CN103887361A - 具有贵金属掺杂的TiO2/TiO2同质结构紫外探测器及其制备方法 - Google Patents

具有贵金属掺杂的TiO2/TiO2同质结构紫外探测器及其制备方法 Download PDF

Info

Publication number
CN103887361A
CN103887361A CN201410151399.3A CN201410151399A CN103887361A CN 103887361 A CN103887361 A CN 103887361A CN 201410151399 A CN201410151399 A CN 201410151399A CN 103887361 A CN103887361 A CN 103887361A
Authority
CN
China
Prior art keywords
tio
precious metal
homostyructure
preparation
metal doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410151399.3A
Other languages
English (en)
Other versions
CN103887361B (zh
Inventor
阮圣平
刘国华
高强
刘彩霞
周敬然
温善鹏
董玮
郭文滨
张歆东
沈亮
张敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201410151399.3A priority Critical patent/CN103887361B/zh
Publication of CN103887361A publication Critical patent/CN103887361A/zh
Application granted granted Critical
Publication of CN103887361B publication Critical patent/CN103887361B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

具有贵金属掺杂的TiO2/TiO2同质结构紫外探测器及制备方法,属于半导体光电器件技术领域。探测器依次由石英衬底、贵金属掺杂的TiO2薄膜层、纯TiO2薄膜层、金属叉指电极组成。其特征在于:探测器具有贵金属掺杂的TiO2薄膜层和纯TiO2薄膜层组成的同质结构。一方面通过贵金属的掺杂,基体材料具有更低的费米能级,降低了金属电极和基体材料接触的势垒高度;另一方面,贵金属掺杂的TiO2薄膜层与TiO2层形成的同质结构的内建电场方向与器件本身金半接触的内建电场方向相反,同样也降低了势垒高度。最终从材料的掺杂改性和器件结构两方面有效改善了紫外探测器的光响应特性。

