CN103889619A - 使用无电沉积法或电沉积法制备纳米复合材料磁体的方法 - Google Patents

使用无电沉积法或电沉积法制备纳米复合材料磁体的方法 Download PDF

Info

Publication number
CN103889619A
CN103889619A CN201380003531.XA CN201380003531A CN103889619A CN 103889619 A CN103889619 A CN 103889619A CN 201380003531 A CN201380003531 A CN 201380003531A CN 103889619 A CN103889619 A CN 103889619A
Authority
CN
China
Prior art keywords
ion
hard
soft magnetism
nano composite
composite powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380003531.XA
Other languages
English (en)
Other versions
CN103889619B (zh
Inventor
金真培
金钟烈
曹相根
姜喃锡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Industry University Cooperation Foundation IUCF HYU
Original Assignee
LG Electronics Inc
Industry University Cooperation Foundation IUCF HYU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc, Industry University Cooperation Foundation IUCF HYU filed Critical LG Electronics Inc
Publication of CN103889619A publication Critical patent/CN103889619A/zh
Application granted granted Critical
Publication of CN103889619B publication Critical patent/CN103889619B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/227Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by organic binder assisted extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1875Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment only one step pretreatment
    • C23C18/1879Use of metal, e.g. activation, sensitisation with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • C23C18/1889Multistep pretreatment with use of metal first
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/006Nanostructures, e.g. using aluminium anodic oxidation templates [AAO]
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/001Magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/005Impregnating or encapsulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/24Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids
    • H01F41/26Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids using electric currents, e.g. electroplating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0579Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B with exchange spin coupling between hard and soft nanophases, e.g. nanocomposite spring magnets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

本发明涉及一种在短时间内制造大量硬-软磁性纳米复合材料粉末的方法。本发明的硬-软磁性纳米复合材料粉末具有很多优点,如不受稀土元素的资源供应问题影响且价格低,并能够克服常规铁氧体单相材料所具有的物理和磁性限制。

