。这种标签也可用于随后的连接的产物的扩增反应,及在本文也被称作“接头”。
在优选的实施方案中,寡核苷酸引物和/或寡核苷酸终止物包含核苷酸修饰,其增加Tm或者强化所述寡核苷酸的糖磷酸酯主链。增加Tm的这些修饰是为了增强与模板的杂交,以保证延伸反应的终止及防止引物或终止物的置换。这种修饰从本领域寡核苷酸阻断剂中已知,如在GB2293238、US2002/0076767A1、US6,391,592B1、WO99/61661、WO02/086155、US5,849,497、WO2009/019008中所述。合适的修饰包括选自2’氟代核苷、LNA(锁核酸)、ZNA(拉链核酸)、PNA(肽核酸)的一或多种修饰。进一步地,Tm可以通过使用特异性结合核酸的嵌入剂或者添加剂提高,如溴化乙锭(Ethidiumbromid)、Sybr Green。优选的嵌入剂特异于RNA:DNA杂交体。修饰的核苷酸的数目可以变化,根据采取的增加Tm的其它措施而定。优选修饰1、2、3、4、5或6个核苷酸。优选地,修饰的核酸在引物序列部分的5’侧,寡核苷酸引物或终止物的可以杂交或与模板退火的部分。优选地,修饰1、2或3个5’核苷酸。DNA聚合酶可具有内部链置换活性,特别是逆转录酶使二级RNA结构变性。具有核苷酸链置换活性的聚合酶可用于延伸反应。
由于DNA聚合酶、特别是逆转录酶可从RNA的模板链置换DNA寡核苷酸,至少与溶解二级或三级结构一样好,因此寡核苷酸的杂交需要被增强以终止逆转录酶的链置换。这可以通过使用对寡核苷酸自身的修饰或者通过使用稳定寡核苷酸杂交或终止逆转录的添加剂而实现。降低或抑制逆转录酶链置换活性的寡核苷酸的修饰是例如2’氟代核苷[15]、PNA[16,见图2,17]、ZNA[18,19]、G-Clamps(US6,335,439,能锁住结合鸟嘌呤(Clamp Binding to Guanine)的胞嘧啶类似物)或者LNA(US2003/0092905;US7,084,125)[20,21]。这些修饰通常提高寡核苷酸的解链温度,通过增加寡核苷酸与模板RNA链的局部杂交能量而实现。一些修饰也使得糖磷酸酯主链强化(stiffen),进一步抑制逆转录酶的链置换活性。
或者或此外,寡聚物与RNA模板的杂交可以通过使用结合或嵌入核酸的不同添加剂改变。例如,可以使用溴化乙锭、SybrGreen(US5,436,134;US5,658,751;US6,569,627)或者吖啶(acricidine)。可结合dsNA的其它化合物是放线菌素D及类似物[22]。然而,其潜在地也稳定RNA二级结构。
因此,优选这种嵌入剂或添加剂特异性结合RNA:DNA杂交体。例如是新霉素家族的氨基糖苷(新霉素、核糖霉素、巴龙霉素和弗拉霉素[23])。改变寡核苷酸杂交性质的添加剂也可以共价包含在寡核苷酸结构中[23]。
可以改变杂交能量和动力学以抑制逆转录酶的链置换活性,通过加入核酸结合蛋白如单链结合蛋白如TtH SSB[24]或Tth RecA[25]实现。
本领域技术人员意识到这些添加剂只是举例,可以使用使寡核苷酸与RNA的杂交增加的任何其它化合物、碱基修饰或者酶,以增加Tm及因此抑制链置换。
Tm的增加应足够高以防止与模板退火的引物区的任一5’末端核苷酸被延伸聚合酶置换。特别地,本发明的Tm提高防止引物区5’末端下游的第3、第2和/或第1核苷酸置换。
在本发明的某些实施方案中,链置换需要刚好在下游引物的第一个5’核苷酸被终止,特别是当cDNA片段彼此连接或者与接头连接时,如下文描述。寡核苷酸的链置换被降低或抑制,通过使用增加Tm或使寡核苷酸的糖磷酸酯主链变硬的核苷酸修饰,通过例如包括2’氟代核苷LNA、PNA、ZNA或PNA或者通过使用特异性结合核酸的嵌入剂或添加剂如溴化乙锭、Sybr gold、SybrGreen,优选嵌入剂特异于RNA:DNA杂交体。
因此,优选寡核苷酸引物的结合是在其5’末端特异性Tm增强的,以防止延伸中聚合酶置换它们。这种修饰包括但不限于LNA、PNA、ZNA、吖啶或者荧光团。
在其5’末端具有提高的Tm的寡核苷酸如LNA修饰的寡核苷酸使得可以刚好在下一引物的起始处终止。在本发明的范围内可以组合链置换终止措施,通过使用LNA修饰的寡聚物以及置换合成缺陷突变体如Y64AM-MLV或F61W HIV或者具有削弱的置换合成活性的任何其它逆转录酶,以及降低反应温度和使用增强寡核苷酸与RNA结合的不同添加剂。
优选地,修饰C和/或G核苷酸。甚至未修饰的这些核苷酸由于当互补退火时增加的氢键形成而与A或T相比具有较高的Tm。在优选的实施方案中,所述寡核苷酸引物和/或寡核苷酸终止物包含至少1、2、3、4、5、6个选自G或C的修饰的核苷酸。这些修饰的核苷酸优选如上述在引物序列的5’末端。
最有效的链置换终止是通过G或C碱基实现的,因为其增加引物或终止物的局部Tm。因此,半随机引物或终止物(六聚体、七聚体、八聚体、九聚体等)含有至少2个、更优选3或更多个G或C或者G与C的组合。最优选的是当使用LNA修饰的碱基时,这些G或C被修饰以增加局部解链温度。最优选的是在引物的5’末端使用至少1、2或者至少3个LNA修饰的碱基。因此,优选至少2、3个修饰的核苷酸任选选自G或C。
现有一些方法和方式以保证当延伸反应到达寡核苷酸终止物的位置或者进一步地或另外引物与模板退火时所述延伸反应被终止。这种终止在本文也被称作防止链置换。由于逆转录酶的增加的或高链置换活性导致链置换是逆转录的一个特殊问题。本发明的抑制逆转录酶的链置换已经拷贝的RNA部分的cDNA的步骤保证了已经拷贝的RNA分子的任何部分不再拷贝。因此,没有RNA已拷贝的部分在合成的cDNA文库中过度表现。这种链置换的抑制可以通过不同方式实现,如降低反应温度、使用无链置换活性的逆转录酶、提高解链温度或者引物:RNA杂交体的杂交能量或者增加RNA或引物的硬度或者稳定螺旋结构。在实施中,通常选择这些方式的组合,以实现无链置换的最佳反应条件。本领域技术人员能选择如本文所述或本领域已知的合适参数以适于特定的模板和反应条件。
一个选项是修饰反应温度。通常地,在RT期间反应温度高于37℃是有利的,以更好地溶解RNA模板中的二级结构,其导致更有效的置换合成。在一个实施方案中,引物的链置换终止是通过降低反应温度实现的。使用低于37℃的反应温度及降至4℃以降低链置换。优选在RT期间的聚合是在20℃-37℃之间进行。然而,当使用具有链置换活性的逆转录酶时和/或使用没有改变其解链温度的修饰的简单的终止物寡核苷酸时,甚至在这些低反应温度,链置换终止也是不完全的。
在一个实施方案中,除了降低反应温度以实现在所述另外的引物或终止物的位置延伸反应的更好的终止(及降低链置换)外,可以使用在链置换中缺陷的逆转录酶如Y64A M-MLV突变体[12]或者F61W(Phe-61-Trp)HIV突变体[13,14]。当未修饰时链置换缺陷的突变体能置换下一引物或终止物至多3个核苷酸。在本发明的范围内可以组合链置换终止措施,通过降低反应温度及使用置换合成缺陷突变体如Y64A M-MLV或F61W HIV或者具有削弱的置换合成活性的任何其它逆转录酶。
在RT期间降低反应温度或者使用具有降低的或削弱的链置换活性的逆转录酶的一个缺点是所述逆转录酶难以读取通过RNA二级结构区域。二级结构越稳定,RNA的这个部分越不可能拷贝为cDNA。这意味着尽管一个RNA分子没有一部分被拷贝超过一次,但是形成二级结构的RNA部分不会被拷贝。这意味着RNA的一些部分在产生的cDNA文库中将被过低表现。
因此,在优选的实施方案中,使用具有链置换活性的逆转录酶和/或在足以溶解二级RNA结构的提高的温度下进行逆转录。在这些条件下,RNA的每一部分均可接近逆转录酶。然而,由于RNA:RNA杂交体通常比RNA:DNA杂交体更稳定,如果不使用进一步修饰,则cDNA拷贝可再次被链置换。因此,在优选的实施方案中,逆转录反应是在不允许RNA模板(RNA:RNA杂交体)的二级或三级结构形成的条件下或者在允许这些二级结构被逆转录酶链置换而同时引物延伸产物(cDNA拷贝)不可被置换的条件下进行的。
增加单价抗衡离子的浓度也稳定所述杂交体(以及RNA二级结构),因为针对HIV-RT已经报道了在75mM KCl,链置换活性被削弱,但是不被抑制[26,27]。在优选的实施方案中,单价正离子的浓度优选选自至少20mM、30mM、40mM、50mM、60mM、70mM。对于单一负电荷离子可独立地选择相似浓度。
在延伸反应期间使用的逆转录酶可以是病毒逆转录酶,可选自AMVRT(及其突变体如Thermoscript RT)、MMLV RT(及其突变体,包括但不限于Superscript I、II或III,Maxima RT,RevertAid,RevertAid Premium,Omniscript,GoScript)、HIV RT、RSV RT、EIAV RT、RAV2RT、Tth DNA聚合酶、C.hydrogenoformans DNA聚合酶、禽肉瘤造白细胞组织增生病毒(ASLV)和RNase H,其突变体。可以使用任何这些逆转录酶的混合物。特别地,可以使用病毒RT酶的混合物,如MMLV与ASLV的混合物,和/或可以使用其RNase H降低的或者RNase H minus类似物。在任何这些方法和组合物中,可以使用两或多种逆转录酶,包括任何上述逆转录酶。
在本发明范围内可组合链置换终止措施,通过降低反应温度及使用置换合成缺陷的突变体如Y64A M-MLV或F61W HIV或者具有削弱的置换合成活性的任何其它逆转录酶及增加寡核苷酸与RNA的Tm。
在任何这些方法和组合物中,也可以使用耐热的DNA聚合酶,不过关于RNA稳定性及引物的杂交动力学,这不是在所有情况中均推荐的。
特别但不限于在随机引发的cDNA文库中的最佳表现,随机引物存在的浓度可以是50nM-100μM,更优选大约2.5μM,但是也可以是至少300nM。在优选的实施方案中,引物与模板核酸的比率(w/w)在5:1至1:1000之间,优选在2:1至1:500之间,优选在1:1至1:300之间,优选在1:2至1:250之间,优选在1:5至1:150之间,优选在1:10至1:100之间,优选在1:12至1:50之间。引物与模板核酸的摩尔比率可以在1000:1至5000000:1之间,优选在5000:1至1000000:1之间,在10000:1至500000:1之间,或者在20000:1至300000:1之间。在一个实例中,使用150ng的mRNA起始物并假定mRNA长度为500-5000nt,这意味着以2.5μM终浓度加入的引物以摩尔过量1:280000-1:28000加入。在优选的实施方案中,引物与终止物的摩尔或w/w比率在2:1至1:10之间,优选在1:1至1:5之间,尤其为大约1:1。
然而,降低寡聚物的浓度是可能的,例如使用34ng的mRNA起始物并假定mRNA长度为500-5000nt,这意味着以300nM终浓度加入的引物是以摩尔比率1:33-1:3.3加入的,模板是摩尔过量的。优选的在聚合反应期间降低的核苷酸浓度可帮助降低聚合酶的链置换及假第二链合成。在优选的实施方案中,引物与终止物的摩尔或(w/w)比率在2:1至1:10之间,优选在1:1至1:5之间,特别是为大约1:1。
当mRNA被逆转录时,可以加入寡聚dT引物以更好地覆盖mRNA的多聚A尾部。任选地,寡聚dT引物的加入可以省略,因为其是随机引物混合物的一部分,但是在优选的实施方案中,为了保证mRNA相等表现,其应该加入。寡聚dT的长度可以从8个碱基至27个碱基,但是优选使用长度为25nt的寡聚dT引物。可以使用具有不同组合物的其它类型引物代替寡聚dT。举例的这种组合物包括但不限于寡聚dT,其中3’碱基是A或者C或者G(锚定dT)。此外,也可以使用可以与mRNA的多聚A序列碱基配对的其它序列或成分。一个非限制性实例是脱氧尿苷(dU)。
所述寡聚(dT)基本上可由大约12-25个dT残基组成,可以是含有末端非-T核苷酸的锚定寡聚(dT)。所述寡聚(dT)可以是长度为18-25nt的寡聚(dT)或者其锚定等价物。
所述寡聚(dT)的浓度可以是在大约20nM-1μM之间,最优选使用500nM。随机引物的长度可以是5-15个核苷酸,可以是在5’位点具有至少3个LNA或者至少3个2’氟代修饰的碱基以有效地终止链置换的随机六聚体。
一个额外的特征是根据随机引物的浓度,产物核酸的平均长度会受影响。通过增加随机引物的浓度,可以降低所得延伸产物的大小。希望的片段大小依赖于随后的应用。如果希望的扩增的核酸部分应低于300nt(通常为第二代测序所需),则随机引物浓度应在125nM-350nM终浓度范围。
根据本发明的方法,寡聚dT的浓度可以是例如44nM-750nM,或者为中间值。本领域技术人员已知可以使用随机引物和寡聚dT的各种比率。
当在研究mRNA的情况中,优选应使用mRNA经富集的RNA样品。关于mRNA富集的一些方法已经充分论证并为本领域技术人员已知。最常用的是通过寡聚dT顺磁性珠或寡聚dT纤维素的多聚A+富集[28]。可利用关于mRNA富集的许多商购的试剂盒。或者,mRNA可以通过Terminatortreatment(Epicentre)富集。此外,一些公司提供了来自许多生物体和组织的可商购的mRNA。
本发明中使用的修饰的随机引物和寡聚dT的浓度和组合提供了有效的和代表性的mRNA序列至cDNA的转换。这种方法提供了较好的及无偏差的mRNA序列至cDNA的转换,与离mRNA的3’末端的距离无关。此外,通过抑制逆转录酶的链置换活性,其保证了任何RNA分子均仅被逆转录一次。
本发明因此涉及增加mRNA相等表现的方法,及更特别涉及增加基因表达定量的精确性。因此,本发明提供了改良的cDNA合成,可用于基因发现、基因组研究、诊断和差异表达的基因的鉴别及对于疾病重要的基因的鉴别。
在另一实施方案中,寡核苷酸终止物可用于在逆转录期间特异性阻断不希望的例如但不限于高丰度或核糖体转录物的逆转录。这个步骤可用于抑制特定模板产生标准化产物混合物。一种实际应用是抑制丰度mRNA产生标准化cDNA文库。用于抑制模板的寡核苷酸终止物,即不用于产生成分限定的延伸产物的寡核苷酸终止物,在本文被称作阻断寡核苷酸或者阻断剂。阻断寡核苷酸见于GB2293238、US2002/0076767A1、US6,391,592B1、WO99/61661、WO02/086155、US5,849,497、WO2009/019008所述,可根据本发明加以应用。优选地,这种阻断寡核苷酸高度特异于应被阻止逆转录的那些转录物,因此优选长于15nt。较长的寡核苷酸具有较高的Tm,因此更难以被逆转录酶置换。在优选的实施方案中,所述阻断寡核苷酸通过在5’末端导入修饰(例如但不限于LNA、ZNA、PNA或者吖啶)也具有提高的Tm。这些阻断寡核苷酸需要在3’末端被阻断,以防止其被延伸。这种阻断包括但不限于C3、C6、C12间隔物或双脱氧核苷酸。所述阻断寡核苷酸应优选针对位于RNA的3’末端附近、但位于多聚A尾部上游的序列设计。