Description

具有贵金属掺杂的TiO2/TiO2同质结构紫外探测器及其制备方法
技术领域
本发明属于半导体光电器件技术领域,具体涉及一种具有贵金属掺杂的TiO2/TiO2同质结构的紫外光探测器及其制备方法。
背景技术
紫外探测技术作为现代传感技术的重要分支,是一种继激光、红外光及可见光探测以外的又一门极具实用和应用价值的新兴探测技术,在光波通信、成像技术、环境监测、燃烧工程以及未来的储能和光电集成电路等领域展现出潜在的前景和应用价值。
随着紫外探测技术的发展,紫外探测器的研制成为关注的焦点。无论是军事、民用都迫切需要高可靠性、高稳定性的紫外探测器。追求高综合性能的紫外探测器显得尤为重要。近年来科研工作者们一直致力于通过各种方法提高探测器的综合性能,从基体材料上来看,传统单一材料为基体的紫外探测器发展已经较为成熟,创新性不大,一些新型复合材料的探索又无法获得高性能的紫外探测器。宽禁带氧化物半导体具有禁带宽度大、电子漂移速度高、介电常数小等卓越的特性和潜在的技术优势,在紫外探测领域表现出巨大的发展前景。TiO2由于具有优异的光电性能、稳定的物理化学特性以及低廉的价格等而备受关注。但由于材料制备、器件结构等方面仍存在缺陷,紫外探测器的光电性能受到限制,器件在光响应度和响应时间等参数上仍有待于进一步提高。因此为了制备具有更高光响应特性的TiO2紫外探测器,通过对基体材料TiO2进行掺杂改性或是改善器件结构等方法改善探测器性能已经成为近年来研究的热点问题。
贵金属由于具有比半导体高的功函数以及可以在禁带中引入特有杂质能级等特点,能够影响半导体吸光特性、载流子的传输以及金半接触的势垒高度等,在半导体掺杂改性上前景广阔。
发明内容
本发明的目的在于提供一种具有贵金属掺杂的TiO2/TiO2同质结构的紫外光探测器及其制备方法。探测器具有的双层同质结构最终很好的改善了器件的光响应特性。
本发明所述的紫外光探测器,其特征在于:依次由衬底(石英衬底、蓝宝石衬底、硅衬底等)、贵金属(Pt、Au、Pd、Rh等)掺杂的TiO2薄膜层(贵金属掺杂的摩尔浓度为0.008~0.04mol/L)、纯TiO2薄膜层、金属叉指电极(金属为Au、Pt等)组成,贵金属掺杂的TiO2薄膜层的厚度为150~210nm,纯TiO2薄膜层厚度为30~90nm,金属叉指电极的厚度为50~150nm,电极宽度为5~60μm,电极间距为5~60μm。
本发明采用溶胶凝胶法在衬底上依次制备贵金属掺杂的TiO2薄膜层以及纯TiO2薄膜层,然后在上面制备金属叉指电极。这样制备得到的器件具有贵金属掺杂的TiO2薄膜层和纯TiO2薄膜层形成的同质结构。一方面与纯TiO2薄膜层相比,贵金属掺杂的TiO2薄膜层足够厚,它作为器件主要的基体材料,具有更低的费米能级,相当于对TiO2进行受主掺杂,降低了金属电极和基体材料接触的势垒高度;另一方面,可以将贵金属掺杂的薄膜层看作一层N型轻掺杂层(N-),它与TiO2层形成的同质结构(N--N)的内建电场方向与器件本身金半接触的内建电场方向相反,同样也降低了势垒高度。最终从材料的掺杂改性和器件结构两方面有效改善了紫外探测器的光响应特性。
本发明所述的一种具有贵金属掺杂的TiO2/TiO2同质结构的紫外光探测器及其制备方法,其步骤如下:
[1]TiO2溶胶的制备
室温下,将5~10mL醋酸、5~10mL乙酰丙酮、5~10mL去离子水依次滴入不断搅拌且混合均匀的5~10mL钛酸四丁酯和80~100mL乙醇的混合液中,持续搅拌直到得到均匀透明的橙红色溶胶,陈化24~48小时后得到TiO2溶胶;
[2]贵金属掺杂TiO2溶胶的制备