Description

使用无电沉积法或电沉积法制备纳米复合材料磁体的方法
技术领域
本发明涉及使用无电沉积法或电沉积法制备纳米复合材料磁体的方法。
背景技术
钕磁体是包含钕(Nd)、氧化铁(Fe)和硼(B)作为主要组分的烧结产物,其特征是非常优异的磁性性质。尽管对这种高性质的钕大块磁体的需求增加,但是稀土元素的需求和供应的失衡阻碍了下一代工业所必需的高性能电动机的供应。
包含钐和钴作为主要组分的钐钴磁体已知具有仅次于钕磁体的非常优异的磁性性质,但作为一种稀土元素的钐的需求和供应的问题也造成制造成本的升高。
铁氧体磁体是在不需要强磁力时使用的具有稳定磁性性质的低价磁体。铁氧体磁体通常通过粉末冶金制造,并通常呈黑色。铁氧体磁体的化学形式为XO+Fe2O3,其中根据其用途X可以为钡或锶。铁氧体磁体,根据其制造方法分为干加工的或湿加工的铁氧体磁体,或者根据其磁方向分为各向同性或各向异性的铁氧体磁体。铁氧体磁体是由氧化物组成的化合物,因此,即使使其在高频率磁场中运行,其仍为绝缘体并几乎没有高频率的损失如过大电流损失。各向同性的磁体具有比各向异性的磁体更低的磁力,但具有几种优势如低价格和自由连接。铁氧体磁体已经用于多种应用如直流电动机、罗盘、电话、转速计、扬声器、速度计、电视机、簧片开关和钟机芯,并具有几种优势如其重量轻且价格低。然而,铁氧体磁体还具有其不显示足以取代高价钕大块磁体的优异磁性性质的劣势。
在这点上,日本未决专利公开2010-74062号描述了NdFeB/FeCo纳米复合材料磁体及其制备方法以作为提高磁性性质的尝试。然而,由于NdFeB/FeCo纳米复合材料磁体在其硬磁相中包含稀土元素(REE)Nd,所以不会摆脱REE的供应问题和制造成本问题。另外,由于其通过化学法制备,所以其也具有在短时间内批量制造纳米复合材料磁体粉末不可能的劣势。
至今,仍未已知任何方法能够在不使用化学法的条件下制备硬-软磁性纳米复合材料粉末,所述化学法通常已知需要大量时间且不足以批量制造。
通过上述日本未决专利公开2010-74062号也可确认该问题,所述专利公开描述了,使用常规冶金技术不可能得到纳米级硬-软磁性纳米复合材料磁体粉末。
在整个本申请中,参考几个专利和公开并提供引用。将这些专利和公开的内容并入本申请中以更全面地说明本发明和本发明所属的领域的状况。
发明内容
技术问题
本发明的发明人已经进行了研究并尝试开发一种在短时间内制备大量纳米级硬-软磁性复合材料粉末的方法,并通过成功地使用无电沉积法或电沉积法制备纳米级硬-软磁性复合材料粉末而完成了本发明。
因此,本发明的目的是提供一种使用无电沉积法制备硬-软磁性纳米复合材料粉末的方法。
本发明的另一个目的是提供一种使用电沉积法制备硬-软磁性纳米复合材料粉末的方法。
本发明的另一个目的是提供一种使用通过无电沉积法或电沉积法制备的上述硬-软磁性纳米复合材料粉末制备粘结磁体或烧结磁体的方法。
根据下文中提供的详细说明,本申请的应用性的其他范围变得更明显。然而,应理解,尽管指示本发明的优选实施方案,但是详细说明和具体实例是仅出于示例性目的而给出的,因为根据所述详细说明,本发明的主旨和范围内的各种变化和修改对本领域技术人员变得明显。
解决问题的技术方案
至今,已经通过化学法制备硬-软纳米复合材料磁体,所述化学法已知需要大量时间并难以批量制造,且已知利用常规的冶金学技术不可能获得纳米级硬-软磁性纳米复合材料磁体粉末。本发明的发明人已经进行了研究并尝试开发一种在短时间内制备大量纳米级硬-软磁性复合材料粉末的方法,并通过成功地将软磁性物质涂布在铁氧体纳米粉末的表面上、对所述物质进行成型或烧结并使用无电沉积法或电沉积法制备纳米级硬-软磁性复合材料粉末而完成了本发明。
