CN103915624A - 一种碳包覆、掺杂金属元素的锂离子电池正极材料 - Google Patents

一种碳包覆、掺杂金属元素的锂离子电池正极材料 Download PDF

Info

Publication number
CN103915624A
CN103915624A CN201410128333.2A CN201410128333A CN103915624A CN 103915624 A CN103915624 A CN 103915624A CN 201410128333 A CN201410128333 A CN 201410128333A CN 103915624 A CN103915624 A CN 103915624A
Authority
CN
China
Prior art keywords
cooling
anode material
temperature
positive electrode
sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410128333.2A
Other languages
English (en)
Other versions
CN103915624B (zh
Inventor
张波
林道松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lin Daoyong
Shanghai Yiding New Material Technology Co ltd
Original Assignee
Shangyu Peace Card Trailer Accessory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shangyu Peace Card Trailer Accessory Co Ltd filed Critical Shangyu Peace Card Trailer Accessory Co Ltd
Priority to CN201410128333.2A priority Critical patent/CN103915624B/zh
Publication of CN103915624A publication Critical patent/CN103915624A/zh
Application granted granted Critical
Publication of CN103915624B publication Critical patent/CN103915624B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种表面包覆碳、且掺杂金属离子的锂离子电池正极材料,该正极材料的组成为:LixCo025Mn07V0.3Oy/C,其中x=1-2,y=2-4,其制备方法包括如下步骤:1)采用氢氧化物共沉淀法制备Co025Mn07V0.3(OH)2前驱体:按化学计量比将硫酸钴、硫酸锰和硫酸钒溶于去离子水中,浓度为2.5-3mol/L,搅拌均匀,随后加入反应釜中,加入氨水和氢氧化钠溶液调节pH值达到10-10.5,在60-80℃的水浴中蒸发水分至溶胶,冷却至室温,之后将溶胶置于马弗炉中通入氩气加热,直至样品完全干燥;2)正极材料的制备:将前驱体与LiCO3按比例混合均匀,采用三级煅烧工艺:在550-600℃下预烧2-3h,随炉冷却,冷却后研磨;再在850-900℃下煅烧8-9h,随炉冷却,冷却后继续研磨;最后在950-1000℃下煅烧2-3h,自然冷却,冷却后研磨,过筛,得到所需正极材料。