取0.1~0.3g的贵金属的盐(氯铂酸、氯金酸,氯化钯,氯化铑等),将其加入4mL~8mL水和4~8mL乙醇的混合液中,搅拌至充分溶解,将溶解后的混合液加入从步骤[1]中取出的5~15mL的TiO2溶胶中,70~90℃水浴加热搅拌2~4h即得到贵金属掺杂的TiO2溶胶;
[3]衬底的清洗
将衬底依次放入丙酮、乙醇和去离子水中,分别超声10~15分钟,超声功率为80~100W,然后在氮气流下吹干;
[4]贵金属掺杂TiO2薄膜的制备
在清洗后的衬底上旋涂5~7层贵金属掺杂的TiO2溶胶,每层的工艺为:转速2000~3000rpm,匀胶时间10~20s,匀胶后在110~130℃条件下烘5~7分钟,再在空气中冷却2~4分钟;最后将旋涂好该溶胶的衬底在550~650℃条件下烧结1.5~3小时,从而在衬底上形成贵金属掺杂的TiO2薄膜,厚度为150~210nm;
[5]同质结构的制备
在贵金属掺杂的TiO2薄膜层上旋涂1~3层TiO2溶胶,每层的工艺为:转速2000~3000rpm,匀胶时间10~20s,匀胶后在110~130℃条件下烘5~7分钟,再在空气中冷却2~4分钟;最后将旋涂好TiO2溶胶的衬底在550~650℃条件下烧结1.5~3小时,从而在衬底上得到了由贵金属掺杂的TiO2和纯TiO2双层薄膜组成的同质结构;
[6]金属叉指电极的制备
在制备得到的同质结构表面先旋涂一层1~3μm厚的BP212正型光刻胶,放置在热板上在70℃~90℃条件下前烘10~20分钟;然后在光刻机上,将与插指电极图形结构互补的掩膜板与旋涂的光刻胶层调整好位置后紧密接触,曝光50~60秒后显影30~50秒,用去离子水冲洗后吹干,再放置在热板上110℃~130℃条件下坚膜15~25分钟后即在同质结构层上得到所需要的光刻胶插指电极图形;然后采用射频磁控溅射技术在其上面制备电极,溅射室抽真空至2.0×10-3~8.0×10-3Pa后通氩气,溅射气压为0.5~1.4Pa,溅射功率为60~110W,溅射时间为3~8分钟;最后用丙酮将光刻胶及其上面的金属超声刻蚀掉,超声功率为50~70W,得到的叉指电极厚度为50~150nm,电极宽度为5~60μm,电极间距为5~60μm;通过以上步骤最终制备得到具有贵金属掺杂的TiO2/TiO2同质结构的紫外光探测器。
附图说明
图1:本发明所述的器件的结构示意图;
图2:TiO2薄膜(实施例1)的X射线衍射图谱;
图3:Pt/TiO2薄膜(实施例2)的X射线衍射图谱;
图4:300nm紫外光照射下,纯TiO2紫外探测器(实施例1)、Pt/TiO2紫外探测器(实施例2)和具有同质结构的紫外探测器(实施例3)的光电流对比图;
图5:纯TiO2紫外探测器(实施例1)的响应时间图;
图6:Pt/TiO2紫外探测器(实施例2)的响应时间图;
图7:具有同质结构的紫外探测器(实施例3)的响应时间图;
如图1所示,器件由衬底1、Pt/TiO2薄膜层2、纯TiO2薄膜层3、金属叉指电极4组成,300nm紫外光源5经过衬底1照射在光敏层2和3上产生光生载流子,在外加偏压条件下由金属叉指电极收集,产生光电流,光敏层由具有同质结构的Pt/TiO2薄膜层和TiO2薄膜层组成,其内建电场方向与金属电极和半导体接触的内建电场方向相反,使势垒降低,最终优化了器件的光响应特性。
图2为TiO2薄膜的X射线衍射图谱,所有衍射峰的位置与锐钛矿型TiO2标准粉末衍射卡(JCPDS No.21-1272)相对应,说明制备的TiO2具有锐钛矿型的良好晶体结构。