本发明的目的是提供一种使用无电沉积法制备具有硬-软磁性异质结构的纳米复合材料粉末的方法,所述方法包括如下步骤:(i)对硬磁性物质,铁氧体纳米粒子的表面进行活化的步骤;和(ii)通过将经表面活化的纳米粒子浸入镀金溶液(gilding solution)中以对其进行涂布的步骤,所述镀金溶液包含选自镍离子、铁离子、钴离子、铝离子、金离子、铂离子、银离子、铜离子、钯离子、锡离子、锌离子和铬离子中的至少一种金属离子。所述无电沉积法是一种具有如下优点的方法:由于与普通的粉末涂布法相比工艺更简单而制造成本更低且因为可快速制造而适于批量制造。
(i)对硬磁性材料,铁氧体纳米粒子的表面进行活化的步骤
所述无电沉积法需要活化层,所述活化层在如下中发挥作用:产生核以使得软磁性金属材料发生还原而在镀金溶液中以离子状态涂布在硬磁性材料的表面上。将上述工艺称作表面活化工艺,其通常可利用2个步骤来实施。
步骤①是提高硬磁性粉末的表面反应性以形成活化层的工艺,将其称作敏化工艺。该工艺是使用Sn2+使得Sn2+离子沉积到硬磁性粉末的表面上,并例如可以通过在室温下将硬磁性粉末浸入在超纯水中包含SnCl2和酸的混合物中来实施的工艺。
上述硬磁性粉末可以包含铁氧体纳米粒子并优选包含选自如下的至少一种纳米粒子:钡铁氧体纳米粒子、锶铁氧体纳米粒子和钴铁氧体纳米粒子。
步骤②是形成活化层的活化工艺。所述活化层可以通过使用Pd来形成且作为核产生位点发挥作用以使得金属离子在陶瓷粉末的表面上发生还原。具体地,通过在室温下将经敏化的硬磁性粉末浸入在超纯水中包含PdCl2和HCl的混合物中可以实施所述活化工艺。
与此类似,尽管可以通过2步工艺实施对硬磁性材料,铁氧体纳米粒子的表面进行活化的工艺,但其也可通过1步敏化和活化工艺来实施,所述2步工艺包括使得锡离子沉积到铁氧体纳米粒子表面上的敏化工艺和在铁氧体纳米粒子上形成钯活化层的活化工艺,所述1步敏化和活化工艺是通过将铁氧体纳米粒子的表面浸入含锡离子和钯离子的溶液中而在其上形成钯活化层。在此情况中,存在如下优点:大大缩短了制备具有硬-软磁性异质结构的纳米复合材料粉末所需要的时间。
(ii)对经活化的纳米粒子的表面进行涂布的步骤
该工艺为在上述表面活化工艺之后形成硬-软磁性纳米复合材料结构,其将通过无电沉积工艺来实施。该工艺为在通过将硬磁性粉末浸入包含要沉积的软磁性金属的镀金溶液中以将硬磁性粉末诱发成活化层中的金属离子的核产生位点之后,通过将金属离子还原成金属来形成硬-软磁性纳米复合材料结构,其中所述镀金溶液可以包含选自如下的至少一种金属的离子:镍、铁、钴、铝、金、铂、银、铜、钯、锡、锌和铬。
例如,为了实施Ni的无电镀金,可以使用在超纯水(溶剂)中包含Ni-硫酸盐(沉积材料)、次磷酸钠(还原剂)、焦磷酸钠(沉积速率控制剂)和氨溶液(pH控制剂)的溶液。
本发明的另一个目的是提供一种使用电沉积法制备具有硬-软磁性异质结构的纳米复合材料粉末的方法,所述方法包括如下步骤:(i)将硬磁性物质,铁氧体纳米粒子放置在板上的步骤;和(ii)向电解液中的板施加电流的步骤,所述电解液包含选自如下的至少一种金属的离子:镍、铁、钴、铝、金、铂、银、铜、钯、锡、锌和铬。
通过使用与普通沉积相同的方法进行电沉积以在硬磁性粉末上形成软磁性金属涂层。具体地,将硬磁性粉末固定在进行了沉积的板上并诱发形成软磁性涂层。因为硬磁性陶瓷粉末通常不导电,所以重要的是将其均匀放置在导电板上。
上述铁氧体纳米粒子可以包含选自如下的至少一种纳米粒子:钡铁氧体纳米粒子、锶铁氧体纳米粒子和钴铁氧体纳米粒子。
在一个实施方案中,上述电沉积通过在将硬磁性粉末或粉末型成型物质放置在导电板上之后利用3电极系统并调节电流密度、温度和时间而形成涂层。