本发明的范围包括组合本发明的方法,其通过一起使用上述阻断寡聚物及链置换合成缺陷的突变体(如Y64A M-MLV或F61W HIV)或者具有削弱的链置换合成活性的任何其它逆转录酶,以及降低反应温度和使用不同添加剂以增加寡核苷酸与RNA的结合。
或者,如果不知道高丰度转录物的序列,因此不能设计特异性阻断寡聚物,则链置换终止也可用于文库标准化。使用SDS寡核苷酸合成驱动文库(优选在5’末端具有提高的局部Tm,如LNA、PNA或ZNA修饰的寡核苷酸)。
使用末端转移酶,双脱氧核苷酸可以被加入那些扩增的核酸部分以产生阻断寡聚物。随后这个文库可以与检测模板样品杂交。高丰度转录物将具有优势,且来自驱动文库的单链的扩增的核酸部分更快速及更有效地杂交至相应模板。然后可以使用引物(如针对mRNA的寡聚dT引物)起始产物合成,由于大多数高丰度转录物被杂交以阻断寡核苷酸,因此低丰度的转录物具有更大机会被逆转录。如果也使用模板切换或者寡聚物加帽方案,所得低丰度转录物的cDNA甚至可以插入PCR反应中,使用相应于寡聚-dT引物的引物及模板切换或寡聚物加帽核苷酸。或者,选择性末端加标签(US2009/0227009A1)可用以对新合成的cDNA的3’末端加标签。因为高丰度的转录物由于阻断寡核苷酸而最可能从未达到全长,因此仅低丰度转录物将在使用相应于寡聚dT引物的引物及3’cDNA标签的PCR中扩增。
或者,如果cDNA的3’末端未加标签,可使用双链T7RNA聚合酶启动子引发标准化cDNA文库的RT反应,及可以使用通过在体外转录的线性扩增。
因此,在延伸反应中可以加入阻断寡核苷酸,以终止模板分子的不希望的序列部分被延伸。选择不希望的模板序列的预选序列用作阻断剂。
在本发明的优选实施方案中,所述模板核酸如RNA模板是单链的。特别地,有可能获得的模板核酸在其至少30%的长度上缺少互补链,和/或缺少长度为至少100个核苷酸的互补链,优选在其全长缺少互补核酸。本发明的方法还涵盖从本发明的模板核酸链中分离可能存在的互补链,并将这样纯化的无互补链的模板核酸导入本发明的方法中。
特别优选地,本发明的一或多种引物及一或多种终止物结合模板链,特别地不结合互补链。
再一方面,本发明涉及使用上述方法产生一或多种模板核酸以产生包含所述模板核酸的扩增的核酸部分的混合物的序列文库。优选地,所述扩增的核酸部分提供了模板的重叠序列部分。这可以例如通过使用多种不同引物而促进,其产生各种延伸的产物,随后被用作文库的扩增的核酸部分。
本发明进一步提供了产生如本文所述模板核酸的扩增的核酸部分或者产生如本文所述序列文库的试剂盒,其包含DNA聚合酶,包含增加Tm的修饰的随机寡核苷酸引物和不适于核苷酸延伸的并包含增加Tm的修饰的随机寡核苷酸终止物,任选其它的一或多种反应缓冲液,其包含Mn2+或Mg2+,连接酶,优选DNA连接酶或者具有DNA连接活性的RNA连接酶,适于连接反应的拥挤剂如PEG。连接酶也可以是RNA连接酶,特别是具有DNA连接活性的RNA连接酶,如T4RNA连接酶2。拥挤剂是惰性分子,可以高浓度使用及可用于模拟在细胞内部拥挤的大分子的作用。拥挤剂的实例是PEG(聚乙二醇)、PVP(聚乙烯吡咯烷酮)、海藻糖、聚蔗糖和葡聚糖。拥挤剂在例如US5,554,730或US8,017,339中揭示。或者所述试剂盒可包含DNA聚合酶和连接酶及任选任何其它的上述化合物。
适于产生模板核酸的扩增的核酸部分的本发明的另外的试剂盒包含或含有:a)随机寡核苷酸引物,其包含增加Tm的修饰,及b)随机寡核苷酸终止物,其不适于核苷酸延伸并包含增加Tm的修饰。所述试剂盒可进一步包含一或多种反应缓冲液,其包含Mn2+或Mg2+,连接酶,拥挤剂如PEG。所述试剂盒也可进一步包含DNA聚合酶和/或连接酶。
用于本发明的试剂盒也可包含一种载体装置,如盒子或硬纸盒,其中具有密闭的一或多个容器,如小瓶、试管、试剂瓶等。所述试剂盒可包含(在相同或单独的容器中)一或多种如下物质:一或多种逆转录酶,合适的缓冲液,一或多种核苷酸特别是dNTPs,和/或一或多种引物(例如寡聚(dT,起始物,终止物,反向互补,PCR引物)以进行逆转录反应及随后的PCR反应。本发明的这个方面涵盖的试剂盒可进一步包含为进行本发明的核酸逆转录方案所需的另外的试剂和化合物,如寡聚dT珠或者链霉亲和素偶联的珠。此外,所述引物或终止物可以固定在固体表面上。
本发明在如下图和实施例中进一步举例说明,但不限于本发明的这些实施方案。
附图说明
图1:本发明尝试解决的原则问题示意图。
a)引物P1、P2直至Pn与模板RNA杂交。引物P2比P1杂交在模板RNA的更上游(5’)位置,更一般地,引物Pn比P(n-1)杂交在模板RNA的更上游位置。或者换句话说,引物P1比P2杂交在模板上更下游的(3’)位置,及更一般地,P(n-1)比Pn杂交在模板上更下游的位置。每个引物的延伸由逆转录酶起始。b)当逆转录酶在聚合P2的延伸产物达到引物P3时,引物P3及其延伸产物被逆转录酶进行链置换,逆转录酶继续延伸引物P2延伸产物。对于P1的延伸产物也是同样,其置换引物P2及其延伸产物。c)因此,当所有延伸产物完成时,在P1与P2之间存在一个模板序列的cDNA拷贝,但是在P2与P3之间存在两个cDNA拷贝。这个现象导致多次引发的RNA的5’末端过度表现,其在使用随机引物如随机六聚体的标准逆转录期间发生。更一般而言,当n个引物已经杂交并由聚合酶延伸至模板RNA的5’末端时,所述RNA的5’末端将被表现n次,而RNA的3’末端仅被表现一次。
图2:本发明的一个实施方案的示意图,产生5’-3’平衡的cDNA文库及全长cDNA。
a)通过使用例如锁定核酸(LNA)抑制逆转录酶的链置换活性以加强引物P1、P2至Pn的杂交。在此使用在引物的恰好5’末端上的三个修饰。b)在延伸位于模板RNA上更下游的引物时,逆转录酶不能置换已经与模板上更上游位置杂交的引物。因此,所述RNA的每个部分作为cDNA仅被表现一次。以此方式不发生RNA5’末端的过度表现。c)当希望的是全长cDNA时,连接各个引物延伸产物产生d)模板RNA的一个全长cDNA拷贝。
图3:产生接头标记的短cDNA文库的示意图。
对于cDNA文库的许多下游分析,需要一个通用接头位于cDNA的一端或两个末端,以例如扩增所述文库或者起始测序反应。在此示出了具有两个接头的文库的制备。a)引物P1、P2至Pn具有5’通用接头序列延伸(L1)。此外,使用终止物寡聚物S1、S2至Sm,其具有3’通用接头序列延伸(L2)。所述终止物寡聚物也被修饰(例如LNA),由此其也不被逆转录酶置换。b)在第二个反应步骤中,延伸产物的3’末端与终止物寡聚物的5’末端连接。以此方式,产生具有两个接头序列(L1,L2)的cDNA文库,以c)在随后的PCR期间扩增整个文库。
图4:使用备选终止物寡聚物概念产生接头标记的短cDNA文库的示意图。
因为通过终止物寡聚物序列的错误杂交而在cDNA文库中导入的错误率高于如果这个部分由聚合酶转录,因此图中示出了备选终止物寡聚物概念。a)与图3相比,终止物寡聚物Sm在其5’侧通过L2rc(反向互补)序列被延伸。这个L2rc与L2杂交形成连接物(adapter)。b)同样如图3所示,逆转录酶延伸引物Pn直至其达到终止物寡聚物Sm。在连接期间,延伸产物与连接物(adapter)的L2链连接。同样以此方式,产生在末端上具有两个接头序列(L1,L2)的cDNA文库。然而,在此无终止物寡聚物序列被导入。因此,当从文库的L2侧测序时,没有由终止物寡聚物的潜在错误杂交引起的关于最初核苷酸身份的歧义。c)最后,进行PCR。
图5:使用备选终止物寡聚物概念产生接头标记的短cDNA文库的示意图。
在备选概念中,起始物与寡聚物在其各自的接头序列L1和L2中的互补序列形成异二聚体。序列缺口会减少,因为在任何终止处还有由起始物起始的聚合。a)起始物/终止物杂交体在起始物序列P1至Pn的3’末端延伸,直至达到下一起始物/终止物杂交体。终止物寡聚物S1、S2至Sm具有3’通用接头序列延伸(L2),其与起始物的L1序列杂交。如果终止物被修饰以防止链置换这就足够了,不过在图8e所示的这种起始物/终止物杂交体的备选子集中,如果L2序列不具有与模板核酸杂交的5’序列延伸,则所述修饰需要位于起始物。b)在第二个反应步骤中,延伸产物的3’末端与终止物寡聚物的5’末端连接。以此方式,产生具有两个接头序列(L1,L2)的cDNA文库,以用于c)在例如随后的PCR期间扩增整个文库。
图6:优选的引物修饰的示意图。
图中描述了优选的引物修饰。也可以组合这些修饰。a)引发寡聚物的一般结构,具有引物和接头序列。当产生随机引发的cDNA文库时,所述引物序列典型是随机序列,如随机六聚体。b)所述引物序列部分含有修饰的核苷酸。所述修饰降低或抑制逆转录酶的链置换活性。c)导入反向互补(L1rc),其抑制所述寡聚物的L1序列部分参与与模板RNA链的杂交。因此,关于L1序列的偏差被阻断。d)为了防止逆转录酶与接头连接物结合及因此降低逆转录的效力,在L1rc的3’末端使用一个3’突出端。e)修饰L1rc序列以增加与L1序列的杂交强度,以进一步降低文库中关于L1序列的偏差的可能性。f)阻断不参与聚合酶延伸或连接酶反应的所有末端。g)通过共价键如Cn间隔物或发夹序列连接L1序列的5’末端与L1rc序列的3’末端。
图7:优选的寡聚物终止物修饰的示意图。
图中描述了优选的终止物寡核苷酸修饰。也可以组合这些修饰。a)终止物寡聚物的一般结构,具有终止物和接头序列。所述终止物序列典型是随机序列,如随机九聚体。b)所述终止物序列部分含有修饰的核苷酸。所述修饰降低或抑制逆转录酶的链置换活性。c)导入反向互补序列(L2rc),其抑制所述寡聚物的L2序列部分参与与模板RNA链的杂交。因此,关于L2序列的偏差被阻断。d)为了防止逆转录酶与接头连接物结合及因此降低逆转录效率,在L2的3’末端使用一个3’突出端。e)修饰L2rc序列以增加与L2序列的杂交强度,以进一步降低文库中关于L2序列的偏差可能性。f)阻断不参与聚合酶延伸或者连接酶反应的所有末端。g)通过共价键如C间隔物或发夹序列连接L1序列的5’末端与L1rc序列的3’末端。h)使所述终止物寡聚物的5’末端磷酸化,以能在连接反应中作为供体。或者,对5’末端进行腺苷酸化。i)描述了在图4中备选寡聚物终止物概念中使用的终止物寡聚物的一般结构。L2序列的5’末端可以被磷酸化,以能在连接反应中作为供体,或者腺苷酸化。
图8:最优选的寡聚物起始物和终止物组合。
图中描述了优选的起始物/终止物组合。起始物与终止物寡核苷酸在其接头序列中含有一段互补序列(例如14nt),使得其可以彼此杂交,因此无需加入另外的反向互补序列。图6和图7的起始物和终止物设计仍是有效的。起始物通过5’OH阻断。所述终止物寡核苷酸任选在3’末端由例如双脱氧核苷酸、二氧核苷酸(dioxynucleotides)、间隔物或反向核苷酸阻断。a)终止物寡核苷酸与起始物寡核苷酸在杂交体中的一般结构。寡聚物在例如一段14nt序列杂交。起始物与终止物寡核苷酸均与模板链一起杂交。起始物与终止物可具有与不同长度的模板核酸杂交的基础(base)。终止物寡核苷酸与起始物相比可具有较长或较短的杂交基础,反之亦然。b)起始物与终止物均被修饰以抑制聚合酶的链置换。c)在此仅终止物的5’末端核苷酸被修饰。这是足够的,因为需要被抑制链置换的聚合酶仅在终止物的5’末端。事实上,单修饰(如LNA或2’氟代)即是足够的。d)示出起始物的修饰,不是所有延伸的起始物均可以与终止物(其也与模板杂交)杂交。e)当终止物与模板杂交的序列降低为0时,则需要起始物也提供终止作用,因此需要终止链置换的修饰。f)L1和L2序列可具有不杂交的部分。g)示出备选构型,其中接头序列具有彼此杂交的部分及不杂交的部分。h)示出其中起始物和终止物寡聚物连接在一起形成实际上一个寡核苷酸的构型。当然,存在本领域技术人员可以使用的许多更多的起始物和终止物变化。
图9:寡聚物起始物与终止物结构的示意图。
a)起始物寡核苷酸从3’至5’描述,b)终止物寡核苷酸从5’至3’描述。起始物(a)由如下部分组成:
(I)引发序列(priming sequence),如在3’侧结合模板链的随机六聚体序列,其优选被修饰以被保护免于链置换。
(II)任选地,条码序列可位于随机引发序列的5’端。所述条码序列优选由3-9个核苷酸组成,其使得可以独特及特异性鉴别文库。这种条码使得例如可以混合来自不同样品的文库并且一起在流动池上测序。在测序之后,根据特异性条码多路解编(demultiplexed)读段。
(III)测序引物结合位点。这是在测序期间用于结合测序引物的序列。
(IV)用于桥接扩增(例如Illumina NGS测序)的序列或者为了附着于固体表面如珠的序列(例如SOLiD NGS测序)。
(V)序列标签,其提供了起始物与终止物寡聚物的杂交偏差。
最小的起始物可以由随机引发部分(I)和测序引物结合位点(III)组成,在这种情况中优选如图6c-g所述的反向互补序列以防止测序引物部分在杂交过程中发生。或者,起始物可以由随机引物部分(I)和测序引物结合位点(III)及与终止物杂交基础组成,从而III和V可以完全或部分相同,例如通过测序引物结合位点与终止物区域中序列部分III互补。或者,起始物可以由I、II、III和V组成,从而同样III和V可以完全或部分相同,例如如果测序引物结合位点与终止物区域中序列部分III互补。起始物也可以由I、II、III、IV和V组成。
如果使用具有较短接头序列的起始物,则在产生的文库扩增期间可以导入相应于序列引物结合位点(III)、条码(II)和/或表面吸附(IV)的序列,例如在PCR期间与PCR引物一起导入这些序列标签。
终止物寡核苷酸在b)中从5’至3’描述。终止物(b)可由如下部分组成:
(I)在5’侧结合模板的随机序列,其优选被修饰以防止链置换。
(II)任选地,起始物(II)上的条码序列或者与条码序列反向互补的序列可以位于随机引发序列的3’端。所述条码序列优选由3-9个核苷酸组成,其使得可以独特及特异性鉴别文库。
(III)测序引物结合位点。
(IV)任选地,序列标签,其用于表面附着以桥接扩增(bridgeamplification)(例如Illumina NGS测序)或者为了附着于固体表面如珠(例如SOLiD NGS测序),以及