如图3所示,Pt/TiO2薄膜的X射线衍射图谱中出现了Pt单质的衍射峰,说明这部分Pt为零价,它以间隙原子的方式进入到TiO2晶格中;另外与标准粉末衍射卡相比,TiO2本身衍射峰的位置向左发生了轻微偏移,说明这部分Pt替代了TiO2晶格中的Ti原子,为+4价,根据布拉格公式:2dsinθ=nλ,对于一定的n值,nλ是常数,晶体晶面间距d和X射线的衍射角θ成反比,Pt原子进入TiO2晶格中,将其晶面间距撑大,致使衍射角变小,因此衍射峰位置发生了偏移。
如图4所示,曲线1、2、3分别为纯TiO2紫外探测器、Pt/TiO2紫外探测器和具有同质结构的紫外探测器在300nm紫外光照射下的I-V曲线图;5V偏压下,光电流分别为2.866μA、35.711μA和191.770μA。Pt/TiO2紫外探测器光电流增大的原因是由于在TiO2中掺入贵金属Pt,基体材料具有更低的费米能级,降低了金属电极和基体材料接触的势垒高度;具有同质结构的紫外探测器具有最大的光电流是因为Pt/TiO2层与TiO2层形成的同质结构(N--N)的内建电场方向与器件本身金半接触的内建电场方向相反,更大程度地降低了势垒高度。
图5为纯TiO2紫外探测器的响应时间曲线,如图所示,上升时间是2.284s,下降时间是1.721s。
图6为Pt/TiO2紫外探测器响应时间曲线,如图所示,上升时间缩短至1.517s,下降时间是1.672s。
图7为具有同质结构的紫外探测器响应时间曲线,如图所示,上升时间仅为861.6ms,下降时间是1.788s。
具体实施方式
实施例1:
[1]室温下,将8mL醋酸、8mL乙酰丙酮、8mL去离子水依次滴入不断搅拌且混合均匀的8mL钛酸四丁酯和90mL乙醇的混合液中,持续搅拌直到得到均匀透明的橙红色溶胶,陈化36小时后得到TiO2溶胶;
[2]将石英衬底依次放入丙酮、乙醇和去离子水中,分别超声12分钟,超声功率为90W,然后在氮气流下吹干;
[3]在清洗后的石英衬底上用匀胶机旋涂6层TiO2溶胶,每层的转速均为2500rpm,匀胶时间为15s,匀胶后在120℃条件下烘6分钟,空气中冷却3分钟;最后将旋涂好TiO2溶胶的衬底片放在马弗炉中,600℃条件下烧结2小时,即形成锐钛矿型TiO2薄膜,厚度约为180nm;
[4]在制备得到的TiO2薄膜表面先旋涂一层1.5μm厚的BP212正型光刻胶,放置在热板上80℃条件下前烘15分钟;然后在光刻机上,将与插指电极图形结构互补的掩膜板与旋涂的光刻胶层调整好位置后紧密接触,曝光55秒后显影40秒,用去离子水冲洗后吹干,放置在热板上120℃条件下坚膜20分钟后即在薄膜上得到所需要的光刻胶插指电极图形;然后采用射频磁控溅射技术在其上面制备Au电极,溅射室抽真空至3.0×10-3Pa后通氩气,溅射气压为1.2Pa,溅射功率为100W,溅射时间为6分钟;最后用丙酮将光刻胶及其上面的金属超声刻蚀掉,超声功率为60W,得到的叉指电极厚度为120nm,电极宽度为20μm,电极间距为20μm;通过以上步骤制备得到纯TiO2紫外光探测器。5V偏压300nm紫外光照射下的光电流是2.866μA;上升时间是2.284s,下降时间是1.721s。
实施例2:
[1]室温下,将8mL醋酸、8mL乙酰丙酮、8mL去离子水依次滴入不断搅拌且混合均匀的8mL钛酸四丁酯和90mL乙醇的混合液中,持续搅拌直到得到均匀透明的橙红色溶胶,陈化36小时后得到TiO2溶胶;
[2]取0.2g的氯铂酸(H2PtCl66H2O),将其加入5mL水和5mL乙醇的混合液中,搅拌至充分溶解,将溶解后的混合液加入从步骤[1]中取出的10mL的TiO2溶胶中,80℃水浴加热搅拌3h即得到Pt/TiO2溶胶;
[3]将石英衬底依次放入丙酮、乙醇和去离子水中,分别超声12分钟,超声功率为90W,然后在氮气流下吹干;