例如,当镀金NiFe时,使用通过将FeCl2、NiCl2、CaCl2和L抗坏血酸在超纯水中进行混合而制备的镀金溶液,在调节电流密度、温度和时间之后进行沉积以得到期望的组成。
上述涂布方法使得细的软磁性纳米粒子均匀涂布在相对更大的硬磁性纳米粒子上。当使用本发明的方法时,可以通过调节沉积中的时间和温度来控制涂层的厚度,从而存在能够控制纳米复合材料的矫顽力和磁化强度值的效果。
当通过实施上述无电沉积或电沉积而制备的所述制备的软磁性涂层为氧化物时,可以通过由提供还原气体所形成的热还原将所述氧化物还原成纯金属来制备纳米复合材料。例如,所述还原气体可以包含99%的氢气气氛、5%的氢气和95%的氮气或肼气氛,优选99%的氢气气氛。
在本发明的优选实施方案中,利用无电沉积法或电沉积法制备的硬-软磁性纳米复合材料粉末,当使用在高温下的选择性热处理或在低温下使用脉冲电流烧结的热处理对其进行烧结时,可以进一步提高烧结密度和磁性性质。
通过本发明的方法制备的软-硬磁性纳米复合材料粉末实现了高矫顽力和高饱和通量密度两者,从而能够将其应用于高性能永久磁体的材料。因此发现,与常规铁氧体磁体相比,通过使用该方法制备的纳米复合材料磁体具有明显更高的娇顽值和饱和磁化强度值。
在一个实施方案中,通过本发明的方法制备的硬-软纳米复合材料粉末显示10~1000nm的纳米级尺寸并优选具有50~300nm的直径。
在另一个实施方案中,通过本发明的方法制备的纳米复合材料可以使用选自如下的至少一种物质作为纳米粉末、成型物质或烧结物质:具有M型或W型晶体结构的锶铁氧体、钴铁氧体和钡铁氧体,所述纳米复合材料可以通过在硬磁性材料上形成软磁性涂层来制备,所述软磁性涂层与选自如下的至少一种相对应:Fe、Co、Ni、FeCo、FeNi、FeSi和CoNi。
在另一个实施方案中,软磁性涂层在上述纳米复合材料中的含量为大于1重量%且小于80重量%。
本发明的另一个目的是提供一种制备粘结磁体的方法,所述方法包括如下步骤:(i)对通过上述无电沉积法或电沉积法制备的硬-软磁性纳米复合材料粉末进行分散的步骤;(ii)通过将热固性或热塑性塑料与上述粉末进行混合而制备复合物的步骤;以及(iii)通过上述混合物的挤出成型而制备挤出或注射成型的粘结磁体的步骤。
本发明的另一个目的是提供一种制备烧结磁体的方法,所述方法包括如下步骤:(i)对通过上述无电沉积法或电沉积法制备的硬-软磁性纳米复合材料粉末实施磁场成型的步骤;和(ii)对上述成型体进行烧结的步骤。
通过在水平轴和竖直轴之间选择的方向上施加外部磁场可以实施上述磁场成型,可以通过选自如下的至少一种来实施上述烧结:炉烧结、火花等离子体烧结以及微波烧结和热压。
有益效果
使用无电沉积或电沉积的本发明的方法具有能够在短时间内批量制造硬-软磁性纳米复合材料粉末的优点。
本发明的制备的硬-软磁性纳米复合材料粉末具有一些优点如不受稀土元素的资源供应问题影响且价格低并能够克服常规铁氧体单相材料所具有的物理和磁性限制。
附图说明
附图显示了示例性实施方案并与说明书一起用于解释本发明的原理,所述附图是为了提供本发明的进一步说明而包含的并将其并入且构成本说明书的一部分。
在附图中:
图1是根据本发明制备的具有硬-软磁性异质结构的纳米复合材料粉末的TEM(透射电子显微镜)图像。
图2显示使用EDS的以原子级尺寸沉积在根据本发明制备的具有硬-软磁性异质结构的纳米复合材料粉末上的膜的组成分析的结果。
图3是通过根据本发明制备的具有硬-软磁性异质结构的纳米复合材料粉末的磁测量而得到的图。
具体实施方式