(V)序列标签,其提供起始物与终止物寡聚物的杂交基础。最小的终止物可以由随机引物部分(I)和测序引物结合位点(III)组成,在这种情况中,优选如图7c-g所述反向互补序列,以防止测序引物部分在杂交过程中发生。或者,终止物可以由随机引发部分(I)和测序引物结合位点(III)及与起始物的杂交基础组成,从而III和V可以完全或者部分相同,例如如果测序引物结合位点与终止物区域中序列部分III互补。在另一实施方案中,这个最小终止物也可以缺少随机序列,如图4或8e所示。或者,终止物可以由I、II、III和V组成,从而III和V可以完全或部分相同,例如如果测序引物结合位点与终止物区域中的序列部分III互补。起始物也可以由I、II、III、IV和V组成。
如果使用具有较短接头序列的终止物,则在产生的文库扩增期间可以导入相应于序列结合位点(III)、条码(II)和/或表面附着(IV)的序列,例如在PCR期间与PCR引物一起导入这些序列标签。
图10:在逆转录期间链置换的终止。
a)例证了用于确定修饰的或未修饰的寡核苷酸(Seq ID No:5-8)抑制逆转录酶链置换活性的能力的测定设置,寡聚dT引物(Seq ID No:9)也使用。链置换终止寡聚物的延伸是35nt(Seq ID No:10),链置换终止产物是103nt(Seq ID No:11),全长cDNA产物是138nt(Seq ID No:12)。
b)示出实施例1的结果。
图11:通过插入RT中终止寡聚物的量调节cDNA片段大小。
图中示出实施例2的结果。cDNA片段通过有或无链置换终止寡聚物随机引发的cDNA合成而获得,在免疫印迹上分析。
图12:在逆转录期间终止链置换加上cDNA片段与全长产物的连接。
图中示出实施例3的结果。在此,链置换终止是由在5’末端具有3个LNA的寡聚物诱导的,随后将所得2种DNA片段(35nt,Seq ID No:10;103nt,Seq ID No:11)与138nt全长产物(Seq ID No:12)连接,使用T4DNA连接酶(泳道3)、截短的T4RNA连接酶2(泳道5)或者这两种酶的组合(泳道4).在泳道6中示出省略SDS寡聚物的对照反应。在泳道2中,加入SDS寡聚物,但是在连接反应中未加入连接酶。
图13:在mRNA上SDS/连接的确认
图中示出实施例4的结果。免疫印迹示出如果使用T4DNA连接酶连接短的链置换终止cDNA片段,则显著增加长度。
图14:在逆转录期间链置换终止加上cDNA片段与全长产物的连接导致更多的选择的cDNA的产物。
图中示出实施例5的结果。图中示出来自扩增自不同逆转录(RT)的Dync1h1(NM_030238)的5kb片段的qPCR结果。使用SDS寡聚物(Seq IDNo:15)和寡聚物dT引物(Seq ID No:17)或者使用寡聚物dT引物(Seq ID No:17)自身进行RT。加入T4DNA连接酶或者在对照反应中不加入,对所得cDNA进行qPCR。只有在连接的情况中,SDS寡聚物在PCR反应中才能产生5kb片段(引物Seq ID No:18和Seq ID No:19)。在SDS/连接cDNA上进行的反应(即更多的cDNA模板可利用)比在常规的寡聚物dT引发的cDNA中有更多的PCR产物(比较泳道2与泳道6和8)。
图15:在15kb cDNA上SDS/连接vs寡聚物dT引发的cDNA长度对比。
图15示出实施例6的结果,设计为评估在RT反应中产生的cDNA长度的qPCR测定。三角形:寡聚dT引发的逆转录;方形:随机六聚体引发的转录;圆形,本发明的在下游引物终止的延伸加上连接的转录。
图16:从mRNA中产生双标签的DNA文库。
图中示出使用SDS/连接方法(见泳道2)产生的DNA文库,而无连接的对照组保持空白(见泳道3)。不加入RNA模板,可以产生一些接头-接头副产品,因为寡聚dT引物在此作为模板以杂交(见泳道4)。无模板对照组的PCR是干净的(见泳道5)。
图17:对比文库制备的发现印迹,使用新的链置换终止和连接方案(SDS-连接)及标准mRNA Seq方案(TruSeqTM RNA样品制备试剂盒,Catalog#RS-930-2001)。均在Illumina GAIIx测序仪(单一读段,72bp)测序。X-轴示出唯一地定位至注解基因组的读段数,发现的基因的数目在Y-轴上。图对比示出SDS-连接方案是可行的,实际上与标准方案相比需要较少的读取以检测基因的量。
缩写
qPCR:定量聚合酶链反应
SDS:链置换终止
RT:逆转录或者逆转录酶(根据上下文而定)
LNA:锁定核酸
PNA:肽核酸
rc:反向互补
Tm:解链温度
SNP:单核苷酸多态性
CGH:对比基因组杂交
CNV:拷贝数变化
PTO:硫代磷酸键
Phos:磷酸化
定义
起始物:起始物是可以引发模板聚合酶延伸反应的分子。通常地,起始物具有通常称作引物的寡核苷酸序列。起始物可具有5’序列延伸,如在图6、7、8和9中描述的通用接头序列。
实施例
实施例1:使用LNA修饰的寡核苷酸进行的逆转录酶的链置换终止。
序列:
星号“*”表示硫代磷酸酯(PTO)键,在核苷酸前面的加号“+”表示锁定核酸(LNA)。
“Phos”表示磷酸化,
SEQ ID No.1:
5’-GCTAATACGACTCACTATAGTTGTCACCAGCATCCC-3’
SEQ ID No.2:
5’-TTTTTTTTTTTTTTTTTTTTTTTTTTTCGAATGGGCCGCAGGA-3’
SEQ ID No.3:
5’-GCTAATACGACTCACTATAGTTGTCACCAGCATCCCTAGACCCGTACAGTGCCCACTCCCCT-TCCCAGTTTCCGACTGTCCCCGGCCTCCTGCGGCCCATTCGAAAAAAAAAAAAAAAAAAAAA-AAAAAA-3’
SEQ ID No.4:
5’-guugucaccagcaucccuagacccguacagugcccacuccccuucccaguuuccgacugucc-ccggccuccugcggcccauucgaaaaaaaaaaaaaaaaaaaaaaaaaaa-3’(RNA)
SEQ ID No.5:(Phos)(5'-+GGGCACTGTACG-3')
SEQ ID No.6:(Phos)(5'-GGGCACTGTACG-3')
SEQ ID No.7:(Phos)(5'-G*GGCACTGTAC*G-3')
SEQ ID No.8:(Phos)(5'-+G+G+GCACTGTAC*G-3')
SEQ ID No.9:
5'-A*CGGAGCCTATCTATATGTTCTTGACATTTTTTTTTTTTTTTTTTTTTTTTTT*T*V-3'
SEQ ID No.10:
5’-GGGCACTGTACGGGTCTAGGGATGCTGGTGACAAC-3’
SEQ ID No.11:
5’-A*CGGAGCCTATCTATATGTTCTTGACATTTTTTTTTTTTTTTTTTTTTTTTTTTCGAATGGGCCGCAGGAGGCCGGGGACAGTCGGAAACTGGGAAGGGGAGT-3’
SEQ ID No.12:
5’-A*CGGAGCCTATCTATATGTTCTTGACATTTTTTTTTTTTTTTTTTTTTTTTTTTCGAATGGGCCGCAGGAGGCCGGGGACAGTCGGAAACTGGGAAGGGGAGTGGGCACTGTACGGGTCTAGGGATGCTGGTGACAAC-3’
为了研究在使得引物退火及cDNA聚合的条件下抑制逆转录酶的链置换活性的可行性,示出概念证明实验。对于测定设置的概况见图10a,结果见图10b所示。
在体外转录的111nt RNA模板的产生:
将75bp的GAPDH片段(NC_000072,48nt-122nt)进行PCR扩增,使用含有T7启动子序列(Seq ID No:1)或者T27尾部(Seq ID No:2)的引物。所得PCR产物(SEQ ID No:3)作为T7模板在体外转录,使用Epicentre’sAmpliScribe Flash T7转录试剂盒进行。在体外转录的111nt RNA(Seq ID No:4)在逆转录期间作为模板进行链置换终止测定。
cDNA合成:
进行第一链cDNA合成,使用来自Promega的MMLV-H进行(250U/20μl反应)。链置换测定设置在图10a中描述。cDNA合成的引物、LNA-修饰的寡聚物(1LNA-G(Seq ID No:5)、未修饰的寡聚物(Seq ID No:6)、PTO-修饰的寡聚物(Seq ID No:7)、3LNA-G寡聚物(Seq ID No:8)或者寡聚dT(Seq ID No:9)得自Microsynth AG(Balgach Switzerland)或者Eurogentec(Seraing,Belgium)。将800ng体外转录的111nt RNA(Seq ID No:4)和寡聚物(Seq ID No:5-9;50nM寡聚dT引物SEQ ID No:9和1.5μM SEQ ID No:5-8)加热至70℃持续2分钟,所有需要的成分(除了逆转录之外)包括:缓冲液(50mM Bis-Tris-Methane pH7.9,75mM KCl,4mM MgCl2,0.6M海藻糖和7.5%甘油),0.5mM每种dNTP,10mM二硫苏糖醇(DTT),通过降低温度至40℃缓慢退火,每降低2℃持续30秒。在40℃,加入250单位的逆转录酶,并将温度缓慢升至45℃,每升高1℃持续1分钟,随后在46℃保温30分钟。在第一链合成后,将样品在0.1M NaOH中加热至95℃持续5分钟,用等摩尔浓度的HCl中和,并通过EtOH沉淀纯化。在用75%EtOH洗涤后,将沉淀物溶解于5μl10mM Tris、pH8.0中,与等体积的100%甲酰胺加样缓冲液混合,在95℃变性2分钟,在冰上冷却,并通过在15%丙烯酰胺/7M尿素中电泳解析。
结果在图10b中示出。
在不同的泳道中,第二下游寡聚物(与模板的更上游部分杂交)是不同的(Seq ID Nos:5-8),在泳道2中使用具有一个LNA修饰的寡聚物(Seq ID No:5),在泳道3中使用无修饰的寡聚物(Seq ID No:6),在泳道4中使用PTO(Seq ID No:7),在泳道5中使用三个LNA修饰(Seq ID No:8),在泳道6中无第二寡聚物。泳道1和7示出大小标志物(10bp标志物,Invitrogen)。可以看出未修饰的(泳道3)或者PTO修饰的(泳道4)寡核苷酸由MMLV-H逆转录酶完全链置换,因为仅138nt的全长产物(Seq ID No:12)可观测到,无103nt的链置换终止产物(Seq ID No:11)。所述第二寡聚物也已经延伸至35nt((Seq ID No:10),因此111nt RNA的5’末端被表现两次(一次在全长产物(138nt)中,一次由第二寡聚物的35nt延伸产物被表现)。在第二寡聚物的5’序列导入1个LNA引起一些链置换的终止(138nt和103nt产物可见),而3个LNA导致链置换几乎完全终止(不超过138nt产物,仅103nt链置换终止产物(Seq ID No:11)。
实施例2:cDNA片段大小调节
这个实施例示出自mRNA中产生的cDNA文库的大小可以通过终止延伸反应的随机引物的浓度而调节。结果见图11.
RNA分离和纯化:
分离小鼠肝脏总RNA,使用PeqLab Gold柱组合酸性苯酚提取(PeqLab,PEQLAB Biotechnologie GMBH,D-91052Erlangen),根据厂商推荐方案进行。RNA的量通过在260nm的吸光度测量,并在甲醛琼脂糖凝胶或者Agilent Bioanalyzer上核查完整性。
终止物(Terminator)处理总RNA以富集mRNA:
将2-5μg的总RNA用TerminatorTM5’-磷酸酯依赖性核酸外切酶(Epicentre Biotechnologies,Madison,WI53713)根据厂商指导进行处理。
cDNA合成及免疫印迹:
在具有50mM Tris-HCl(pH8.3,25℃)、75mM KCl、3mM MgCl2、10mM DTT、0.75mM dNTP及碱稳定的地高辛-11-2’-脱氧-尿苷-5’-三磷酸的20μl反应物中进行cDNA合成。将135ng的mRNA(终止物处理的总RNA)在存在引物及除了酶和dNTP之外的所有反应成分的条件下在70℃保温2分钟。选择缓慢退火程序,在如下温度保持30秒:45℃、43℃、40℃、38℃、35℃、30℃、28℃,及在25℃保持1分钟。每20μl反应物加入200U的MMLV-H、点突变(Promega)和dNTP,在如下温度各保温2分钟:25℃,28℃,30℃和35℃,之后在37℃最终延伸10分钟。在第一链合成之后,将样品在0.1M NaOH中加热至55℃进行15分钟,用等摩尔浓度的HCl中和,通过EtOH沉淀纯化。将cDNA片段通过甲醛琼脂糖凝胶电泳(0.8%)分离,移至Zeta-Probe GT基因组印迹膜(BioRAD),根据“Mini Trans-BlotRElectrophoretic Transfer Cell”指导手册(BioRAD)指导在50V电印迹1小时,然后交联剂UV-光处理。
将膜在1×阻断缓冲液(100mM马来酸/150mM NaCl,pH7.5)中平衡5分钟,之后在阻断溶液(5%牛奶于阻断缓冲液中)中阻断所述膜的非特异性结合位点30分钟。将1:2,000稀释的抗Fab抗体(抗地高辛-AP FAB片段,Roche cat#11093274910)、30ml阻断溶液在室温摇动下保温30分钟。将膜在1×阻断缓冲液中洗涤2次,每次15分钟,然后在1×染色缓冲液(0.1M Tris-HCl,pH9.5(20℃),0.1M NaCl)中平衡5分钟。在室温(避光)在染色溶液(/NBT Liquid Substrate,800μl的30ml1×染色缓冲液)中不摇动染色过夜。
结果可以见图11所示。
在泳道1-5中,以增加的浓度使用在其5’侧具有三个LNA的寡聚物(SDS-oligo)(SEQ ID No:13:(Phos)(5’-+N+N+NNNN-3’))(泳道2:0.25μM;泳道3:2.5μM;泳道4:25μM,泳道5:50μM及泳道6:100μM)。在泳道1中,示出2μM具有未修饰的随机六聚体(SEQ ID No:14:(Phos)(5’-NNNNNN-3’))的对照反应。通过增加SDS寡聚物的量,可以降低产生的cDNA片段的大小。