[4]在清洗后的石英衬底上用匀胶机旋涂6层Pt/TiO2溶胶,每层的转速均为2500rpm,匀胶时间为15s,匀胶后在120℃条件下烘6分钟,空气中冷却3分钟;最后将旋涂好Pt/TiO2溶胶的衬底片放在马弗炉中,600℃条件下烧结2小时,即形成Pt/TiO2薄膜,厚度约为180nm;
[5]在制备得到的Pt/TiO2薄膜表面先旋涂一层1.5μm厚的BP212正型光刻胶,放置在热板上80℃条件下前烘15分钟;然后在光刻机上,将与插指电极图形结构互补的掩膜板与旋涂的光刻胶层调整好位置后紧密接触,曝光55秒后显影40秒,用去离子水冲洗后吹干,放置在热板上120℃条件下坚膜20分钟后即在薄膜上得到所需要的光刻胶插指电极图形;然后采用射频磁控溅射技术在其上面制备Au电极,溅射室抽真空至3.0×10-3Pa后通氩气,溅射气压为1.2Pa,溅射功率为100W,溅射时间为6分钟;最后用丙酮将光刻胶及其上面的金属超声刻蚀掉,超声功率为60W,得到的叉指电极厚度为120nm,电极宽度为20μm,电极间距为20μm;通过以上步骤制备得到Pt/TiO2紫外光探测器。与纯TiO2紫外探测器相比光电流提高了12.5倍,上升时间缩短了1.5倍。
实施例3:
[1]室温下,将8mL醋酸、8mL乙酰丙酮、8mL去离子水依次滴入不断搅拌且混合均匀的8mL钛酸四丁酯和90mL乙醇的混合液中,持续搅拌直到得到均匀透明的橙红色溶胶,陈化36小时后得到TiO2溶胶;
[2]取0.2g的氯铂酸(H2PtCl66H2O),将其加入5mL水和5mL乙醇的混合液中,搅拌至充分溶解,将溶解后的混合液加入从步骤[1]中取出的10mL的TiO2溶胶中,80℃水浴加热搅拌3h即得到Pt/TiO2溶胶;
[3]将石英衬底依次放入丙酮、乙醇和去离子水中,分别超声12分钟,超声功率为90W,然后在氮气流下吹干;
[4]在清洗后的石英衬底上用匀胶机旋涂5层Pt/TiO2溶胶,每层的转速均为2500rpm,匀胶时间为15s,匀胶后在120℃条件下烘6分钟,空气中冷却3分钟;最后将旋涂好Pt/TiO2溶胶的衬底片放在马弗炉中,600℃条件下烧结2小时,即形成Pt/TiO2薄膜,厚度约为150nm;
[5]在Pt/TiO2薄膜层上再次制备纯TiO2薄膜层(旋涂1层TiO2溶胶,转速为2500rpm,匀胶时间为15s,120℃条件下烘6分钟,空气中冷却3分钟;600℃条件下在马弗炉中烧结2小时,制备得到的TiO2薄膜厚度约为30nm),这样衬底上形成了由Pt/TiO2和纯TiO2双层薄膜组成的同质结构,厚度约为180nm;
[6]在制备得到的同质结构表面先旋涂一层1.5μm厚的BP212正型光刻胶,放置在热板上80℃条件下前烘15分钟;然后在光刻机上,将与插指电极图形结构互补的掩膜板与旋涂的光刻胶层调整好位置后紧密接触,曝光55秒后显影40秒,用去离子水冲洗后吹干,放置在热板上120℃条件下坚膜20分钟后即在薄膜上得到所需要的光刻胶插指电极图形;然后采用射频磁控溅射技术在其上面制备Au电极,溅射室抽真空至3.0×10-3Pa后通氩气,溅射气压为1.2Pa,溅射功率为100W,溅射时间为6分钟;最后用丙酮将光刻胶及其上面的金属超声刻蚀掉,超声功率为60W,得到的叉指电极厚度为120nm,电极宽度为20μm,电极间距为20μm;通过以上步骤制备得到具有贵金属掺杂的TiO2/TiO2同质结构的紫外光探测器。与纯TiO2紫外探测器相比光电流提高了约67倍,上升时间缩短了2.65倍。
上述实施例中I-V曲线是用Keithley2601测量得到。所有的测试均在大气环境下进行。
以上所述内容,仅为本发明的具体实施方式,不能以其限定本发明实施的范围,大凡依本发明专利申请范围所进行的均等变化和改进,均应仍属本发明专利涵盖的范围。