Description

一种碳包覆、掺杂金属元素的锂离子电池正极材料
技术领域
本发明属于锂离子电池正极材料技术领域,具体涉及一种碳包覆的、掺杂金属元素的锂离子电池正极材料及其制备方法。
背景技术
锂离子电池具有能量密度高、工作电压高、循环寿命长、无记忆效应、可快速充放电等优点,应用广泛。从1991年索尼公司发布首个商用锂离子电池到现在,其正极材料主要有LiCoO2、LiNiO2、层状LiM-nO2、NCM(镍钴锰酸锂三元材料)、尖晶石型LiMn2O4、NVA(镍钴铝酸锂材料)、LiMPO4(M=Fe、Mn、Ni、Co)、富锂材料xLi2MO3·(1-x)LiM'O2、Li3V2(PO4)3等化合物及其改性复合物。LiCoO2是市场化最成功的正极材料,也是目前市场占有率最高的材料,但是LiCoO2电池轻度过充(4.4V)就会导致热稳定性和循环性变差;LiNiO2结构稳定性差的问题不能根本解决,也限制其应用;层状LiMnO2循环稳定性较差,难以直接合成;NCM和NCA材料浸泡于电解质中会引起锂溶出、材料结构退化和容量损失。另外,三元材料与电解质的相容性也是一个需要解决的重要问题,随着钴价的不断上涨,成本可能会成为限制其在大型电池中使用的一个重要因素。尖晶石型高温循环性能和储存性能存在问题,造成电池容量损失,电解液氧化分解产生酸性物质使Mn溶解,影响电池寿命;LiFePO4中Fe2+化学性能较活泼,导致材料一致性较差,其电压平台较低,振实密度较低,导致体积和重量比能量较低。
发明内容
本发明针对现有正极材料存在的缺陷,提供了一种碳包覆的、掺杂金属元素的锂离子电池正极材料及其制备方法。本方法制备过程简单,反应周期短,节约成本易于控制。通过适量金属元素掺杂,一定程度上降低了阻抗,从而提高了材料的放电性能。
本发明的目的通过以下技术方案来实现:一种表面包覆碳、且掺杂金属离子的锂离子电池正极材料,所述正极材料的组成为:LixCo0.25Mn0.7V0.3Oy/C,其中x=1~2,y=2~4,所述正极材料的制备方法包括如下步骤:
1)采用氢氧化物共沉淀法制备Co0.25Mn0.7V0.3(OH)2前驱体
按化学计量比将硫酸钴、硫酸锰和硫酸钒溶于去离子水中,浓度为2.5-3mol/L,搅拌均匀,随后加入反应釜中,加入氨水和氢氧化钠溶液调节pH值达到10-10.5,在60-80℃的水浴中蒸发水分至溶胶,冷却至室温,之后将溶胶置于马弗炉中通入氩气加热,直至样品完全干燥;
2)正极材料的制备
将前驱体与LiCO3按比例混合均匀,采用三级煅烧工艺:
在550-600℃下预烧2-3h,随炉冷却,冷却后研磨;
再在850-900℃下煅烧8-9h,随炉冷却,冷却后继续研磨;
最后在950-1000℃下煅烧2-3h,自然冷却,冷却后研磨,过筛,得到所需正极材料。
进一步的,所述组成为:Li1.5Co0.25Mn0.7V0.3O4/C。
更进一步的,所述预烧温度为580℃,预烧时间为2.5h,煅烧温度为980℃,煅烧时间为8.5h。
更进一步的,所述研磨为采用行星式球磨机进行高速研磨。
本发明的表面包覆碳、且掺杂金属离子的锂离子电池正极材料,由于表面包覆碳和金属离子掺杂的引入提高了电极材料的电学性能,表面包覆碳降低了电化学阻抗,金属离子掺杂改善了正极材料的微观结构缺陷,提高离子通透性,进而提高电极材料的电学性能;
本发明电极材料的后处理采用三级煅烧工艺:优于现有技术中常规的一次和两次煅烧工艺,利于表面碳包覆和金属离子的掺杂过程的充分进行,并且前两次煅烧采用随炉冷却,对于电极材料晶像组织的改善尤为关键。后处理的三级煅烧工艺也确保了电极材料放电性能的提升。
本发明的锂离子电池正极材料通过组装成电池后,在一定电流密度下放电容量和平台率都得到较大提升。例如在7mA/g电流密度下放电容量达到144-152mAh/g,3.8V以上平台率为94.3-97.1%。
具体实施方式
实施例1
采用氢氧化物共沉淀法制备Co0.25Mn0.7V0.3(OH)2前驱体,按化学计量比将硫酸钴、硫酸锰和硫酸钒溶于去离子水中,浓度为2.5mol/L,搅拌均匀,随后加入反应釜中,加入氨水和氢氧化钠溶液调节pH值达到10.5,在70℃的水浴中蒸发水分至溶胶,冷却至室温,之后将溶胶置于马弗炉中通入氩气加热,直至样品完全干燥;将前驱体与LiCO3按比例混合均匀,在580℃下预烧2.5h,冷却后研磨,再在980℃下煅烧8.5h,待材料冷却后研磨,过筛,最终得到所需正极材料,其组成为:Li1.5Co0.25Mn0.7V0.3O4/C。
将上述材料通过组装成电池后,在7mA/g电流密度下放电容量达到148mAh/g,3.8V以上平台率为96.0%,采用相同的测试方法,LiCoO2的放电容量和平台率为131mAh/g和86.7%。
实施例2
采用氢氧化物共沉淀法制备Co0.25Mn0.7V0.3(OH)2前驱体,按化学计量比将硫酸钴、硫酸锰和硫酸钒溶于去离子水中,浓度为2.5mol/L,搅拌均匀,随后加入反应釜中,加入氨水和氢氧化钠溶液调节pH值达到10,在80℃的水浴中蒸发水分至溶胶,冷却至室温,之后将溶胶置于马弗炉中通入氩气加热,直至样品完全干燥;将前驱体与LiCO3按比例混合均匀,在550℃下预烧3h,冷却后研磨,再在950℃下煅烧9h,待材料冷却后研磨,过筛,最终得到所需正极材料,其组成为:Li2Co0.25Mn0.7V0.3O3/C。
将上述材料通过组装成电池后,在7mA/g电流密度下放电容量达到145mAh/g,3.SV以上平台率为95,2%,采用相同的测试方法,NCM的放电容量和平台率为129mAh/g和90.6%。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下做出若干替代或明显变型,而且性能或用途相同,都应当视为属于本发明的保护范围。