实施例3:使用人工模板连接
该实施例示出更上游的引物(P1)的延伸产物可以通过在其5’末端具有三个LNA修饰的更下游的引物(P2)终止,当与模板杂交时上游引物(P1)的延伸产物可以与下游引物(P2)连接。关于包含的序列的概述见图10a。结果见图12。使用实施例1中描述的寡聚物、模板和条件进行逆转录反应。
在RT之后,将样品用乙醇沉淀,插入具有1mM HCC、20%PEG-8000、30mM Tris-HCl(pH7.8,25℃)、10mM MgCl2、10mM DTT、1mM ATP和1.5μl的T4DNA连接酶(1-3Weiss units/μl,Promega)和/或1μl的截短的T4RNA连接酶2(10units/μl,NEB)的15μl连接反应物中,在37℃保温2小时。未连接的小片段和剩余的寡聚物通过PEG沉淀除去。之后,增加反应体积,获得11.5%终PEG浓度,加入2μl线性聚丙烯酰胺(10mg/ml)作为载体。彻底旋动反应物,之后在20,000×g在18℃离心15分钟。将沉淀物在75%EtOH中洗涤2次,溶解于5μl10mM Tris(pH8.0)中,与等体积的100%甲酰胺加样缓冲液混合,在95℃变性2分钟,在冰上冷却,并加样于15%丙烯酰胺/7M尿素凝胶上。结果可见于图12。在泳道6中,人工RNA被逆转录,仅使用寡聚dT引物(SEQ ID No:9)进行。当除了寡聚dT引物(SEQ ID No:9)之外还加入SDS寡聚物(SEQ ID No:8)时,链置换完全终止,如通过出现103nt SDS产物(Seq ID No:11,见图12,泳道2)产物可见。此外,产生35nt SDS寡聚物延伸产物(Seq ID No:10)。检测T4DNA连接酶(图12,泳道3)或者截短的T4RNA连接酶2(图12,泳道5)以及这两种酶的组合(图12,泳道4)的在RNA杂交体中连接两个cDNA片段的效力。截短的T4RNA连接酶2不具有腺苷酸化功能,因此可仅连接已经腺苷酸化的寡聚物,即预先在杂交体中通过连接酶腺苷酸化的寡聚物。不使用T4RNA连接酶1,因为单链分子的优选连接然后也导致未杂交的寡聚物优选与RNA模板连接。在泳道3-5中可以看出,终止的产物(103nt,Seq IDNo:11)和SDS寡聚物延伸产物(35nt,Seq ID No:10)可以在RNA杂交体中连接,获得全长138nt cDNA(Seq ID No:12)。
实施例4:从多聚A-mRNA中合成的cDNA片段的连接
这个实施例示出通过连接通过本发明的方法产生的短的cDNA片段,在免疫印迹上发生大小移位,表明通过连接程序产生较长的cDNA。方法见实施例2和3所述。结果见图13。多聚A选择的mRNA(小鼠肝多聚A+mRNA,Stratagene)用作模板。使用寡聚dT引物(SEQ ID No:9)与具有三个LNA修饰的核苷酸的随机十二聚体(SEQ ID No:15:(Phos)(5’-+G+G+GHHHNNNNNN-3’))组合产生的短cDNA片段(见图13,泳道1,在100-700nt之间的片段),在RNA杂交体中使用T4DNA连接酶连接,获得甚至长于6,000nt的长(全长)cDNA(见图13,泳道2)。
实施例5:在基因特异性qPCR中,SDS/连接逆转录比常规的寡聚dT引发的RT产生更多的产物
在含有1μl cDNA(从800ng总RNA中合成,纯化后溶解于42μl10mM Tris,pH8.0中)、50mM Tris-Cl pH9.2、16mM硫酸铵、0.1%Tween20及5.1mM MgCl2、1.5M甜菜碱、1.3%DMSO、0.5×SYBRGreen I、0.2mM每种dNTP、0.3μM每种引物(SEQ ID No:18:5’-CTGGATGAATGGCTTGAGTGT-3’和SEQ ID No:19:5’-GCAACTCCACGCTCATAGAAG-3’,针对NM_030238设计的引物)、0.8单位的KlenTaq AC聚合酶及0.2单位的Pfu聚合酶的20μl反应物中进行基因特异性PCR。将样品在95.8℃变性15秒,并进行20次如下循环:在95.8℃持续15秒,在55℃持续30秒,在74℃持续20分钟(ABI9700速度斜率:50%)。随后进行19次如下循环:在95.8℃持续15秒,在58℃持续30秒,在74℃持续20分钟(ABI9700速度斜率:10%),随后是最终延伸步骤是在72℃进行3分钟。PCR产物使用硅石柱纯化,加样于0.7%琼脂糖凝胶上。结果示于图14。泳道8示出从用寡聚dT引物(Seq ID NO:17:5’-G*GCGTTTTTTTTTTTTTTTTTT*V-3’)合成的cDNA中产生的5096bpPCR产物。作为对照,对寡聚dT引发的cDNA也进行所述连接方案,其通常用于链置换终止寡聚物(见泳道6)。当使用Seq ID No:15(SDS寡聚物)和Seq ID No:17(寡聚dT)引发RT反应,随后是如实施例3所述的连接方案,从这种cDNA中产生的PCR产物的量甚至多于常规寡聚dT引发的cDNA(对比图14,泳道2分别与泳道6和8对比)。这可以由SDS寡聚物由于杂交而阻止二级结构形成加以解释,如果仅寡聚dT使用引物,这些二级结构导致提前聚合终止事件。使用SDS/连接方案,RT在多个位置起始,然后连接所得cDNA片段,获得全长cDNA产物,或者在这种情况中,来自随机选择的特异性转录物的选择的选择的5kb片段。不用连接,在随后的用SDS寡聚物合成的cDNA的PCR中无PCR产物产生(见泳道4)。这清晰示出链置换确实被终止,产生的cDNA片段未连接,因此无PCR产物可获得,因为没有含有这两个PCR引物结合位点的模板。泳道3、5和7是对照组,在RT反应中未加入逆转录酶,因此示出无基因组DNA污染,及SDS寡聚物不产生任何非特异性背景。
实施例6:使用SDS/连接RT方案,长转录物更有效地被逆转录
选择长转录物(遍在蛋白连接酶E3成分n-recognin4;Ubr4;NM_001160319),沿着cDNA设计200bp扩增子。扩增子彼此间隔大约2kb(引物Seq ID No:20-29)。
SEQ ID NO.20:5’-CCTTCCAGGAGGAGTTCATGCCAGT-3’
SEQ ID NO.21:5’-CACACGGAGAGATGAATGAGGGGAGA-3’
SEQ ID NO.22:5’-GCCTTCATGGCTGTGTGCATTGA-3’
SEQ ID NO.23:5’-CATCCTGCCCTGTAGAAAGTCCTCTTG-3’
SEQ ID NO.24:5’-CCAGTGTCACAAGTGCAGGTCCATC-3’
SEQ ID NO.25:5’-GCGGTCAGCTTTGTCCAGAAGTGTGT-3’
SEQ ID NO.26:5’-GTAAGATGGTGGATGGGGTGGGTGT-3’
SEQ ID NO.27:5’-TCGCTCTGAAATGCTGACTCCTTCA-3’
SEQ ID NO.28:5’-ACCCAGGTTCTACTGCGTCCTGTCC-3’
SEQ ID NO.29:5’-CCTCCAGGGCTGTCACGTTCTTCTT-3’
在更3’扩增子与最5’扩增子之间的δCt(互补于mRNA的3’末端,接近多聚A尾部)用于计算倍数差异(根据Pfaffl所述[34]),因此示出在mRNA模板长度产生的cDNA的相关降低。对比寡聚dT(Seq ID No:17)引发的cDNA与Seq ID:15和Seq ID No:14引发的cDNA,随后在RNA杂交体中连接所得cDNA片段。每个反应均一式三份进行,平均值在图15中示出。圆形描述了使用SDS-寡聚物测量的数值(虚线);使用随机六聚体以方形示出(实线),使用寡聚dT以三角形示出(点虚线)。仅SDS/连接方案保证在具有几乎完美的3’与5’比率为1的转录物长度的更相等的cDNA合成。
寡聚dT引发的cDNA(三角形,点虚线)示出在15kb mRNA长度产生的cDNA中的稳定下降。仅大约10%的原始起始的cDNA合成达到6kb。无链置换的随机引发导致mRNA的5’末端的过度表现(方形,实线)。
实施例7:从mRNA中产生双标签的DNA文库
将0.11μM生物素标签的寡聚dT引物(SEQ ID NO.30:(生物素-TEG)(5’-TTTTTTTTTTTTTTTTTTTTTTTTTTT-3’)、2.5μM标签的引物(SEQ ID NO.31:(C12-间隔物)(5’-TCCCTACACGACGCTCTTCCGATCTGACTG+G+G+GNNN-3’)+2.5μM引物标签的反向互补(SEQ ID NO.32:(C3-间隔物)(5’-CAGTCAGATCG+GAA+GA+GC+GTC+GT+GTAGGGA-3’)(C3-间隔物))、5μM标签的终止物(SEQ ID NO.33:(Phos)(5’-+G+G+GHHNNNNAGATCGGAAGAGCGGTTCAGCAGGA-3’)(C3间隔物))+5μM终止物标签的反向互补(SEQ ID NO.34:(C12-间隔物)(5’-TCCT+GCT+GAACC+GCTCTTCC+GATC-脱氧T-3’),脱氧T表示3’阻断的脱氧T),与150ng的多聚A+mRNA(BioCat Heidelberg,Germany)在Tris、pH7.0中杂交(70℃,1分钟,然后在冰上缓慢冷却)。假定mRNA长度为500-5,000nt,这意味着起始物以1:280,000-1:28,000摩尔过量加入,而终止物以1:560,000-1:56,000摩尔过量加入。然后杂交的核酸结合(在室温20分钟)预洗的1.1μl链霉亲和素包被的Dynabeads(M-280,10mg/ml)。洗去未杂交的核酸(根据厂商指导洗涤4次)。之后,加入RT缓冲液至终浓度为1x(50mM Tris-HCl(pH8.3,25℃),75mM KCl,3mM MgCl2,10mMDTT),0.5mM dNTPs,200单位MMLV-H以及8U的T4DNA连接酶,加上10%PEG和0.4μM ATP。在珠上进行逆转录-连接反应,通过将该反应物加热缓慢升高温度(25℃进行2分钟,28℃进行1分钟,31℃进行1分钟,34℃进行1分钟),之后在37℃保温2小时。再次洗涤该珠(4次),之后水解RNA(55℃在0.1N NaOH中进行15分钟)。在用0.1N HCl中和后,沉淀样品,溶解于20μl中,然后取4μl插入Illumina qPCR中(引物:SEQ IDNO.35:5’-A*ATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATC*T-3’和SEQ ID NO.36:5’-C*AAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T-3’)。结果在图16中示出。使用SDS/连接方法产生文库涂带(见泳道2),而无连接对照保持空白(见泳道3)。不用加入RNA模板,可以产生一些接头-接头副产品,因为寡聚dT引物然后作为杂交模板(见泳道4)。PCR无模板对照组是干净的(见泳道5)。
实施例8:SDS-连接样品如实施例7所述制备。为了对比,制备标准mRNA-Seq文库,根据Illumina文库制备方案(TruSeqTM RNA样品制备试剂盒,Catalog#RS-930-2001)进行。对这两个文库在Illumina GAIIx机器(单一读段,72bp)上进行NGS测序。为了对比两个文库的性能,计算揭示印迹,示出相对于唯一定位至注解基因组的指定读段数的检测出的基因数。所述发现印迹在图17中示出。图中示出SDS-连接方案的可行性,其实际上胜于标准m-RNA Seq文库制备方案。
实施例9:根据厂商指导从通用人参考RNA(Agilent Technologies,Catalog#740000)中制备双标签的文库,ERCC RNA掺入在对照混合物(Catalog#4456740)中。使用两种NGS样品制备方法:ScriptSeq V2试剂盒(cat#SSV21106,Epicentre,WI),根据厂商指导进行,或者如实施例7所述样品制备,具有如下修改:使用得自Dynazyme的寡聚dT25磁珠(得自mRNA直接试剂盒,Catalog#610-12)以及LNA-N修饰的起始物。
SEQ ID No.37:
(5Sp9)(5'-TCCCTACACGACGCTCTTCCGATCTAGC+N+N+NNNN-3')
及终止物
SEQ ID No.38:
(phos)(5'-+N+N+NNNNNNNAGATCGGAAGAGCGGTTCAGCAGGA-3')(C3间隔物)。
在表1中列出了NGS测序的结果。
表1:确定转录物中ERCC掺入物的文库链型。
方法 总读段 %ERCC %链型中位数
a)SDS_Lig 43399527 1.09% 100%
b)ScriptSeq 32709274 0.85% 97.52%
确定两种方法的链型(链信息保守性),在对照组中使用ERCC RNA掺入物。这些对照提供了链型的绝对测量值,因为其仅存在于一个方向中,即无反义。检测ERCC的反义转录物的方法应是直接测量所述方法的固有误差率。所述链型以两种方法的1000读段/ERCC的平均值计算。SDS-连接方法示出100%链特异性,无读取数据走向错误方向,而用ScriptSeq确定链型为97,52%。
参考文献
[1]Seyfang A,Jin JH.Multiple site-directed mutagenesis of more than10sitessimultaneously and in a single round.Anal Biochem.2004Jan15;324(2):285-91.
[2]Hogrefe HH,Cline J,Youngblood GL,Allen RM.
Creating randomized amino acid libraries with the QuikChange Multi Site-DirectedMutagenesis Kit.Biotechniques.2002Nov;33(5):1158-60,1162,1164-5.[3]Winshell J,Paulson BA,Buelow BD,Champoux JJ.Requirements for DNA unpairing duringdisplacement synthesis by HIV-1reverse transcriptase.J Biol Chem.2004Dec17;279(51):52924-33.Epub2004Sep30.
[4]Bustin SA,Nolan T.Pitfalls of quantitative real-time reverse-transcriptionpolymerase chain reaction.J Biomol Tech.2004Sep;15(3):155-66.Review.
[5]Lacey HA,Nolan T,Greenwood SL,Glazier JD,Sibley CP.Gestational profile ofNa+/H+exchanger and Cl-/HCO3-anion exchanger mRNA expression in placenta usingreal-time QPCR.Placenta.2005Jan;26(1):93-8.
[6]Zhang J,Byrne CD.Differential priming of RNA templates during cDNA synthesismarkedly affects both accuracy and reproducibility of quantitative competitivereverse-transcriptase PCR.Biochem J1999;337:231–241.
[7]Feinberg,A.P.,and Vogelstein,B.A technique for radiolabeling DNA restrictionendonuclease fragments to high specific activity.Analytical Biochemistry,132:6-13(1983).
[8]Feinberg,A.P.,and Vogelstein,B.A technique for radiolabeling DNA restrictionendonuclease fragments to high specific activity.Addendum.Analytical Biochemistry,137:266-7(1984).
[9]Houldsworth,J.,and Chaganti,R.Comparative Genomic Hybridization:anOverview.American Journal of Pathology145:1253-1260(1994).
[10]Gresham,D.,Dunham,M.J.,and Botstein,D Comparing whole genomes usingDNA microarrays..Nature Reviews Genetics9(4):291-302(2008).
[11]Metzker ML.Sequencing technologies-the next generation.Nat Rev Genet.2010Jan;11(1):31-46.Epub2009Dec8.Review
[12]Paulson BA,Zhang M,Schultz SJ,Champoux JJ.Substitution of alanine fortyrosine-64in the fingers subdomain of M-MuLV reverse transcriptase impairs stranddisplacement synthesis and blocks viral replication in vivo.Virology.2007Sep30;366(2):361-76.Epub2007May29.
[13]Fisher TS,Darden T,Prasad VR.Substitutions at Phe61in the beta3-beta4hairpinof HIV-1reverse transcriptase reveal a role for the Fingers subdomain in strand displacementDNA synthesis.J Mol Biol.2003Jan17;325(3):443-59.
[14]Fisher,T.S.&Prasad,V.R.(2002).Substitutions of Phe61located in the vicinityof template50-overhang influence polymerase fidelity and nucleoside analog sensitivity ofHIV-1reverse transcriptase.J.Biol.Chem.277,22345–22352.
[15]Kawasaki,A.M.,et al.,Uniformly modified2'-deoxy-2'-fluoro phosphorothioateoligonucleotides as nuclease resistant antisense compounds with high affinity and specificityfor RNA targets,Journal of Medicinal Chemistry(1993),36:831-841.
[16]Nielsen PE,Egholm M,Berg RH,Buchardt O.Sequence-selective recognition ofDNA by strand displacement with a thymine-substituted polyamide.Science.1991Dec6;254(5037):1497-500.
[17]Egholm M,Buchardt O,Christensen L,Behrens C,Freier SM,Driver DA,Berg RH,Kim SK,Norden B,Nielsen PE.PNA hybridizes to complementary oligonucleotides obeyingthe Watson-Crick hydrogen-bonding rules.Nature.1993Oct7;365(6446):566-8.
[18]Voirin,E.et al.(2007)Versatile synthesis ofoligodeoxyribonucleotide-oligospermine conjugates.Nat Protoc,2,1360-1367
[19]Moreau et al.(2009)Zip nucleic acids(ZNAs):new high affinity oligonucleotidesas potent primers for PCR and reverse transcription.Nucl.Acids Res.,37:e130;doi:10.1093/nar/gkp661.
[20]Nielsen,P.,Pfundheller,H.M.,Olsen,C.E.and Wengel,J.,Synthesis of2′-O,3′-C-Linked Bicyclic Nucleosides and Bicyclic Oligonucleotides,J.Chem.Soc.,PerkinTrans.1,1997,3423;
[21]Singh,S.K.;Nielsen,P.;Koshkin,A.A.;Wengel,J.LNA(Locked NucleicAcids):Synthesis and High-Affinity Nucleic Acid Recognition.Chem.Commun.1998,455–456.
[22]Takusagawa,F.(1997)Selectivity of F8-actinomycin D for RNA:DNA hybrids andits anti-leukemia activity.Bioorg.Med.Chem.5,1197-1207.
[23]Shaw Nicholas N.,Arya Dev P.Recognition of the unique structure of DNA:RNAhybrid;review Biochimie90(2008),1026e1039
[24]Perales C,Cava F,Meijer WJ,Berenguer J.Enhancement of DNA,cDNA synthesisand fidelity at high temperatures by a dimeric single-stranded DNA-binding protein.NucleicAcids Res.2003Nov15;31(22):6473-80.
[25]Shigemori Y,Mikawa T,Shibata T,Oishi M.Multiplex PCR:use of heat-stableThermus thermophilus RecA protein to minimize non-specific PCR products.Nucleic AcidsRes.2005Aug8;33(14):e126.
[26]Boyer PL,Sarafianos SG,Arnold E,Hughes SH.Analysis of mutations at positions115and116in the dNTP binding site of HIV-1reverse transcriptase.Proc Natl Acad Sci USA.2000Mar28;97(7):3056-61.
[27]Fuentes GM,Rodríguez-Rodríguez L,Palaniappan C,Fay PJ,Bambara RA.Stranddisplacement synthesis of the long terminal repeats by HIV reverse transcriptase.J BiolChem.1996Jan26;271(4):1966-71.
[28]Sambrook J.&Russell D.,Molecular Cloning:A Laboratory Manual(Third Edition,book1,chapter7.20)
US6335439:Method of preparing phosphoramidites
[29]Engler,M.J.and Richardson,C.C.(1982)DNA ligases.In The Enzymes,vol.XV(Boyer,P.D.,ed.),pp.3–29,Academic Press,New York
[30]Hsuih TC,Park YN,Zaretsky C,Wu F,Tyagi S,Kramer FR,Sperling R,Zhang DY.Novel,ligation-dependent PCR assay for detection of hepatitis C in serum.J Clin Microbiol.1996Mar;34(3):501-7.
[31]Bullard DR,Bowater RP.Direct comparison of nick-joining activity of the nucleicacid ligases from bacteriophage T4.Biochem J.2006Aug15;398(1):135-44.
[32]Zimmerman SB,Pheiffer BH.Macromolecular crowding allows blunt-end ligationby DNA ligases from rat liver or Escherichia coli.Proc Natl Acad Sci U S A.1983Oct;80(19):5852-6.
[33]Gerard G.F.,and D'Alessio J.M.,Chapter6(73-93)From:Methods in MolecularBiology,Vol.16:Enzymes of Molecular Biology Edited by:M.M.Burell1993Humana PressInc.Totowa,NJ
[34]Pfaffl MW.A new mathematical model for relative quantification in real-timeRT-PCR.Nucleic Acids Res.2001May1;29(9):e45.
US6335439.Alessandra Eleuteri et al.(2002):Method of preparing phosphoramidites
US20030092905.Alexei Kochkine(2003):Synthesis of[2.2.1]bicyclo nucleosides
US7084125.Jesper Wengel(2006):Xylo-LNA analogues
US5436134.Richard P.Haugland et al.(1995):Cyclic-substituted unsymmetricalcyanine dyes.
US5658751Stephen T.Yue et al.(1997):Substituted unsymmetrical cyanine dyes withselected permeability.Dye No.211.
US6569627.Carl T.Wittwer(2003):Monitoring hybridization during PCR usingSYBRTMGreen I
US2009/0227009A1.Roy R.Sooknanan(2009):SELECTIVE TERMINAL TAGGINGOF NUCLEIC ACIDS
US4,683,195
US4,683,202
US4,800,159
US5,804,375
US5,322,770
US5,310,652
US2002/0076767A1
US6,391,592B1
WO94/17210A1
WO98/02449A1
WO99/61661
WO02/086155
US5,849,497
WO2009/019008