Claims (9)

1.一种具有贵金属掺杂的TiO2/TiO2同质结构的紫外探测器,其特征在于:依次由衬底、贵金属掺杂的TiO2薄膜层、纯TiO2薄膜层、金属叉指电极组成,其中,贵金属掺杂的TiO2薄膜层中贵金属掺杂的摩尔浓度为0.008~0.04mol/L。
2.如权利要求1所述的一种具有贵金属掺杂的TiO2/TiO2同质结构的紫外探测器,其特征在于:贵金属掺杂的TiO2薄膜层的厚度为150~210nm,纯TiO2薄膜层的厚度为30~90nm,金属叉指电极的厚度为50~150nm,电极宽度为5~60μm,电极间距为5~60μm。
3.如权利要求1或2所述的一种具有贵金属掺杂的TiO2/TiO2同质结构的紫外探测器,其特征在于:衬底为石英、蓝宝石或硅,贵金属为Pt、Au、Pd或Rh,金属叉指电极为Au或Pt。
4.一种具有贵金属掺杂的TiO2/TiO2同质结构的紫外探测器的制备方法,其步骤如下:
[1]贵金属掺杂TiO2薄膜的制备
在清洗后的衬底上旋涂5~7层贵金属掺杂的TiO2溶胶,每层的工艺为:转速2000~3000rpm,匀胶时间10~20s,匀胶后在110~130℃条件下烘5~7分钟,再在空气中冷却2~4分钟;最后将旋涂好该溶胶的衬底在550~650℃条件下烧结1.5~3小时,从而在衬底上形成贵金属掺杂的TiO2薄膜,厚度为150~210nm;
[2]同质结构的制备
在贵金属掺杂的TiO2薄膜上旋涂1~3层TiO2溶胶,每层的工艺为:转速2000~3000rpm,匀胶时间10~20s,匀胶后在110~130℃条件下烘5~7分钟,再在空气中冷却2~4分钟;最后将旋涂好TiO2溶胶的衬底在550~650℃条件下烧结1.5~3小时,从而在衬底上得到了由贵金属掺杂的TiO2和纯TiO2双层薄膜组成的同质结构;
[3]金属叉指电极的制备
在制备得到的同质结构表面金属叉指电极,电极厚度为50~150nm,电极宽度为5~60μm,电极间距为5~60μm;通过以上步骤最终制备得到具有贵金属掺杂的TiO2/TiO2同质结构的紫外光探测器。
5.如权利要求4所述的具有贵金属掺杂的TiO2/TiO2同质结构的紫外探测器的制备方法,其特征在于:TiO2溶胶的制备,是于室温下,将5~10mL醋酸、5~10mL乙酰丙酮、5~10mL去离子水依次滴入不断搅拌且混合均匀的5~10mL钛酸四丁酯和80~100mL乙醇的混合液中,持续搅拌直到得到均匀透明的橙红色溶胶,陈化24~48小时后得到TiO2溶胶。
6.如权利要求4所述的具有贵金属掺杂的TiO2/TiO2同质结构的紫外探测器的制备方法,其特征在于:贵金属掺杂TiO2溶胶的制备,是取0.1~0.3g的贵金属的盐,将其加入4mL~8mL水和4~8mL乙醇的混合液中,搅拌至充分溶解,将溶解后的混合液加入从步骤[1]中取出的5~15mL的TiO2溶胶中,70~90℃水浴加热搅拌2~4h即得到贵金属掺杂的TiO2溶胶。
7.如权利要求6所述的具有贵金属掺杂的TiO2/TiO2同质结构的紫外探测器的制备方法,其特征在于:贵金属的盐为氯铂酸、氯金酸、氯化钯或氯化铑。
8.如权利要求4所述的具有贵金属掺杂的TiO2/TiO2同质结构的紫外探测器的制备方法,其特征在于:插指电极的制备,是在制备得到的同质结构表面先旋涂一层1~3μm厚的BP212正型光刻胶,放置在热板上在70℃~90℃条件下前烘10~20分钟;然后在光刻机上,将与插指电极图形结构互补的掩膜板与旋涂的光刻胶层调整好位置后紧密接触,曝光50~60秒后显影30~50秒,用去离子水冲洗后吹干,再放置在热板上110℃~130℃条件下坚膜15~25分钟后即在同质结构层上得到所需要的光刻胶插指电极图形;然后采用射频磁控溅射技术在其上面制备电极,溅射室抽真空至2.0×10-3~8.0×10-3Pa后通氩气,溅射气压为0.5~1.4Pa,溅射功率为60~110W,溅射时间为3~8分钟;最后用丙酮将光刻胶及其上面的金属超声刻蚀掉,超声功率为50~70W,从而得到金属叉指电极。
9.如权利要求4所述的具有贵金属掺杂的TiO2/TiO2同质结构的紫外探测器的制备方法,其特征在于:金属叉指电极为Au或Pt。
CN201410151399.3A 2014-04-15 2014-04-15 具有贵金属掺杂的TiO2/TiO2同质结构紫外探测器及其制备方法 Expired - Fee Related CN103887361B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410151399.3A CN103887361B (zh) 2014-04-15 2014-04-15 具有贵金属掺杂的TiO2/TiO2同质结构紫外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410151399.3A CN103887361B (zh) 2014-04-15 2014-04-15 具有贵金属掺杂的TiO2/TiO2同质结构紫外探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN103887361A true CN103887361A (zh) 2014-06-25
CN103887361B CN103887361B (zh) 2015-12-02

Family

ID=50956177

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410151399.3A Expired - Fee Related CN103887361B (zh) 2014-04-15 2014-04-15 具有贵金属掺杂的TiO2/TiO2同质结构紫外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN103887361B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104772140A (zh) * 2015-04-23 2015-07-15 于晓颖 一种铂掺杂二氧化钛膜的悬浊类制备方法
CN105720117A (zh) * 2014-12-02 2016-06-29 中国科学院大连化学物理研究所 一种具有内建电场的TiO2异相结紫外/深紫外探测器件及制备
CN105810828A (zh) * 2016-04-06 2016-07-27 吉林大学 基于PDHF/TiO2/PDHF双异质结型空穴增益紫外探测器及其制备方法
CN106024966A (zh) * 2016-05-27 2016-10-12 吉林大学 一种基于多晶面Ir-Pd纳米粒子体系掺杂的TiO2薄膜紫外探测器及其制备方法
CN107308927A (zh) * 2017-06-28 2017-11-03 陕西科技大学 一种二氧化钛同质结纳米光催化剂的制备方法
CN107359217A (zh) * 2017-07-13 2017-11-17 吉林大学 一种快速响应紫外光探测器及制备方法
CN109731563A (zh) * 2019-02-25 2019-05-10 辽宁石油化工大学 一种同相结光催化剂及其制备方法和应用
CN110581125A (zh) * 2019-09-19 2019-12-17 中南大学 一种集成cmos探测器及制备工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155848A (ja) * 1984-12-28 1986-07-15 Chichibu Cement Co Ltd 薄膜型可燃性ガスセンサ
CN1828950A (zh) * 2006-04-04 2006-09-06 吉林大学 金属/半导体/金属结构TiO2紫外光探测器及制备
CN103236464A (zh) * 2013-04-14 2013-08-07 吉林大学 聚乙烯亚胺作为界面修饰层的TiO2紫外探测器及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155848A (ja) * 1984-12-28 1986-07-15 Chichibu Cement Co Ltd 薄膜型可燃性ガスセンサ
CN1828950A (zh) * 2006-04-04 2006-09-06 吉林大学 金属/半导体/金属结构TiO2紫外光探测器及制备
CN103236464A (zh) * 2013-04-14 2013-08-07 吉林大学 聚乙烯亚胺作为界面修饰层的TiO2紫外探测器及其制备方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105720117B (zh) * 2014-12-02 2017-12-05 中国科学院大连化学物理研究所 一种具有内建电场的TiO2异相结紫外/深紫外探测器件及制备
CN105720117A (zh) * 2014-12-02 2016-06-29 中国科学院大连化学物理研究所 一种具有内建电场的TiO2异相结紫外/深紫外探测器件及制备
CN104772140A (zh) * 2015-04-23 2015-07-15 于晓颖 一种铂掺杂二氧化钛膜的悬浊类制备方法
CN105810828A (zh) * 2016-04-06 2016-07-27 吉林大学 基于PDHF/TiO2/PDHF双异质结型空穴增益紫外探测器及其制备方法
CN105810828B (zh) * 2016-04-06 2018-05-29 吉林大学 基于PDHF/TiO2/PDHF双异质结型空穴增益紫外探测器及其制备方法
CN106024966A (zh) * 2016-05-27 2016-10-12 吉林大学 一种基于多晶面Ir-Pd纳米粒子体系掺杂的TiO2薄膜紫外探测器及其制备方法
CN107308927A (zh) * 2017-06-28 2017-11-03 陕西科技大学 一种二氧化钛同质结纳米光催化剂的制备方法
CN107359217A (zh) * 2017-07-13 2017-11-17 吉林大学 一种快速响应紫外光探测器及制备方法
CN107359217B (zh) * 2017-07-13 2019-06-07 吉林大学 一种快速响应紫外光探测器及制备方法
CN109731563A (zh) * 2019-02-25 2019-05-10 辽宁石油化工大学 一种同相结光催化剂及其制备方法和应用
CN109731563B (zh) * 2019-02-25 2022-01-21 辽宁石油化工大学 一种同相结光催化剂及其制备方法和应用
CN110581125A (zh) * 2019-09-19 2019-12-17 中南大学 一种集成cmos探测器及制备工艺
CN110581125B (zh) * 2019-09-19 2020-12-22 中南大学 一种集成cmos探测器及制备工艺