现在将通过实施例对本发明进行更详细地说明。对于本领域技术人员明显的是,这些实施例旨在为更具体地说明性的且附属权利要求书中提出的本发明的范围不能限制为所述实施例或不能由所述实施例限制。
实施例
使用无电沉积制备硬-软纳米复合材料粉末
表面敏化和活化工艺
①敏化工艺:向超纯水中添加SnCl2(10g/l)和HCl(37%,40ml/l)并搅拌。然后,将100mg/l的钡铁氧体纳米粉末(SIGMA-ALDRICH)浸入所述溶液中并在室温下静置约3分钟,使得Sn2+离子被吸收到钡铁氧体的表面上。
②活化工艺:将制得的经敏化的钡铁氧体粉末浸入通过将PdCl2(1.0g/l)和HCl(37%,10ml/l)溶于超纯水中而制备的溶液中,并在室温下静置约2分钟。
沉积工艺
通过将Ni-硫酸盐(NiSO4·H2O,25g)、次磷酸钠(NaH2PO2·H2O,25g)、焦磷酸钠(Na4P2O7,50g)和氨溶液(NH4OH,23ml)溶于1000mL超纯水中而制备镀金溶液(pH10)。
将得自上述表面活化工艺的钡铁氧体粉末浸入所述镀金溶液中并在35℃下静置10分钟以诱发镍离子在经活化的表面层上成核,然后将镍离子还原成镍金属。
然后,对所述粉末进行滤出并在室温下干燥以得到硬-软磁性纳米复合材料粉末,其中镍沉积在钡铁氧体的表面上。
使用电沉积制备硬-软纳米复合材料粉末
通过将FeCl2(0.9M)、NiCl2(0.6M)和CaCl2(1.0M)、L'抗坏血酸(0.03M)溶于超纯水中而制备镀金溶液。
将钡铁氧体纳米粉末(SIGMA-ALDRICH)均匀放置在其中发生沉积的工作电极上,然后通过使用3电极系统在40℃下施加电流(冲击50mA/cm2且沉积5mA/cm2)1小时而在钡铁氧体纳米粉末的表面上形成镍涂层,其中将铂涂布的钛电极用作对电极并将在饱和氯化钙溶液中的Ag/AgCl电极用作参考电极。
使用TEM(透射电子显微镜法)的EDS(能量色散光谱仪)分析
使用TEM(Jeol,JEM2010),对硬-软磁性纳米复合材料粉末的形状和尺寸进行测量。具体地,在将制备的钡铁氧体-镍纳米复合材料粉末置入乙醇中并使用超声发生器对其进行分散之后,在铜网上滴加少量溶液。然后,在空气中对其进行干燥以制备要利用TEM观察的样品之后,使用TEM对其形状和尺寸进行测量并利用EDS实施膜的组成分析。
图1是显示分析结果的TEM图像且图2显示利用EDS的以原子级尺寸沉积的膜的组成分析的结果。如图1和图2中所示,发现镍均匀沉积在钡铁氧体上且其直径为50~300nm。
测量磁性
使用VSM(振动样品磁强计,Toei,VSM-5)对制备的钡铁氧体-镍纳米复合材料粉末的磁性进行测量并将其结果示于图3中。
如图3中所示,制备的钡铁氧体-镍纳米复合材料粉末的矫顽力和饱和磁化强度值分别为4858Oe和58emu/g,且确认,纳米粉末具有硬磁相的高矫顽力和软磁相的高饱和通量密度两者。
制备磁体
本发明还提供一种使用所述硬-软磁性纳米复合材料粉末制备磁体的方法。
(1)制备粘结磁体
具体地,通过包括如下步骤的方法制备粘结磁体:(i)通过对所述硬-软磁性纳米复合材料粉末进行分散而制备粉末;(ii)通过将热固性或热塑性合成树脂与上述粉末进行混合而制备混合物;以及(iii)通过对上述混合物进行挤出或注射而形成粘结磁体。
(2)制备烧结磁体
通过包括如下步骤的方法制备烧结磁体:(i)对根据上述制备方法制备的硬-软磁性纳米复合材料粉末实施磁场成型;和(ii)对上述成型体进行烧结。或者,可以应用将与上述步骤(i)和(ii)相对应的磁场成型和烧结一体化的一个步骤的工艺。当实施磁场成型时,外部磁场的施加方向可以为水平或竖直方向。关于烧结工艺,可以从如下选择至少一种技术并加以应用:炉烧结、火花等离子体烧结以及微波烧结和热压。