Claims (4)

1.一种表面包覆碳、且掺杂金属离子的锂离子电池正极材料,其特征在于:所述正极材料的组成为:LixCo025Mn0.7V0.3Oy/C,其中x=1~2,y=2~4,所述正极材料的制备方法包括如下步骤:
1)采用氢氧化物共沉淀法制备Co0.25Mn0.7V03(OH)2前驱体
按化学计量比将硫酸钴、硫酸锰和硫酸钒溶于去离子水中,浓度为2.5-3mol/L,搅拌均匀,随后加入反应釜中,加入氨水和氢氧化钠溶液调节pH值达到10-10.5,在60-80℃的水浴中蒸发水分至溶胶,冷却至室温,之后将溶胶置于马弗炉中通入氩气加热,直至样品完全干燥;
2)正极材料的制备
将前驱体与LiCO3按比例混合均匀,采用三级煅烧工艺:
在550-600℃下预烧2-3h,随炉冷却,冷却后研磨;
再在850-900℃下煅烧8-9h,随炉冷却,冷却后继续研磨;
最后在950-1000℃下煅烧2-3h,自然冷却,冷却后研磨,过筛,得到所需正极材料。
2.如权利要求1所述的方法,其特征在于,所述组成为:Li1.5Co025Mn0.7V0.3O4/C。
3.如权利要求1-2所述的方法,其特征在于,所述预烧温度为580℃,预烧时问为2.5h,煅烧温度为980℃,煅烧时间为8.5h。
4.如权利要求1-3所述的方法,其特征在于,所述研磨为采用行星式球磨机进行高速研磨。
CN201410128333.2A 2014-03-31 2014-03-31 一种碳包覆、掺杂金属元素的锂离子电池正极材料 Active CN103915624B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410128333.2A CN103915624B (zh) 2014-03-31 2014-03-31 一种碳包覆、掺杂金属元素的锂离子电池正极材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410128333.2A CN103915624B (zh) 2014-03-31 2014-03-31 一种碳包覆、掺杂金属元素的锂离子电池正极材料

Publications (2)

Publication Number Publication Date
CN103915624A true CN103915624A (zh) 2014-07-09
CN103915624B CN103915624B (zh) 2017-09-29

Family

ID=51041133

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410128333.2A Active CN103915624B (zh) 2014-03-31 2014-03-31 一种碳包覆、掺杂金属元素的锂离子电池正极材料

Country Status (1)

Country Link
CN (1) CN103915624B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108183207A (zh) * 2017-12-23 2018-06-19 湖南佳纳能源科技有限公司 一种复合锰矿制备锂电池正极材料的方法
CN111584860A (zh) * 2020-04-07 2020-08-25 天津空间电源科技有限公司 一种高比能圆柱型锂离子电池及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090104532A1 (en) * 2007-10-19 2009-04-23 Sony Corporation Cathode active material, cathode, and non-aqueous electrolyte secondary battery
CN102394290A (zh) * 2011-11-18 2012-03-28 青岛华冠恒远锂电科技有限公司 一种锂离子电池正极材料及其制备方法
CN102751471A (zh) * 2011-04-18 2012-10-24 河南科隆集团有限公司 一种包覆型锂离子电池正极材料锰酸锂的制备方法
CN103367737A (zh) * 2012-04-09 2013-10-23 江苏国泰锂宝新材料有限公司 高密度锂电池正极材料尖晶石型锰酸锂的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090104532A1 (en) * 2007-10-19 2009-04-23 Sony Corporation Cathode active material, cathode, and non-aqueous electrolyte secondary battery
CN102751471A (zh) * 2011-04-18 2012-10-24 河南科隆集团有限公司 一种包覆型锂离子电池正极材料锰酸锂的制备方法
CN102394290A (zh) * 2011-11-18 2012-03-28 青岛华冠恒远锂电科技有限公司 一种锂离子电池正极材料及其制备方法
CN103367737A (zh) * 2012-04-09 2013-10-23 江苏国泰锂宝新材料有限公司 高密度锂电池正极材料尖晶石型锰酸锂的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108183207A (zh) * 2017-12-23 2018-06-19 湖南佳纳能源科技有限公司 一种复合锰矿制备锂电池正极材料的方法
CN111584860A (zh) * 2020-04-07 2020-08-25 天津空间电源科技有限公司 一种高比能圆柱型锂离子电池及其制备方法