Also Published As

Publication number Publication date
CN103887361B (zh) 2015-12-02

Similar Documents

Publication Publication Date Title
CN103887361B (zh) 具有贵金属掺杂的TiO2/TiO2同质结构紫外探测器及其制备方法
Koide et al. Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit
Shi et al. Enhanced light absorption of thin perovskite solar cells using textured substrates
Mora-Sero et al. Implications of the negative capacitance observed at forward bias in nanocomposite and polycrystalline solar cells
Lee et al. Effect of halide ion migration on the electrical properties of methylammonium lead tri-iodide perovskite solar cells
Li et al. Revealing the role of potassium treatment in CZTSSe thin film solar cells
Huang et al. Efficient light harvesting by photon downconversion and light trapping in hybrid ZnS nanoparticles/Si nanotips solar cells
Afroz et al. Impedance spectroscopy for metal halide perovskite single crystals: recent advances, challenges, and solutions
CN102509743B (zh) 基于二氧化钛/钛酸锶异质结的紫外光探测器及制备方法
CN106025067B (zh) 一种溶液法生成钙钛矿薄膜的成膜方法及其器件应用
CN103236464B (zh) 聚乙烯亚胺作为界面修饰层的TiO2紫外探测器及其制备方法
CN103268897B (zh) 具有钝化处理的宽禁带氧化物半导体薄膜层的紫外探测器及制备方法
Liu et al. Polycrystalline perovskite CH3NH3PbCl3/amorphous Ga2O3 hybrid structure for high-speed, low-dark current and self-powered UVA photodetector
CN105932162B (zh) 一种钙钛矿太阳能电池及其制备方法
CN106129259A (zh) 一种以黑磷和石墨烯为空穴传输层的钙钛矿太阳能电池及制备方法
Chen et al. Self-sacrifice alkali acetate seed layer for efficient four-terminal perovskite/silicon tandem solar cells
Hwang et al. Effect of nickel diffusion and oxygen behavior on heterojunction Schottky diodes of Au/NiO/ZnO with a NiO interlayer prepared by radio-frequency magnetron sputtering
Onwona-Agyeman et al. Preparation and characterization of sputtered aluminum and gallium co-doped ZnO films as conductive substrates in dye-sensitized solar cells
CN106057959A (zh) 基于二氧化钛/钛酸锶异质结的紫外光探测器及制备方法
Wu et al. Understanding the efficiency enhancement of perovskite solar cells with NaGdF4: Er3+/Yb3+ nanorods
Dhar et al. Light trapping in a-Si/c-Si heterojunction solar cells by embedded ITO nanoparticles at rear surface
CN103325944A (zh) 高响应度有机太阳盲紫外光探测器
Popoola et al. Self-Driven, Quadridirectional Carrier Transport, Bifacial MAPbI3–Perovskites Photodiodes Fabricated via Laterally Aligned Interconnected Sandwiched Type Architecture
CN105702762A (zh) 一种制备t相铁酸铋薄膜的方法
Cheng et al. High infrared responsivity of silicon photodetector with titanium-hyperdoping

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151202

Termination date: 20180415

CF01 Termination of patent right due to non-payment of annual fee