Claims (37)

1.产生模板核酸的扩增的核酸部分的方法,所述模板核酸是RNA,所述方法包括:
获得所述模板RNA,
使至少一种寡核苷酸引物与所述模板RNA退火,
使至少一种寡核苷酸终止物和/或另外的引物与所述模板RNA退火,
以模板特异性方式延伸所述至少一种寡核苷酸引物,直至延伸产物核酸到达退火的寡核苷酸终止物或另外的引物的位置,从而延伸反应被终止,其中在所述延伸反应中,所述任选的寡核苷酸终止物不被延伸和/或所述另外的寡核苷酸引物以模板特异性方式被延伸,
其中延伸的产物核酸被连接到所述寡核苷酸终止物或另外的引物的5’末端。
2.产生模板核酸的扩增的核酸部分的方法,包括:
获得所述模板核酸,
使至少一种寡核苷酸引物与所述模板核酸退火,
使至少一种寡核苷酸终止物与所述模板核酸退火,
以模板特异性方式延伸所述至少一种寡核苷酸引物,直至延伸的产物核酸到达退火的寡核苷酸终止物的位置,从而所述延伸反应被终止,其中在所述延伸反应中,所述寡核苷酸终止物不被延伸,以及
其中延伸的产物核酸被连接到所述寡核苷酸终止物的5’末端。
3.权利要求1或2的方法,其中所述寡核苷酸终止物与至少一种另外的寡核苷酸引物杂交。
4.产生模板核酸的扩增的核酸的方法,包括:
获得所述模板核酸,
使第一寡核苷酸引物与所述模板核酸退火,
使至少一种另外的寡核苷酸引物与所述模板核酸退火,
以模板特异性方式延伸所述第一寡核苷酸引物,直至延伸的产物核酸到达所述另外的寡核苷酸引物中的一种的位置,从而所述延伸反应被终止,并且至少一种另外的寡核苷酸引物以模板特异性方式被延伸,其中被终止的延伸的产物核酸被连接到所述另外的寡核苷酸引物的5’末端。
5.权利要求1、3或4的方法,其中至少一种、优选全部的寡核苷酸引物与寡核苷酸终止物杂交。
6.权利要求3-5任一项的方法,其中所述模板核酸是RNA或DNA,优选RNA。
7.权利要求1-6任一项的方法,进一步包括使额外的寡核苷酸引物与所述模板核酸退火,并延伸所述额外的寡核苷酸引物,直至延伸的产物核酸达到另一寡核苷酸引物或寡核苷酸终止物的位置,优选其中使用3、4、5、6、7、8、9、10、15、20、30、40、50或者更多种不同的寡核苷酸引物,特别优选其中所述寡核苷酸引物是随机引物。
8.权利要求1-7任一项的方法,进一步包括使额外的寡核苷酸终止物与所述模板核酸退火,并且其中在所述延伸反应中,所述额外的寡核苷酸终止物不被延伸,优选其中使用2、3、4、5、6、7、8、9、10、15、20、30、40、50或者更多种不同的寡核苷酸终止物,特别优选其中所述寡核苷酸终止物是随机终止物。
9.权利要求1-8任一项的方法,特征在于所述寡核苷酸终止物中的任一种包含序列标签、优选均一序列标签,所述序列标签附着于多于一种的所述寡核苷酸终止物、特别优选附着于全部的所述寡核苷酸终止物,特别是其中所述序列标签附着于所述寡核苷酸终止物的3’末端。
10.权利要求1-9任一项的方法,特征在于所述寡核苷酸引物中任一种包含序列标签、优选均一序列标签,所述序列标签附着于多于一种的所述寡核苷酸引物、特别优选附着于全部的所述寡核苷酸引物,特别是其中所述序列标签附着于所述寡核苷酸引物的5’末端。
11.权利要求10的方法,其中所述寡核苷酸终止物的任一种和所述寡核苷酸引物的任一种包含序列标签,并且优选其中所述寡核苷酸引物的序列标签与所述寡核苷酸终止物的序列标签的序列至少部分互补,从而使得所述寡核苷酸终止物与寡核苷酸引物彼此至少在各自序列标签的一部分杂交。
12.权利要求1-11任一项的方法,特征在于所述标记步骤包括连接附着于所述寡核苷酸引物或寡核苷酸终止物的序列标签,或者包括连接包含序列标签的所述寡核苷酸引物或寡核苷酸终止物。
13.权利要求12的方法,其中所述序列标签与所述寡核苷酸引物或寡核苷酸终止物的5’末端杂交,优选其中所述序列标签与上游引物的延伸产物连接。
14.权利要求1-13任一项的方法,特征在于所述标记步骤包括连接包含序列标签的寡核苷酸引物或者寡核苷酸终止物,优选其中所述序列标签与所述寡核苷酸引物或寡核苷酸终止物共价附着,或者其中包含所述序列标签的核酸与所述寡核苷酸引物或寡核苷酸终止物杂交。
15.权利要求14的方法,其中所述序列标签与寡核苷酸终止物的3’末端连接或杂交。
16.权利要求8-15任一项的方法,其中具有所述标签序列的反向互补序列的核酸在退火或延伸反应期间加入,或者与所述序列标签杂交。
17.权利要求16的方法,其中所述序列标签与所述具有反向互补序列的核酸的解链温度由于修饰的核苷酸而与未修饰的核酸相比升高,所述修饰的核苷酸优选选自一或多个LNA核苷酸、2’氟代核苷酸或PNA核苷酸。
18.权利要求16或17的方法,其中所述具有反向互补序列的核酸与所述序列标签共价连接,优选通过间隔物或发夹环连接。
19.权利要求9-14任一项的方法,进一步包括扩增包含所述连接的标签的所述延伸的产物,优选使用标签特异性引物通过PCR进行扩增。
20.权利要求1-19任一项的方法,特征在于所述寡核苷酸引物和/或寡核苷酸终止物在5’末端是磷酸化的或腺苷酸化的。
21.权利要求1-20任一项的方法,特征在于所述模板核酸固定化于固相或者固体支持物上。
22.权利要求1-21任一项的方法,进一步包括洗涤延伸的产物核酸的步骤,所述延伸的产物核酸优选与模板核酸杂交,特别是与权利要求21的固定化的模板核酸杂交。
23.权利要求1-22任一项的方法,特征在于延伸和连接反应在一个反应步骤中同时进行。
24.权利要求1-23任一项的方法,其中所述方法通过加入DNA聚合酶和/或连接酶进行,优选其中所述DNA聚合酶和连接酶加入到具有所述模板核酸的一个反应混合物中。
25.权利要求1-24任一项的方法,特征在于所述寡核苷酸引物和/或寡核苷酸终止物包含增加Tm或者强化所述寡核苷酸的糖磷酸主链的核苷酸修饰,优选选自2’氟代核苷、LNA、ZNA、PNA,或者通过使用特异性结合核酸的嵌入剂或添加剂,如溴化乙锭、Sybr Green,优选特异于RNA:DNA杂交体的嵌入剂。
26.权利要求25的方法,特征在于所述寡核苷酸引物和/或寡核苷酸终止物包含至少1个、优选至少2个、更优选至少3个选自G或C的修饰的核苷酸,优选在所述引物序列的5’末端。
27.权利要求1-26任一项的方法,特征在于使用具有核苷酸链置换活性的聚合酶进行所述延伸反应。
28.权利要求1-27任一项的方法,特征在于在聚合反应期间的核苷酸浓度低于模板浓度,优选核苷酸浓度与模板浓度的摩尔比率在1:33至1:3.3的范围。
29.权利要求1-28任一项的方法,特征在于向聚合反应加入足量的放线菌素D以避免第二链合成及降低聚合酶的链置换。
30.权利要求1-29任一项的方法,其中所述模板核酸是单链的。
31.权利要求1-30任一项的方法,其中获得的模板核酸在其至少30%长度上缺少互补链,和/或缺少长度为至少100个核苷酸的互补链,优选在其全长上缺少互补核酸。
32.权利要求1-31任一项的方法在产生一或多种模板核酸的序列文库中的应用,所述序列文库包含所述模板核酸的优选重叠的、扩增的核酸部分的混合物。
33.用于产生权利要求1-31任一项的模板核酸的扩增的核酸部分或者用于产生权利要求32的序列文库的试剂盒,其包含DNA聚合酶、包含增加Tm的修饰的随机寡核苷酸引物和不适于核苷酸延伸并且包含增加Tm的修饰的随机寡核苷酸终止物,任选进一步包含一或多种反应缓冲液,所述反应缓冲液包含Mn2+或Mg2+、连接酶、拥挤剂如PEG。
34.用于产生权利要求1-31任一项的模板核酸的扩增的核酸部分或者用于产生权利要求32的序列文库的试剂盒,其包含DNA聚合酶和连接酶,优选进一步包含寡核苷酸引物、寡核苷酸终止物、拥挤剂特别是PEG,或者其组合。
35.用于产生模板核酸的扩增的核酸部分的试剂盒,其含有a)随机寡核苷酸引物,所述引物包含增加Tm的修饰,及b)随机寡核苷酸终止物,所述终止物不适于核苷酸延伸并且包含增加Tm的修饰。
36.权利要求35的试剂盒,其进一步包含一或多种反应缓冲液,所述反应缓冲液包含Mn2+或Mg2+、连接酶、拥挤剂如PEG。
37.权利要求35或36的试剂盒,其进一步包含DNA聚合酶和/或连接酶。
CN201280056141.4A 2011-09-16 2012-09-17 核酸转录方法 Active CN103930570B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP11181546.0 2011-09-16
EP11181546A EP2570487A1 (en) 2011-09-16 2011-09-16 Nucleic acid transcription method
EP12177647.0 2012-07-24
EP12177647 2012-07-24
PCT/EP2012/068250 WO2013038010A2 (en) 2011-09-16 2012-09-17 Nucleic acid transcription method

Publications (2)

Publication Number Publication Date
CN103930570A true CN103930570A (zh) 2014-07-16
CN103930570B CN103930570B (zh) 2018-01-09

Family

ID=46852009

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280056141.4A Active CN103930570B (zh) 2011-09-16 2012-09-17 核酸转录方法

Country Status (11)

Country Link
US (3) US10612018B2 (zh)
EP (2) EP3263718A1 (zh)
KR (1) KR102087062B1 (zh)
CN (1) CN103930570B (zh)
AU (1) AU2012307282B2 (zh)
CA (1) CA2848240C (zh)
DK (1) DK2756098T3 (zh)
ES (1) ES2686043T3 (zh)
LT (1) LT2756098T (zh)
PL (1) PL2756098T3 (zh)
WO (1) WO2013038010A2 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106715714A (zh) * 2014-10-17 2017-05-24 深圳华大基因研究院 一种用于核酸随机片段化的引物及核酸随机片段化方法
CN107075561A (zh) * 2014-10-13 2017-08-18 深圳华大基因科技有限公司 一种核酸片段化方法和序列组合
CN108330186A (zh) * 2017-01-18 2018-07-27 深圳华大智造科技有限公司 一种核酸测序方法、反应体系和试剂盒
CN109328235A (zh) * 2016-06-23 2019-02-12 国立研究开发法人理化学研究所 一步逆转录模板转换pcr
CN110546275A (zh) * 2017-02-27 2019-12-06 柏尔科学公司 用于去除不需要的核酸的方法和试剂盒
CN110846724A (zh) * 2019-12-03 2020-02-28 江西海普洛斯医学检验实验室有限公司 构建mRNA链特异文库的方法及试剂盒
CN111944886A (zh) * 2020-08-24 2020-11-17 北京擎科生物科技有限公司 一种合成寡聚脱氧核糖核苷酸的方法和试剂盒
CN113454234A (zh) * 2019-02-14 2021-09-28 贝克顿迪金森公司 杂合体靶向和全转录物组扩增
CN113795594A (zh) * 2018-12-14 2021-12-14 莱克斯奥根有限公司 核酸扩增和识别方法
CN114606575A (zh) * 2020-12-03 2022-06-10 广东菲鹏生物有限公司 组合物及文库构建方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8835358B2 (en) 2009-12-15 2014-09-16 Cellular Research, Inc. Digital counting of individual molecules by stochastic attachment of diverse labels
DK2756098T3 (en) 2011-09-16 2018-09-03 Lexogen Gmbh Process for Preparing a Library of Nucleic Acid Molecules
ES2663234T3 (es) 2012-02-27 2018-04-11 Cellular Research, Inc Composiciones y kits para recuento molecular
DK3428290T3 (da) * 2012-07-26 2022-07-04 Illumina Inc Sammensætninger og fremgangsmåder til amplifikation af nukleinsyrer
JP2015536689A (ja) * 2012-12-13 2015-12-24 シンセティック ゲノミクス、インク. Pegを介した核酸分子のアセンブリ
ES2857908T3 (es) 2013-08-28 2021-09-29 Becton Dickinson Co Análisis masivamente paralelo de células individuales
EP2921556A1 (en) 2014-03-21 2015-09-23 Lexogen GmbH Copy number preserving RNA analysis method
CN104560974B (zh) * 2014-12-26 2017-08-25 光明乳业股份有限公司 获得嗜热链球菌特异性序列的方法及其使用的半随机引物
US9727810B2 (en) 2015-02-27 2017-08-08 Cellular Research, Inc. Spatially addressable molecular barcoding
EP3835431B1 (en) 2015-03-30 2022-11-02 Becton, Dickinson and Company Methods for combinatorial barcoding
WO2016172373A1 (en) 2015-04-23 2016-10-27 Cellular Research, Inc. Methods and compositions for whole transcriptome amplification
JP6940484B2 (ja) 2015-09-11 2021-09-29 セルラー リサーチ, インコーポレイテッド ライブラリー正規化のための方法および組成物
US10301677B2 (en) 2016-05-25 2019-05-28 Cellular Research, Inc. Normalization of nucleic acid libraries
US10640763B2 (en) 2016-05-31 2020-05-05 Cellular Research, Inc. Molecular indexing of internal sequences
US10202641B2 (en) 2016-05-31 2019-02-12 Cellular Research, Inc. Error correction in amplification of samples
ES2961743T3 (es) 2016-09-26 2024-03-13 Becton Dickinson Co Medición de la expresión de proteínas utilizando reactivos con secuencias de oligonucleótidos con código de barras
CN110382708A (zh) 2017-02-01 2019-10-25 赛卢拉研究公司 使用阻断性寡核苷酸进行选择性扩增
WO2018175296A2 (en) * 2017-03-20 2018-09-27 President And Fellows Of Harvard College Programmable nucleic acid synthesis cascade
WO2019118978A1 (en) * 2017-12-15 2019-06-20 Baylor College Of Medicine Methods and compositions for the amplification of mrna
EP3788170A1 (en) 2018-05-03 2021-03-10 Becton, Dickinson and Company Molecular barcoding on opposite transcript ends
CA3097976A1 (en) 2018-05-03 2019-11-07 Becton, Dickinson And Company High throughput multiomics sample analysis
WO2020072380A1 (en) 2018-10-01 2020-04-09 Cellular Research, Inc. Determining 5' transcript sequences
EP3877520A1 (en) 2018-11-08 2021-09-15 Becton Dickinson and Company Whole transcriptome analysis of single cells using random priming
WO2020123384A1 (en) 2018-12-13 2020-06-18 Cellular Research, Inc. Selective extension in single cell whole transcriptome analysis
EP3914728B1 (en) 2019-01-23 2023-04-05 Becton, Dickinson and Company Oligonucleotides associated with antibodies
WO2021016239A1 (en) 2019-07-22 2021-01-28 Becton, Dickinson And Company Single cell chromatin immunoprecipitation sequencing assay
EP4055160B1 (en) 2019-11-08 2024-04-10 Becton Dickinson and Company Using random priming to obtain full-length v(d)j information for immune repertoire sequencing
IL294459A (en) * 2019-12-31 2022-09-01 Singular Genomics Systems Inc Polynucleotide barcodes for long read sequencing
WO2021146207A1 (en) 2020-01-13 2021-07-22 Becton, Dickinson And Company Methods and compositions for quantitation of proteins and rna
EP4150118A1 (en) 2020-05-14 2023-03-22 Becton Dickinson and Company Primers for immune repertoire profiling
US11932901B2 (en) 2020-07-13 2024-03-19 Becton, Dickinson And Company Target enrichment using nucleic acid probes for scRNAseq
EP4247967A1 (en) 2020-11-20 2023-09-27 Becton, Dickinson and Company Profiling of highly expressed and lowly expressed proteins
US20230002805A1 (en) * 2021-06-25 2023-01-05 Enzo Biochem, Inc. Use of organic cationic compounds to accelerate nucleic acid hybridization, synthesis, and amplification
WO2022272150A2 (en) * 2021-06-25 2022-12-29 Singular Genomics Systems, Inc. Linked transcript sequencing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994017210A1 (en) * 1993-01-27 1994-08-04 Oncor, Inc. Amplification of nucleic acid sequences
WO1998002449A1 (en) * 1996-07-16 1998-01-22 Oncor, Inc. Nucleic acid amplification oligonucleotides with molecular energy transfer labels and methods based thereon

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
FR2593343B1 (fr) 1986-01-20 1988-03-25 Thomson Csf Matrice d'elements photosensibles et son procede de fabrication, procede de lecture associe, et application de cette matrice a la prise de vue d'images
US4800159A (en) 1986-02-07 1989-01-24 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences
US5310652A (en) 1986-08-22 1994-05-10 Hoffman-La Roche Inc. Reverse transcription with thermostable DNA polymerase-high temperature reverse transcription
US5322770A (en) 1989-12-22 1994-06-21 Hoffman-Laroche Inc. Reverse transcription with thermostable DNA polymerases - high temperature reverse transcription
US5210015A (en) 1990-08-06 1993-05-11 Hoffman-La Roche Inc. Homogeneous assay system using the nuclease activity of a nucleic acid polymerase
JP3398957B2 (ja) 1991-12-24 2003-04-21 ザ・プレジデント・アンド・フエローズ・オブ・ハーバード・カレツジ Dnaの特定部位の突然変異誘発
US5554730A (en) 1993-03-09 1996-09-10 Middlesex Sciences, Inc. Method and kit for making a polysaccharide-protein conjugate
US5658751A (en) 1993-04-13 1997-08-19 Molecular Probes, Inc. Substituted unsymmetrical cyanine dyes with selected permeability
US5436134A (en) 1993-04-13 1995-07-25 Molecular Probes, Inc. Cyclic-substituted unsymmetrical cyanine dyes
GB2293238A (en) 1994-09-13 1996-03-20 Inceltec Ltd Primers for replication and/or amplification reactions
DE19518505A1 (de) 1995-05-19 1996-11-21 Max Planck Gesellschaft Verfahren zur Genexpressionsanalyse
EP1033411B1 (en) 1996-06-04 2006-02-22 University of Utah Research Foundation Fluorescent donor-acceptor pair
US5849497A (en) 1997-04-03 1998-12-15 The Research Foundation Of State University Of New York Specific inhibition of the polymerase chain reaction using a non-extendable oligonucleotide blocker
US6261770B1 (en) 1997-05-13 2001-07-17 Display Systems Biotech Aps Method to clone mRNAs
CA2330277A1 (en) 1998-04-27 1999-11-04 Sidney Kimmel Cancer Center Reduced complexity nucleic acid targets and methods of using same
FR2779154B1 (fr) 1998-05-27 2002-07-12 Bio Merieux Procede d'amplification d'au moins une sequence nucleotidique particuliere et amorces de mise en oeuvre
US6335439B1 (en) 1998-06-11 2002-01-01 Isis Pharmaceuticals, Inc. Method of preparing phosphoramidites
US6406891B1 (en) 1998-09-28 2002-06-18 Board Of Regents, The University Of Texas System Dual RT procedure for cDNA synthesis
US7084125B2 (en) 1999-03-18 2006-08-01 Exiqon A/S Xylo-LNA analogues
US6734291B2 (en) 1999-03-24 2004-05-11 Exiqon A/S Synthesis of [2.2.1]bicyclo nucleosides
EP1130113A1 (en) * 2000-02-15 2001-09-05 Johannes Petrus Schouten Multiplex ligation dependent amplification assay
US6368801B1 (en) 2000-04-12 2002-04-09 Molecular Staging, Inc. Detection and amplification of RNA using target-mediated ligation of DNA by RNA ligase
US6391592B1 (en) 2000-12-14 2002-05-21 Affymetrix, Inc. Blocker-aided target amplification of nucleic acids
EP1253205A1 (en) 2001-04-24 2002-10-30 LION Bioscience AG Method of blocking amplification of selected sequences
US7399590B2 (en) 2002-02-21 2008-07-15 Asm Scientific, Inc. Recombinase polymerase amplification
US20040009512A1 (en) 2002-05-02 2004-01-15 Manuel Ares Arrays for detection of products of mRNA splicing
US20050069991A1 (en) * 2003-03-25 2005-03-31 Hyman Edward D. Method for plasmid preparation by conversion of open circular plasmid to supercoiled plasmid
US20050100911A1 (en) 2003-08-06 2005-05-12 Perlegen Sciences, Inc. Methods for enriching populations of nucleic acid samples
WO2007062495A1 (en) 2005-11-30 2007-06-07 Roy Rabindranauth Sooknanan Selective terminal tagging of nucleic acids
US20090142758A1 (en) 2005-06-23 2009-06-04 Keygene N V Strategies for sequencing complex genomes using high throughput sequencing technologies
JP5198284B2 (ja) 2005-12-22 2013-05-15 キージーン ナムローゼ フェンノートシャップ 高処理量配列決定技術を使用する転写産物の特徴づけのための改良された戦略
WO2007106534A2 (en) * 2006-03-14 2007-09-20 Harbor-Ucla Research And Education Institute Selective amplification of minority mutations using primer blocking high-affinity oligonucleotides
WO2008093098A2 (en) 2007-02-02 2008-08-07 Illumina Cambridge Limited Methods for indexing samples and sequencing multiple nucleotide templates
US8008010B1 (en) * 2007-06-27 2011-08-30 Applied Biosystems, Llc Chimeric oligonucleotides for ligation-enhanced nucleic acid detection, methods and compositions therefor
US8071338B2 (en) 2007-08-08 2011-12-06 Roche Molecular Systems, Inc. Suppression of amplification using an oligonucleotide and a polymerase significantly lacking 5′-3′ nuclease activity
WO2009073629A2 (en) 2007-11-29 2009-06-11 Complete Genomics, Inc. Efficient shotgun sequencing methods
US8420620B2 (en) 2008-01-24 2013-04-16 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Induced internalization of surface receptors
US20090203531A1 (en) * 2008-02-12 2009-08-13 Nurith Kurn Method for Archiving and Clonal Expansion
EP2268834B1 (en) 2008-03-17 2015-01-07 Stichting Genetwister IP Expression-linked gene discovery
KR20100019220A (ko) * 2008-08-08 2010-02-18 삼성전자주식회사 열순환을 포함하는 다중 치환 증폭에 의하여 표적 핵산 서열을 증폭하는 방법
EP2333104A1 (en) 2009-12-11 2011-06-15 Lexogen GmbH RNA analytics method
EP2354243A1 (en) 2010-02-03 2011-08-10 Lexogen GmbH Complexity reduction method
DK2756098T3 (en) 2011-09-16 2018-09-03 Lexogen Gmbh Process for Preparing a Library of Nucleic Acid Molecules
KR102555447B1 (ko) 2014-07-09 2023-07-13 렉소겐 게엠베하 Rna 전사물 변이체의 정량분석을 위한 방법 및 생성물

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994017210A1 (en) * 1993-01-27 1994-08-04 Oncor, Inc. Amplification of nucleic acid sequences
WO1998002449A1 (en) * 1996-07-16 1998-01-22 Oncor, Inc. Nucleic acid amplification oligonucleotides with molecular energy transfer labels and methods based thereon

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107075561A (zh) * 2014-10-13 2017-08-18 深圳华大基因科技有限公司 一种核酸片段化方法和序列组合
CN106715714A (zh) * 2014-10-17 2017-05-24 深圳华大基因研究院 一种用于核酸随机片段化的引物及核酸随机片段化方法
CN109328235A (zh) * 2016-06-23 2019-02-12 国立研究开发法人理化学研究所 一步逆转录模板转换pcr
CN108330186A (zh) * 2017-01-18 2018-07-27 深圳华大智造科技有限公司 一种核酸测序方法、反应体系和试剂盒
CN110546275A (zh) * 2017-02-27 2019-12-06 柏尔科学公司 用于去除不需要的核酸的方法和试剂盒
CN113795594A (zh) * 2018-12-14 2021-12-14 莱克斯奥根有限公司 核酸扩增和识别方法
CN113454234A (zh) * 2019-02-14 2021-09-28 贝克顿迪金森公司 杂合体靶向和全转录物组扩增
CN110846724A (zh) * 2019-12-03 2020-02-28 江西海普洛斯医学检验实验室有限公司 构建mRNA链特异文库的方法及试剂盒
CN111944886A (zh) * 2020-08-24 2020-11-17 北京擎科生物科技有限公司 一种合成寡聚脱氧核糖核苷酸的方法和试剂盒
CN114606575A (zh) * 2020-12-03 2022-06-10 广东菲鹏生物有限公司 组合物及文库构建方法

Also Published As

Publication number Publication date
US10612018B2 (en) 2020-04-07
EP2756098B1 (en) 2018-06-06
AU2012307282B2 (en) 2018-03-15
AU2012307282A1 (en) 2014-03-20
US20170342409A1 (en) 2017-11-30
WO2013038010A2 (en) 2013-03-21
CA2848240C (en) 2020-09-29
WO2013038010A3 (en) 2013-05-30
KR20140065448A (ko) 2014-05-29
LT2756098T (lt) 2018-09-10
PL2756098T3 (pl) 2018-12-31
US20150152409A1 (en) 2015-06-04
US11021705B2 (en) 2021-06-01
CA2848240A1 (en) 2013-03-21
CN103930570B (zh) 2018-01-09
US20210332355A1 (en) 2021-10-28
KR102087062B1 (ko) 2020-03-11
DK2756098T3 (en) 2018-09-03
ES2686043T3 (es) 2018-10-16
EP2756098A2 (en) 2014-07-23
EP3263718A1 (en) 2018-01-03

Similar Documents

Publication Publication Date Title
CN103930570B (zh) 核酸转录方法
US11421269B2 (en) Target enrichment by single probe primer extension
US7374913B2 (en) Method for synthesizing polynucleotides
EP3559269B1 (en) Single stranded circular dna libraries for circular consensus sequencing
US11773388B2 (en) Target enrichment by unidirectional dual probe primer extension
CN109844137B (zh) 用于鉴定嵌合产物的条形码化环状文库构建
CN107090491A (zh) 条形编码核酸
EP2880182A1 (en) Recombinase mediated targeted dna enrichment for next generation sequencing
US20210024920A1 (en) Integrative DNA and RNA Library Preparations and Uses Thereof
CN102933720B (zh) 用于生成具有单链悬突的双链核酸的方法
EP3485030B1 (en) Method for generating single-stranded circular dna libraries for single molecule sequencing
US20180362968A1 (en) Methods of library construction for target polynucleotides
US20190048334A1 (en) Methods for sample preparation
EP2570487A1 (en) Nucleic acid transcription method
CN105247076B (zh) 使用拼装序列扩增片段化的目标核酸的方法
CN114641581A (zh) Dna接头寡核苷酸

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1197433

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1197433

Country of ref document: HK