Also Published As

Publication number Publication date
CN103915624B (zh) 2017-09-29

Similar Documents

Publication Publication Date Title
Duan et al. Enhanced compacting density and cycling performance of Ni-riched electrode via building mono dispersed micron scaled morphology
CN102694167B (zh) 改性锰酸锂正极材料及其制备方法
Bai et al. The kinetics of Li-ion deintercalation in the Li-rich layered Li1. 12 [Ni0. 5Co0. 2Mn0. 3] 0.89 O2 studied by electrochemical impedance spectroscopy and galvanostatic intermittent titration technique
CN103606671B (zh) 一种高容量动力型富镍锂离子电池正极材料及其制备方法
CN104134790B (zh) 一种镍钴锰酸锂改性材料及其制备方法及其应用
Nie et al. Effects of precursor particle size on the performance of LiNi0. 5Co0. 2Mn0. 3O2 cathode material
CN103794777B (zh) 一种表面包覆的镍锰酸锂正极材料的制备方法
CN106784790B (zh) 一种镍钴锰酸锂三元正极材料的制备方法
Lou et al. Mg-doped Li1. 2Mn0. 54Ni0. 13Co0. 13O2 nano flakes with improved electrochemical performance for lithium-ion battery application
CN105261740A (zh) 一种锂电池正极材料,其制备方法及含有该材料的锂离子电池
CN109786687A (zh) 一种以牺牲模板诱导形成金属氧化物包覆镍钴锰三元锂离子电池正极材料的制备方法
CN105552360A (zh) 一种改性的镍钴锰酸锂正极材料及其制备方法
CN107086298A (zh) 由层状富锂锰基和尖晶石型锰酸锂构成的核壳异构锂离子电池复合正极材料及其制备方法
CN105810934A (zh) 一种稳定富锂层状氧化物材料晶畴结构方法
CN106450211A (zh) 一种表面包覆复合的富锂锰基正极材料及其制备方法
CN111106331A (zh) 一种层状-尖晶石相复合正极材料及其制备方法
CN106207158B (zh) 富锂锰酸锂正极材料的制备方法
CN108321380A (zh) 一种氧化镓包覆的高镍三元锂电池正极材料及制备方法
Mao et al. The effect of cobalt doping on the morphology and electrochemical performance of high-voltage spinel LiNi0. 5Mn1. 5O4 cathode material
CN108682844A (zh) 一种锂离子电池锰酸锂正极材料的制备方法
CN104600285A (zh) 一种球形镍锰酸锂正极材料的制备方法
CN108448109A (zh) 一种层状富锂锰基正极材料及其制备方法
Hu et al. Enhanced high-temperature performance and thermal stability of lithium-rich cathode via combining full concentration gradient design with surface spinel modification
Zhang et al. Synthesis and characterization of mono-dispersion LiNi0. 8Co0. 1Mn0. 1O2 micrometer particles for lithium-ion batteries
CN103413935A (zh) 一种掺杂Mo的富锂正极材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Address after: 312300. B36 building, B03 building, Shishi Plaza Business Garden, Xiao Yue town, Shangyu District, Zhejiang, Shaoxing, China

Applicant after: SHAOXING ANKA AUTO PARTS Co.,Ltd.

Applicant after: Lin Daosong

Address before: 312300. B36 building, B03 building, Shishi Plaza Business Garden, Xiao Yue town, Shangyu District, Zhejiang, Shaoxing, China

Applicant before: SHANGYU ANKA TRAILER PARTS CO.,LTD.

Applicant before: Lin Daosong

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: SHANGYU ANKA TRAILER PART CO., LTD. TO: SHAOXING ANKA AUTO PARTS CO., LTD.

GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230816

Address after: Room 2201-03j, No. 380, Tianmu Middle Road, Jing'an District, Shanghai 200070

Patentee after: Shanghai Yiding New Material Technology Co.,Ltd.

Patentee after: Lin Daoyong

Address before: 312300 building B36, business garden, Shishi square, Xiaoyue Town, Shangyu District, Shaoxing City, Zhejiang Province

Patentee before: SHAOXING ANKA AUTO PARTS Co.,Ltd.

Patentee before: Lin Daosong

TR01 Transfer of patent right