Claims (12)

1.一种使用无电沉积法制备具有硬-软磁性异质结构的纳米复合材料粉末的方法,所述方法包括如下步骤:
(i)对硬磁性的铁氧体纳米粒子的表面进行活化;以及
(ii)通过将经活化的铁氧体纳米粒子浸入镀金溶液中以利用软磁性物质对所述铁氧体纳米粒子的经活化表面进行涂布,所述镀金溶液包含选自镍离子、铁离子、钴离子、铝离子、金离子、铂离子、银离子、铜离子、钯离子、锡离子、锌离子和铬离子中的至少一种金属离子。
2.如权利要求1所述的方法,其中通过如下的2步工艺来实施步骤(i):
将锡离子沉积到所述铁氧体纳米粒子的表面上的敏化工艺;以及
在所述铁氧体纳米粒子的表面上形成钯活化层的活化工艺。
3.如权利要求1所述的方法,其中通过1步敏化和活化工艺来实施上述步骤(i),所述1步敏化和活化工艺通过将所述铁氧体纳米粒子浸入含锡离子和钯离子的溶液中而在所述铁氧体纳米粒子的表面上形成钯活化层。
4.一种使用电沉积法制备具有硬-软磁性异质结构的纳米复合材料粉末的方法,包括如下步骤:
(i)将硬磁性的铁氧体纳米粒子放置在工作电极上;以及
(ii)向电解液中的所述工作电极施加电流,所述电解液包含选自如下的至少一种金属离子:镍离子、铁离子、钴离子、铝离子、金离子、铂离子、银离子、铜离子、钯离子、锡离子、锌离子和铬离子。
5.如权利要求1或4所述的方法,其中所述硬-软磁性纳米复合材料粉末的直径为10nm~1000nm。
6.如权利要求1或4所述的方法,其中所述硬-软磁性纳米复合材料粉末的直径为50nm~300nm。
7.如权利要求1或4所述的方法,其中所述铁氧体纳米粒子包含选自如下的至少一种纳米粒子:钡铁氧体纳米粒子、锶铁氧体纳米粒子和钴铁氧体纳米粒子。
8.如权利要求1或4所述的方法,其中所述方法还包括对得到的硬-软磁性纳米复合材料粉末进行热还原处理。
9.一种制备粘结磁体的方法,所述方法包括如下步骤:
(i)对通过权利要求1或4的方法制备的硬-软磁性纳米复合材料粉末进行分散;
(ii)通过将所述粉末与热固性或热塑性合成树脂进行混合而制备混合物;以及
(iii)通过对所述混合物进行挤出或注射而形成粘结磁体。
10.一种制备烧结磁体的方法,所述方法包括如下步骤:
(i)对根据权利要求1或4制备的硬-软磁性纳米复合材料粉末实施磁场成型;以及
(ii)对成型体进行烧结。
11.如权利要求10所述的方法,其中通过在水平轴或竖直轴的方向上施加外部磁场而实施所述磁场成型。
12.如权利要求10所述的方法,其中通过选自如下的至少一种来实施所述烧结:炉烧结、火花等离子体烧结、微波烧结和热压。
CN201380003531.XA 2012-03-30 2013-01-09 使用无电沉积法或电沉积法制备纳米复合材料磁体的方法 Active CN103889619B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020120033498A KR101649653B1 (ko) 2012-03-30 2012-03-30 무전해 또는 전해 증착법을 이용한 나노복합 자석의 제조방법
KR10-2012-0033498 2012-03-30
PCT/KR2013/000164 WO2013147405A1 (en) 2012-03-30 2013-01-09 Method of preparing nanocomposite magnet using electroless or electro deposition method

Publications (2)

Publication Number Publication Date
CN103889619A true CN103889619A (zh) 2014-06-25
CN103889619B CN103889619B (zh) 2016-05-25

Family

ID=49260616

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380003531.XA Active CN103889619B (zh) 2012-03-30 2013-01-09 使用无电沉积法或电沉积法制备纳米复合材料磁体的方法

Country Status (4)

Country Link
US (1) US20140286817A1 (zh)
KR (1) KR101649653B1 (zh)
CN (1) CN103889619B (zh)
WO (1) WO2013147405A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110273144A (zh) * 2018-03-14 2019-09-24 北京铂阳顶荣光伏科技有限公司 化学水浴沉积方法和cigs光伏组件的制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015013585A1 (en) * 2013-07-26 2015-01-29 University Of Florida Research Foundation, Incorporated Nanocomposite magnetic materials for magnetic devices and systems
KR102135375B1 (ko) * 2014-11-21 2020-07-17 엘지전자 주식회사 고주파 안테나 기판용 자기유전 복합체 및 그 제조방법
US9938628B2 (en) 2015-05-19 2018-04-10 General Electric Company Composite nanoparticles containing rare earth metal and methods of preparation thereof
CN108204975B (zh) * 2017-12-26 2021-01-29 北矿磁材科技有限公司 一种显示烧结铁氧体显微结构的腐蚀剂及其应用
EP3819924A4 (en) * 2018-07-03 2022-04-06 Industry-University Cooperation Foundation Hanyang University Erica Campus HYBRID MAGNETIC FIBER AND METHOD FOR MAKING IT
WO2021002564A1 (ko) * 2019-07-02 2021-01-07 한양대학교에리카산학협력단 섬유형 자성 구조체 및 그 제조 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069689A (ja) * 2000-08-28 2002-03-08 Yuken Industry Co Ltd 粉末の電気めっき方法
CN1985338A (zh) * 2004-06-30 2007-06-20 代顿大学 各向异性的纳米复合稀土永磁体及其制造方法
CN101090015A (zh) * 2007-05-31 2007-12-19 钢铁研究总院 高强韧性铁基稀土永磁体及其制备方法
CN101154490A (zh) * 2006-09-28 2008-04-02 宁波大学 一种纳米稀土永磁材料及其制备方法
CN101162633A (zh) * 2006-10-15 2008-04-16 宁波大学 一种各向异性粘结纳米晶稀土永磁材料及其制备方法
CN101174499A (zh) * 2006-11-05 2008-05-07 宁波大学 纳米晶各向异性稀土永磁磁粉的制备方法
JP4375019B2 (ja) * 2003-12-26 2009-12-02 日立金属株式会社 フェライト造粒粉の表面に金属めっき被膜を形成する方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415301A (en) * 1987-07-08 1989-01-19 Kawasaki Steel Co Rare earth metal-iron group alloy powder for resin combination type permanent magnet having excellent corrosion resistance
CN1148764C (zh) * 1997-10-30 2004-05-05 住友特殊金属株式会社 制造高耐蚀性的R-Fe-B粘结磁体的方法
KR100545107B1 (ko) * 2003-10-08 2006-01-24 한국지질자원연구원 무전해니켈도금법에 의한 니켈-다이아몬드 복합분말제조방법
KR100856873B1 (ko) * 2007-01-05 2008-09-04 연세대학교 산학협력단 무전해도금용 촉매활성 방법
KR101027483B1 (ko) * 2010-07-07 2011-04-06 (재)대구기계부품연구원 열전소재의 제조방법 및 제조장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069689A (ja) * 2000-08-28 2002-03-08 Yuken Industry Co Ltd 粉末の電気めっき方法
JP4375019B2 (ja) * 2003-12-26 2009-12-02 日立金属株式会社 フェライト造粒粉の表面に金属めっき被膜を形成する方法
CN1985338A (zh) * 2004-06-30 2007-06-20 代顿大学 各向异性的纳米复合稀土永磁体及其制造方法
CN101154490A (zh) * 2006-09-28 2008-04-02 宁波大学 一种纳米稀土永磁材料及其制备方法
CN101162633A (zh) * 2006-10-15 2008-04-16 宁波大学 一种各向异性粘结纳米晶稀土永磁材料及其制备方法
CN101174499A (zh) * 2006-11-05 2008-05-07 宁波大学 纳米晶各向异性稀土永磁磁粉的制备方法
CN101090015A (zh) * 2007-05-31 2007-12-19 钢铁研究总院 高强韧性铁基稀土永磁体及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110273144A (zh) * 2018-03-14 2019-09-24 北京铂阳顶荣光伏科技有限公司 化学水浴沉积方法和cigs光伏组件的制备方法

Also Published As

Publication number Publication date
US20140286817A1 (en) 2014-09-25
CN103889619B (zh) 2016-05-25
KR101649653B1 (ko) 2016-08-19
KR20130111036A (ko) 2013-10-10
WO2013147405A1 (en) 2013-10-03

Similar Documents

Publication Publication Date Title
CN103889619B (zh) 使用无电沉积法或电沉积法制备纳米复合材料磁体的方法
Pang et al. Preparation and characterization of electroless Ni–Co–P ternary alloy on fly ash cenospheres
CN103890869B (zh) 具有硬‑软磁性异质结构的核‑壳结构的纳米粒子、利用所述纳米粒子制备的磁体及它们的制备方法
US9818514B2 (en) Nanocomposite magnetic materials for magnetic devices and systems
KR20150090032A (ko) 은 코팅 구리분말 및 그 제조방법
CN109423637B (zh) 一种高导电材料的制备方法
WO2014147885A1 (ja) 金属ナノワイヤー不織布、及び二次電池用電極
Djokić et al. Electroless deposition: theory and applications
Li et al. Synthesis, microstructure and magnetic properties of Heusler Co2FeSn nanoparticles
Goujon et al. Electrochemical deposition of thick iron oxide films on nickel based superalloy substrates
Shi et al. Preparation of corrosion-resistant, EMI shielding and magnetic veneer-based composite via Ni–Fe–P alloy deposition
AU2014305949A1 (en) Forming a conductive image using high speed electroless plating
Hou et al. Conductive nickel/carbon fiber composites prepared via an electroless plating route
Li et al. Controllable synthesis, characterization and microwave absorption properties of magnetic Ni1− xCoxP alloy nanoparticles attached on carbon nanotubes
CN101345108A (zh) 全致密纳米复合稀土永磁材料的制备方法
US3255033A (en) Electroless plating of a substrate with nickel-iron alloys and the coated substrate
CN108660487A (zh) Nd-Fe-B磁性纳米线阵列的制备方法
Qie et al. Exchange-Coupling of Hard/Soft Magnetic Phases of Co/FeCo Nanocomposites
Schlörb et al. Electrodeposition of Fe-based magnetic alloy nanowires
Zhou et al. Facile synthesis of electromagnetic Ni@ glass fiber composites via electroless deposition method
KR20160061209A (ko) 고주파 안테나 기판용 자기유전 복합체 및 그 제조방법
Hayashi et al. Magnetic properties of nanostructured film composed of Co-ferrite nanoparticles and metal Co prepared by combination of electrophoretic deposition and electroplating
Danilova et al. Selective electroless metallization of non-conductive substrates enabled by a Fe3O4/Ag catalyst and a gradient magnetic field
JP2005203653A (ja) 磁石製造方法およびこれに用いる超微粒子磁性粉の製造方法
US3350210A (en) Electroless plating of magnetic material

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant