CN103814338A - 网络同步的系统和方法 - Google Patents

网络同步的系统和方法 Download PDF

Info

Publication number
CN103814338A
CN103814338A CN201280045548.7A CN201280045548A CN103814338A CN 103814338 A CN103814338 A CN 103814338A CN 201280045548 A CN201280045548 A CN 201280045548A CN 103814338 A CN103814338 A CN 103814338A
Authority
CN
China
Prior art keywords
information
packets
time
deviation
slave device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280045548.7A
Other languages
English (en)
Inventor
J·米海利克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aviat Networks Inc
Original Assignee
Aviat Networks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aviat Networks Inc filed Critical Aviat Networks Inc
Publication of CN103814338A publication Critical patent/CN103814338A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0016Arrangements for synchronising receiver with transmitter correction of synchronization errors
    • H04L7/0033Correction by delay
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • G06F1/10Distribution of clock signals, e.g. skew
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • G06F1/12Synchronisation of different clock signals provided by a plurality of clock generators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/0667Bidirectional timestamps, e.g. NTP or PTP for compensation of clock drift and for compensation of propagation delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种将主时钟和从时钟同步的示例性方法包括在主装置和从装置之间传输多个信息包,计算在从装置的多个信息包的第一对之间的第一偏差和在主装置的第一对之间的第二偏差,计算第一偏差和第二偏差之间的比率,向从装置提供从时钟频率校正,使用主装置发动向从装置发送信息包的时间、主装置接收源自从装置的响应的时间、从装置接收信息包的校正的时间和从装置发动发送响应的校正的时间来计算第一信息包行程延迟,基于第一信息包行程延迟计算第一偏移,以及向从装置提供所述第一偏移。

Description

网络同步的系统和方法
技术领域
本发明涉及同步,并更特别涉及用于网络同步的系统和方法。
背景技术
同步时间信息对于分布式系统是重要的。通常,在IEEE1588中描述的精确时间协议(PTP)可以用来同步分布式时钟。PTP的使用具有对本地时钟和网络的非常低的需求,然而为实施PTP,网络上的部件必须经配置(即包括另外硬件和/或固件)利用PTP。
当网络由IEEE1588感知装置(即边界时钟或透明时钟)构成时,可以用非常简单的时钟伺服算法获得非常高的精度,从而确定速率调整和时间校正。由于仅需要协议测量的简单平均化或过滤,因此复杂处理不是必需的。当网络由非IEEE1588感知的装置构成时,包延迟变化(PDV)通常是显著的。仅简单时钟伺服不提供准确水平的同步。
发明内容
各种实施例为用于网络同步的系统和方法提供。在一些实施例中,将主时钟和从时钟同步的方法包括在具有主时钟的主装置和具有从时钟的从装置之间传输多个信息包,计算在从装置的多个信息包的第一对之间的第一偏差和在主装置的第一对之间的第二偏差,计算第一偏差和第二偏差之间的比率,向从装置提供从时钟的从时钟频率校正从而允许从装置校正从时钟频率,通过使用主装置发动向从装置发送多个信息包中的信息包的时间、主装置接收源自从装置的响应的时间、从装置接收信息包的校正时间和从装置发动发送响应的校正时间,计算第一信息包行程延迟,基于第一信息包行程延迟计算主时钟和从时钟之间的第一偏移,以及向从装置提供第一偏移。
该方法可以进一步包括计算在从装置的多个信息包的随后一对之间的其他偏差和在主装置的第一对之间的随后偏差,并计算该其他偏差和该随后偏差之间的比率的重复步骤。在一些实施例中,该方法可以进一步包括计算在从装置的多个信息包的第二对之间的第三偏差和在主装置的第二对之间的第四偏差,并计算第三偏差和第四偏差之间的比率。向从装置提供从时钟的从时钟频率校正可以包括如果第一偏差和第二偏差之间的比率近似于第三偏差和第四偏差之间的比率,则向从装置提供从时钟的从时钟频率校正。当比率之间的差小于预定阈值时,第一和第二偏差之间的比率可以近似于第三偏差和第四偏差之间的比率。
在各种实施例中,该方法可以包括利用多个信息包的子组重复计算随后信息包行程延迟。该方法可以包括确定第一和至少一些随后信息包行程延迟的最小值。该方法可以进一步包括获得相对于第一和随后信息包行程延迟最小值的阈值、将一个或多个随后信息包行程延迟与相对于第一和随后信息包行程延迟最小值的阈值比较、基于该比较计算第二偏移,并基于第一信息包行程延迟提供主时钟和从时钟之间的第二偏移。
计算在从装置的多个信息包的第一对之间的第一偏差和在主装置的第一对之间的第二偏差,并计算第一偏差和第二偏差之间的比率可以包括Rms=(T22-T21)/(T12-T11),其中Rms是从频率速率(或称为从频率比率,即slave frequency rate),T22是从装置从主装置接收第一对的第二信息包的时间,T21是从装置从主装置接收第一对的第一信息包的时间,T12是主装置传输第二对的第二信息包的时间,以及T11是主装置传输第二对的第一信息包的时间。
计算在从装置的多个信息包的第二对之间的第三偏差和在主装置的第二对之间的第四偏差,并计算第三偏差和第四偏差之间的比率可以包括Rsm=(T32-T31)/(T42-T41),其中Rsm是逆向从频率速率(或称为逆向从频率比率,即reverse slave frequency rate),T32是从装置传输源自主装置的第三对的第二信息包的时间,T31是从装置传输源自主装置的第三对的第一信息包的时间,T42是主装置接收第二对的第二信息包的时间,以及T41是主装置接收第二对的第一信息包的时间。
通过使用主装置发动向从装置发送多个信息包中的信息包的时间、主装置接收源自从装置的响应的时间、从装置接收信息包的校正时间以及从装置发动发送响应的校正时间计算第一信息包行程延迟可以包括
Figure BDA0000478912680000031
其中T4是主装置接收源自从装置的响应的时间,T1是主装置发动向从装置发送信息包的时间,T3是从装置发动发送响应的时间,T2是从装置接收信息包的时间,以及R是第一偏差和第二偏差之间的比率。
基于第一信息包行程延迟计算主时钟和从时钟之间的第一偏移可以包括offset=T2-T1-RTD,其中T2是从装置接收信息包的时间,T1是主装置发动向从装置发送信息包的时间,以及RTD是第一信息包行程延迟。基于第一信息包行程延迟计算主时钟和从时钟之间的第一偏移可以包括offset=T3-T4+meanRTD,其中T3是从装置发动发送响应的时间,T4是主装置接收源自从装置的响应的时间,以及RTD是第一信息包行程延迟。
用于将主时钟和从时钟同步的示例性系统可以包括通信模块、频率速率模块、速率校正模块、信息包行程延迟模块和时间校正模块。通信模块可以经配置在具有主时钟的主装置和具有从时钟的从装置之间传输多个信息包。频率速率模块可以经配置计算在从装置接收的多个信息包的第一对之间的基于时间的第一偏差,并计算在主装置的第一对之间的第二偏差,并计算第一偏差和第二偏差之间的比率。速率校正模块可以经配置向从装置提供从时钟的从时钟频率校正,从而允许从装置校正从时钟频率。信息包行程延迟模块可以经配置通过使用主装置发动向从装置发送多个信息包中的信息包的时间、主装置接收源自从装置的响应的时间、从装置接收信息包的校正时间和从装置发动发送响应的校正时间,计算第一信息包行程延迟。时间校正模块可以经配置基于第一信息包行程延迟计算主时钟和从时钟之间的第一偏移,并向从装置提供第一偏移。
示例性计算机可读介质可以包括可执行指令。该指令可由处理器执行从而执行将主时钟和从时钟同步的方法。该方法可以包括在具有主时钟的主装置和具有从时钟的从装置之间传输多个信息包,计算在从装置的多个信息包的第一对之间的第一偏差和在主装置的第一对之间的第二偏差,计算第一偏差和第二偏差之间的比率,向从装置提供从时钟的从时钟频率校正从而允许从装置校正从时钟频率,通过使用主装置发动向从装置发送多个信息包中的信息包的时间、主装置接收源自从装置的响应的时间、从装置接收信息包的校正时间和从装置发动发送响应的校正时间,计算第一信息包行程延迟,基于第一信息包行程延迟计算主时钟和从时钟之间的第一偏移,以及向从装置提供第一偏移。
各种实施例的其他特征和方面从以下详细描述连同附图变得明显,该附图作为例子图解各种实施例的特征。
附图说明
图1是在一些实施例中的示例性环境,其包括具有主时钟伺服的主数字装置和具有从时钟伺服的从数字装置,该两个装置经由通信网络通信。
图2是在一些实施例中的包括两个收发器单元的环境,该两个收发器单元包括主射频单元和从射频单元。
图3是在一些实施例中主射频单元的框图。
图3是在一些实施例中用于控制信号的相位和增益的信号质量模块的框图。
图4是在一些实施例中从射频单元的框图。
图5是示出在一些实施例中主装置和从装置之间传输的信息包的图表。
图6是在一些实施例中用于为从时钟伺服计算偏移的示例性方法的流程图。
图7是在一些实施例中用于为从装置伺服应用偏移的示例性方法。
图8是在一些实施例中主时钟和从时钟之间通信的图示。
图9是可以用来模拟在此描述的一些实施例的示例性环境。
图10示出在一些实施例中的主射频单元。
图11示出根据一些实施例的示例性数字装置。
图12是包括测试数据的表格,该测试数据用于涉及利用在此描述的一些实施例测试输出图13-31的模拟。
图13-31包括输出数据和图表,该输出数据和图表涉及利用在此描述的一些实施例的分离模拟的输出。
具体实施方式
在此讨论的各种实施例描述在具有IEEE1588非感知网络元件的网络中提供准确同步的同步方法。在一些实施例中同步在其中没有源自基础网络的IEEE1588支持的端到端节点(例如装置)之间实现。在一些实施例中发送和接收装置是IEEE1588感知的(即主和从时钟),但基础网络其他元件不是IEEE1588感知的。
在具有不支持IEEE1588的部件的网络中,两个或更多个网络元件之间的信息包延迟可以范围从最小物理延迟直到通过每个通信网络元件的最大延迟之和。实际上对于每个装置通常具有最小传输延迟,并因此具有从主装置到从装置的最小总信息包延迟。在各种实施例中,在此描述的一些系统和方法尝试检测最小延迟或“幸运信息包”,并使用源自这些信息包的结果做出速率和时间校正。
图1是在一些实施例中的示例性环境,其包括具有主时钟伺服的主数字装置102和具有从时钟伺服的从数字装置104,该两个装置经由通信网络106通信。主数字装置102和从数字装置104可以都是数字装置。数字装置是具有处理器和存储器的任何装置。在一些实施例中主数字装置102和/或从数字装置104可以包括基站、移动单元、智能电话、个人计算机、媒体装置、智能电视、桌面计算机、笔记本计算机等。对于图11数字装置进一步描述。
主数字装置102包括主时钟。主时钟是可以用于从时钟同步的任何时钟、参考时钟或主时钟伺服。从数字装置105包括从时钟。从时钟是可以与主时钟同步的任何时钟、从时钟或从时钟伺服。
在各种实施例中主数字装置102和从数字装置104是IEEE1588感知的。在主数字装置102和从数字装置104之间中继或以其他方式提供消息的通信网络106的一个或多个部件可以是1EEE1588非感知的。在一些实施例中主数字装置102和/或从数字装置104不是IEEE1588感知的。
在一些实施例中,LTE、WiMax、4G、3G或其他无线网络的主数字装置102和从数字装置104或两个数字装置例如主数字装置102和从数字装置104可以包括在微波网络内实施的射频单元。在一些实施例中主数字装置102可以是移动站或用户站,并且从装置104可以是基站。在另一例子中主数字装置102可以是基站,并且从装置104可以是网络的另一基站或服务器(例如接入服务网络服务器或连通性服务网络服务器)。本领域技术人员认识到在此描述的系统和方法可以在包括以太网和WiFi网络的任何有线或无线网络上利用。
通信网络106可以是无线的、有线的或有线和无线的组合。通信网络106是经配置允许任何数目的数字装置和/或网络元件(例如路由器、交换机、网桥、服务器和/或集线器)之间通信的任何网络。通信网络106可以是互联网、LAN、WAN或任何其他网络。通信网络106可以是或包括微波网络。
主数字装置102可以执行分成三个阶段的示例性同步方法的全部或一些:平均PathDelay测量、速率校正和时间校正。该阶段可以按任何顺序执行。进一步地,该阶段不必需串行执行但该阶段的任何的全部或一些可以并行执行(例如同时或近同时)。
一个或多个偏移计算(例如所有偏移计算)可以依靠平均PathDelay(MPD)测量。一个或多个速率计算(例如所有速率计算)也可以依靠MPD测量。
一般地,最小MPD可以是相对恒定值。网络的重配置可以导致步骤改变,但这样的重配置可以是不频繁的。结果可能使用最小往返延迟的长期跟踪(即全Sync-Delay_Req计算)来检测最小MPD。在一些实施例中实施保持最后N个MPD测量的历史并在这些测量上寻找最小值:minMPD(n)=min(MPD[1:n])。
在各种实施例中主数字装置102通过测量随后同步循环并确定每个消息的开始的主测量和每个消息的到达的从测量之间的差,执行速率校正。从频率对主频率的比率可以用来校正频率差。
在一些实施例中如果所有速率测量平均化,则为了速率测量收敛到合理的估计以以校正频率差可能需要数百或数千秒。因为长平均化时间,所以由主数字装置102的频率控制可以不能适于在使用便宜振荡器时可以发生的短期频率改变。在各种实施例中,主数字装置102可以利用MPD测量来检测低潜伏期信息包。随后,主数字装置102可以利用低潜伏期信息包以便检测频率偏移速率。例如如果信息包符合短最小往返延迟的需求(即信息包从主数字装置102发送到从数字装置104,并且响应于该信息包,响应从从数字装置104向主数字装置102提供),速率可以通过比较源自先前“快速”信息包的时间来确定。通过使用低潜伏期测量,用于确定到主装置的频率偏移的收敛时间可以减少。
在量化“快速”信息包中,在质量和数量之间可以具有折衷。例如如果质量鉴定过于严格,则可以获得不足以跟踪频率改变的信息。在另一例子中,如果质量鉴定不充分严格,则速率计算可以包括过多变化。
在各种实施例中时间偏移确定利用同步消息确定对主装置的偏移。一些水平的平均化或过滤可以用来使校正平滑并为每个测量避免过度校正。在一些实施例中,如果校正确定为实际或近似的最小信息包行程延迟,则用于时间校正的机制可以仅使用延迟做出校正。利用实际或近似的最小信息包行程延迟可以帮助防止对时间值的无效校正。在一些实施例中具有亚微秒准确度的同步可以实现。
过程在此更详细描述。
尽管仅两个装置在图1中示出,但本领域技术人员认识到任何数目的数字装置可以同步到一个或多个数字装置。例如主数字装置102可以将任何数目从数字装置的时钟同步。进一步地,从数字装置可以与任何数目的主数字装置102同步。
在一些实施例中主数字装置102和从数字装置104是IEEE1588感知的,而通信网络106的一个或多个部件不是IEEE1588感知的。
图2是在一些实施例中的包括两个收发器单元的环境200,该两个收发器单元包括主射频单元202和从射频单元204。主射频单元202包括主时钟,并且从射频单元204包括从时钟。在一些实施例中主射频单元202和从射频单元204中的一个或两者是IEEE1588感知的。
主射频单元202和从射频单元204是分体安装(split-mount)无线电。分体安装无线电具有带有天线的室外安装电子设备的一部分和室内部分。室外单元(ODU)可以是RF发射器/接收器。室内单元(IDU)含有调制器/解调器、多路复用器、控制和业务接口元件。IDU和ODU可以使用电缆耦合。通过比较,全室内无线电具有安装在里面的全部无线电设备并使用波导或同轴馈电线连接到其天线。分体安装无线电可以是用于许可的6到38+GHz频段的点到点无线电设施,其中ODU直接安装到天线后部从而提供整体天馈。通过具有与天线一起安装的ODU,分体安装可以消除或减少馈电线损耗,最小化或减少机架占用,和/或与室内无线电比较降低安装成本。
例如主射频单元202可以包括与处理器和/或数字装置通信的室内单元(IDU)208、经由电缆218与IDU208通信的室外单元(ODU)210、与ODU210通信的波导212,以及天线216。IDU208可以包括调制器/解调器和控制电路,以便从线路214上的数字装置或处理器经ODU210和/或波导212向天线216提供数据。相似地,IDU208也可以经配置从天线216经ODU210接收信息,以便经线路214向数字装置或处理器提供。ODU210可以包括RF发射器/接收器并与天线216耦合。波导212可以是或可以不是ODU210的一部分。
收发器单元202的IDU208可以利用同轴电缆218耦合到ODU210。尽管仅一条同轴电缆218在图2中示出,但任何数目的同轴电缆可以在IDU208和ODU210之间提供信号。进一步地,本领域技术人员认识到任何数目和/或类型的电缆可以经配置在IDU208和ODU210之间接收并传输信号。
相似地,从射频单元204可以包括与处理器和/或数字装置通信的IDU220、经由电缆230与IDU220通信的ODU222、与ODU222通信的波导224,以及天线228。IDU220可以包括调制器/解调器和控制电路,以便从线路216上的数字装置或处理器经ODU222和/或波导224向天线228提供数据。相似地,IDU220也可以经配置从天线228经ODU222接收信息,以便经线路226向数字装置或处理器提供。ODU222可以包括RF发射器/接收器并与天线228耦合。波导224可以是或可以不是ODU222的一部分。
收发器单元204的IDU220可以利用同轴电缆230耦合到ODU222。尽管仅一条同轴电缆230在图2中示出,但任何数目的同轴电缆可以在IDU208和ODU210之间提供信号。进一步地,本领域技术人员认识到任何数目和/或类型的电缆可以经配置在IDU208和ODU210之间接收并传输信号。
本领域技术人员认识到收发器单元204可以用相似于收发器202的方式执行。在各种实施例中,两个收发器单元202和204可以经由通信塔206相互通信。本领域技术人员认识到收发器单元202和204个别或一起可以与任何数字装置或接收器通信。
无线通信塔206(例如蜂窝塔或其他微波无线电装置)可以是经配置接收和/或传输无线信息的任何装置。
尽管主射频单元202和从射频单元204在图2中示作分体安装装置,但一个或两个单元可以不是分体安装装置。进一步地,尽管仅单个无线通信塔206在图2中示出,但两个单元202和204可以经由包括任何数目的无线通信塔、路由器、服务器、网桥、集线器、其他数字装置等的任何数目的网络元件通信。
图3是在一些实施例中主射频单元202的框图。主射频单元202包括通信模块302、频率速率模块304、阈值模块306、速率校正模块308、信息包行程延迟模块310、时间校正模块312、测量模块314和主时钟模块316。模块可以是硬件、软件或硬件和软件的组合。
通信模块302在主射频单元202和从射频单元204之间提供通信(例如经由通信网络)。在一个例子中,通信模块302可以向从射频单元204提供同步信息包并接收源自从射频单元204的延迟请求信息包。在一些实施例中,当发动信息包以便由通信模块302发送时和/或当信息包由通信模块302接收时,在此描述的测量模块314记录、跟踪或以其他方式确定时间。
频率速率模块304基于由主射频单元202获得的信息包的时间测量确定频率速率。频率速率可以基于一个或多个信息包由通信模块302接收的时间和/或一个或多个信息包由通信模块302发送的时间。进一步地,频率速率模块304可以基于从从射频单元204获得的测量确定频率速率。例如从射频单元204可以确定源自主射频单元202的信息包接收的时间,并在发送回到主射频单元202的随后信息包(例如延迟请求信息包)内提供所确定时间。通信模块302可以从随后信息包获得该时间。从射频单元204也可以基于随后信息包发送的时间确定频率速率。
例如,频率速率模块304可以通过确定由从射频单元204从主射频单元202接收第一和接收第二信息包的时间之间的差(例如第一偏差),确定由主射频单元202传输第一和第二信息包的时间之间的差(例如第二偏差),并比较两个差(例如基于第一和第二偏差创建比率),来确定速率(例如前向速率)。该过程在此进一步描述。
在另一例子中,频率速率模块304可以通过确定从从射频单元204传输第一和传输第二信息包的时间之间的差(例如第一偏差),确定由主射频单元202接收第一和第二信息包的时间之间的差(例如第二偏差),并比较两个差(例如基于第一和第二偏差创建比率),来确定速率(例如逆向速率)。
频率速率模块304可以基于向数值装置发送和/或从数值装置接收的任何数目的信息包生成任何数目的频率速率。
阈值模块306可以计算、接收、存储和/或经配置存储速率阈值和信息包行程延迟阈值。速率阈值是可以基于最小速率的阈值,该最小速率由频率速率模块304基于和多个信息包关联的测量来确定。例如,频率速率模块可以确定与主射频单元202和从射频单元204之间信息包关联的大量速率。阈值模块306可以确定速率数目最小值。进一步地,阈值模块306可以生成代表相对于最小值的可接受范围的阈值。例如,阈值模块306可以基于数个范围确定分布(例如高斯分布),并将阈值设定在相对于最小速率的预定百分比(例如高斯分布的底部5%)。本领域技术人员认识到阈值模块306可以用任何数目的方式(例如统计地)确定阈值。在一些实施例中,速率阈值可以由另一数字装置配置和/或速率阈值可以在安装编程。
在另一例子中,信息包行程延迟模块310可以确定与主射频单元202和从射频单元204之间信息包关联的大量信息包行程延迟。阈值模块306或信息包行程延迟模块310可以确定信息包行程延迟数目的最小值。阈值模块306可以生成代表相对于最小值的可接受范围的阈值(例如德尔塔(或称为增量,即delta)平均信息包延迟或平均信息包延迟增量)。例如阈值模块306可以基于数个信息包行程延迟确定分布(例如高斯分布),并将阈值设定在相对于最小速率的预定百分比(例如高斯分布的底部5%)。本领域技术人员认识到阈值模块306可以用任何数目的方式(例如统计地)确定阈值。在一些实施例中,信息包行程延迟阈值可以由另一数字装置配置和/或速率阈值可以在安装编程。
速率校正模块308可以确定有待向从射频单元204提供的速率校正。在一些实施例中,速率校正模块308比较源自频率速率模块304的前向速率与逆向速率。前向速率和逆向速率与主射频单元202和从射频单元204之间相似或相同信息包关联。如果前向速率近似于逆向速率,则速率校正模块308可以生成速率校正。通信模块302可以向从射频单元提供速率校正。在一些实施例中,如果两个速率之间的差在由阈值模块306生成或获得的速率阈值内(例如低于速率阈值),则前向速率近似于逆向速率。从射频单元204可以将速率校正应用到从时钟频率。
信息包行程延迟模块310可以为主射频单元202和从射频单元204之间的一个或多个信息包确定信息包行程延迟。例如,通过确定主射频单元202发送信息包和接收响应之间的持续时间、确定从射频单元204从主射频单元202接收信息包并提供响应(调整速率校正)之间的持续时间、确定两个持续时间之间的差并将该差除以二,信息包行程延迟模块310可以确定信息包行程延迟。
在一些实施例中,信息包行程延迟模块310基于任何数目的信息包确定大量信息包行程延迟,并确定大量信息包行程延迟的最小值。在一些实施例中,信息包行程延迟模块310对大量信息包行程延迟、大量信息包行程延迟中的一个或多个、近似于最小信息包行程延迟的这些信息包行程延迟和/或最小信息包行程延迟求平均或执行其他统计评估。
时间校正模块312可以确定有待向从射频单元204提供的时间偏移。在一些实施例中,通过确定信息包由从射频单元204从主射频单元202接收的时间、信息包从主射频单元202向从射频单元204提供的时间之间的差和最小信息包行程延迟,时间校正模块312可以生成偏移。在一些实施例中,通过确定信息包由从射频单元204向主射频单元202传输的时间和信息包由主射频单元202从从射频单元204接收的时间之间的差,以及由最小信息包行程延迟调整该差(例如添加最小信息包行程延迟),时间校正模块312生成偏移。本领域技术人员认识到在一些实施例中时间校正模块312可以利用平均信息包行程延迟而不是最小信息包行程延迟。
在各种实施例中,时间校正模块312可以经通信模块302向从射频单元204提供偏移。从射频单元204可以将偏移应用到从时钟(例如从时钟伺服)。
测量模块314可以基于源自主时钟伺服模块316的时钟信号(例如主参考时钟),测量信息包由通信模块302接收并发送的时间。在一些实施例中,测量模块314可以从信息包检索测量,该信息包从从射频单元204接收。例如测量模块314可以从由从射频单元204提供的延迟请求或响应信息包获得时间测量。时间测量可以代表由主射频单元202提供的信息包(例如同步信息包)由从射频单元204接收的时间。进一步地,测量模块314可以获得从射频单元204提供源自从射频单元204的信息包(例如延迟请求或响应信息包)的时间的时间测量(例如通过为时间戳检查所接收信息包)。本领域技术人员认识到测量模块314可以用任何数目的方式测量时间和/或获得时间测量。
主时钟模块316可以包括任何类型时钟,该任何类型时钟包括参考时钟或时钟伺服。在一些实施例中主时钟模块316从任何类型时钟向主射频单元202提供时钟信号。
应注意图3是示例性的。可替换实施例可以包括更多、更少或功能等效的模块并仍在本实施例的保护范围内。例如主射频单元102的各种模块的功能可以组合到一个或两个模块。相似地,主射频单元102的各种模块的功能可以由任何数目的模块执行。
图4是在一些实施例中从射频单元204的框图。从射频单元204包括通信模块402、从测量模块404、同步模块406和从时钟模块408。
通信模块402在主射频单元202和从射频单元204之间提供通信(例如经由通信网络)。在一个例子中通信模块402可以向主射频单元202提供延迟请求信息包,并从主射频单元202接收同步信息包。在一些实施例中,当发动信息包以便由通信模块402发送时和/或当信息包由通信模块402接收时,在此描述的从测量模块404记录、跟踪或以其他方式确定时间。
从测量模块404可以基于源自从时钟伺服模块408的时钟信号(例如从时钟),测量信息包由通信模块402接收并发送的时间。在一些实施例中,从测量模块404可以从信息包检索测量,该信息包从主射频单元202接收。例如从测量模块404可以从由主射频单元202提供的同步信息包或任何信息包获得时间测量。时间测量可以代表由从射频单元204提供的信息包(例如延迟请求信息包)由主射频单元202接收的时间。进一步地,从测量模块404可以获得主射频单元202向从射频单元204提供信息包(例如同步信息包)的时间的时间测量(例如通过为时间戳检查所接收信息包)。本领域技术人员认识到从测量模块404可以用任何数目的方式测量时间和/或获得时间测量。
同步模块406可以校正从时钟频率和/或将偏移应用到与从时钟模块408关联的时钟。在一些实施例中通信模块402可以从主射频单元202接收速率校正。同步模块406可以将速率校正应用到从时钟频率。进一步地,通信模块402可以从主射频单元202接收偏移。同步模块406可以应用偏移从而将与从时钟模块408关联的时钟更优同步。
从时钟模块408可以包括任何类型时钟,该任何类型时钟包括从时钟或时钟伺服。在一些实施例中从时钟模块408从任何类型时钟向从射频单元204提供时钟信号。
应注意图4是示例性的。可替换实施例可以包括更多、更少或功能等效的模块并仍在本实施例的保护范围内。例如从射频单元204的各种模块的功能可以组合到一个或两个模块。相似地,从射频单元204的各种模块的功能可以由任何数目的模块执行。
图5是示出在一些实施例中主装置502和从装置504之间传输的信息包的图表500。信息包由主装置502和从装置504传输和/或接收的不同时间可以用来确定可接受从时钟频率校正,并为从装置的从时钟伺服确定可接受偏移。尽管图5示出主装置502和从装置504之间的四个信息包,但本领域技术人员认识到主装置502和从装置504之间可以具有任何数目的信息包。
T11是主装置502向从装置504发动发送第一同步信息包(例如同步信息包506)的时间。T21是第一同步信息包由从装置502接收的时间。
T31是从装置504发动向主装置502发送第一延迟请求信息包(例如延迟请求508)的时间。第一延迟请求信息包可以包括代表或包括T21的指示符或值,和/或代表或包括T31的指示符或值。T41是第一延迟请求信息包由主装置502接收的时间。
T12是主装置502发动向从装置504发送第二同步信息包(例如同步信息包510)的时间。T22是第二同步信息包由从装置504接收的时间。
T32是从装置504发动向主装置502发送第二延迟请求信息包(例如延迟请求512)的时间。第二延迟请求信息包可以包括代表或包括T22的指示符或值,和/或代表或包括T32的指示符或值。T42是第二延迟请求信息包由主装置502接收的时间。
图6是在一些实施例中用于为从时钟伺服计算偏移的示例性方法的流程图。在步骤602中主射频单元202(例如主装置如主装置502)的通信模块302和从射频单元204(例如从装置如从装置504)的通信模块402传输并接收多个信息包。多个信息包可以包括同步信息包(例如同步信息包506和510)、延迟请求信息包(例如延迟请求信息包508和512)或任何其他种类信息包。
本领域技术人员认识到尽管仅两个装置在图5中示出,但可以具有可以在主装置502和从装置504之间接收和/或中继信息包的任何数目的交换机、路由器、网桥、服务器或其他装置。在一些实施例中,不同信息包可以采取通过网络的不同路径以到达目的地。例如主装置502和从装置504之间第一信息包的路径可以采取通过网络的路径,并包括另外网络元件从而在与第二信息包的路径比较时中继第一信息包。相似地,可以具有在主射频单元202和从射频单元204之间采取任何数目路径的任何数目信息包。
在步骤604中,主射频单元202的测量模块314计算在主装置的多个信息包的对之间的偏差。相似地,从射频单元204的测量模块404计算在从装置的多个信息包的对之间的偏差。例如,测量模块314可以测量、跟踪和/或存储主装置发动发送信息包的时间(例如图5的时间T11和T12),以及主装置接收信息包的时间(例如时间T41和T42)。从射频单元204的测量模块404可以测量、跟踪和/或存储从装置接收信息包的时间(例如时间T21和T22),以及发动发送信息包的时间(例如图5的时间T31和T32)。在各种实施例中,从装置的通信模块402向主装置提供时间测量(例如在延迟请求信息包或任何信息包中)。
在步骤606中,主射频单元202的频率速率模块304基于在从射频单元204的多个信息包的对之间的偏差和在主射频单元202的多个信息包的对之间的偏差,计算比率(例如从频率速率和逆向从频率速率或称为从频率比率和逆向从频率比率)。
在各种实施例中从频率速率R如下计算:
Rms = ( T 22 - T 21 ) ( T 12 - T 11 )
T21、T22、T11和T12是如关于图5参考的时间。T21是信息包(例如同步信息包506)由从射频单元204接收的时间。T22是不同信息包(例如同步信息包510)由从射频单元204接收的时间。T12是主射频单元202发动向从射频单元204发送信息包(例如同步信息包510)的时间。T22是主射频单元202发动向从射频单元204发送不同信息包(例如同步信息包506)的时间。
并且在逆向路径R中以相似方式计算:
Rsm = ( T 32 - T 31 ) ( T 42 - T 41 )
T31、T32、T41和T42也是如关于图5参考的时间。T31是从射频单元204发动向主射频单元202发送信息包(例如延迟请求信息包508)的时间。T32是从射频单元204发动向主射频单元202发送不同信息包(例如延迟请求信息包512)的时间。T41是主射频单元202接收源自从射频单元204的信息包(例如延迟请求信息包508)的时间。T22是主射频单元202接收源自从射频单元204的不同信息包(例如延迟请求信息包512)的时间。
本领域技术人员认识到用来确定R或逆向路径的测量时间可以基于串行发送并接收的信息包,或基于非串行的信息包(例如,其他信息包可以在主射频单元202和从射频单元204之间发送)测量。例如其他信息包可以在同步信息包506和同步信息包510之间从主射频单元202向从射频单元204发送。
在一些实施例中对于从频率速率Rms和逆向从频率速率Rsm,随后sync或delay_req消息的任何组合如Sync_n对Sync_n-1或Sync_n对Sync_1可以使用。本领域技术人员认识到快速频率偏差和/或慢速频率偏差可以跟踪。
在步骤608中,频率速率模块304比较从频率速率Rms和逆向从频率速率Rsm。在步骤610中,如果从频率速率近似于逆向从频率速率,那么从频率速率(例如从时钟频率校正Rms或Rsm)可以向从射频单元204提供,从而校正从射频单元204的速率。
在各种实施例中,确定从频率速率和逆向从频率速率之间的差并与预定阈值(即源自阈值模块306)比较。如果差低于阈值或与阈值相关,则从频率速率可以向从射频单元204提供。阈值可以在主射频单元202或从射频单元204的安装或制造时设定。在一些实施例中阈值可以确定,并且主射频单元202经配置利用阈值。例如有网络或网络元件经验的人或机构可以配置阈值。在一些实施例中主射频单元202可以在许多信息包上跟踪多个从频率速率和/或逆向从频率速率的计算。主射频单元202可以设定许多从频率速率和逆向从频率速率之间的最小差的百分比(例如5%),从而确定阈值。本领域技术人员认识到具有许多方式确定、计算和/或统计地生成阈值。阈值可以在阈值模块306内存储和/或由其检索。
本领域技术人员认识到包时延偏差(PDV)可以逐信息包改变,因此仅当Rms和Rsm充分接近(例如从频率速率近似于逆向从频率速率)时,然后统计地,源自随后sync或delay_req消息的有经验PDV可以是可接受地微小。因此,Rms和/或Rsm可以用于进一步处理。在各种实施例中任何和/或全部Rms和Rsm可以用于进一步处理。
在各种实施例中确定多个从频率速率和/或逆向从频率速率,并且多个从速率校正(例如从时钟频率校正如从频率速率)向从射频单元204(例如周期性地)提供。
在一些实施例中,在极少速率校正后,在步骤612中信息包行程延迟模块310可以基于主射频单元202和从射频单元204之间的信息包,计算信息包行程延迟。信息包行程延迟(例如往返延迟)RTD如下:
RTD = ( T 4 - T 1 ) - ( T 3 - T 2 ) × R 2 .
其中T4是由主射频单元202接收源自从射频单元204的响应的时间,T1是主射频单元202发动向从射频单元204发送信息包的时间。T3是从射频单元204发动向主射频单元202发送响应的时间。T2是从射频单元204从主射频单元202接收信息包的时间。R可以是从频率速率(例如从频率速率校正、从频率速率或逆向从频率速率)。
本领域技术人员认识到,从主射频单元202向从射频单元204传输的信息包和/或从射频单元204向主射频单元202传输的响应可以包括先前发送的信息包(例如其时间先前用来确定从频率速率或逆向从频率速率的信息包),或可以是任何其他信息包。
在步骤614中,信息包行程延迟模块310可以计算多个信息包行程延迟,并可以确定最小信息包行程延迟。在N是所计算信息包行程延迟的数目的情况下,平均信息包行程延迟可以如下确定:
mean:RTD=min(RTD[1..N])
在N个测量后,在步骤616中,时间校正模块可以利用平均信息包行程延迟,从而计算主射频单元202的主时钟伺服和从射频单元204的从时钟伺服之间的偏移。在一个例子中,用于从偏移计算的第一平均信息包行程延迟可以由IEEE1588标准如下定义:
offset=T2-T1-meanRTD
或在逆向路径中
offset=T3-T4+meanRTD
对于随后信息包行程延迟测量,在第N个测量后,信息包行程延迟模块310和/或时间校正模块312可以定义deltaMPD参数,该deltaMPD参数是在当前最小meanRTD或阈值周围的“允许的”meanRTD偏差,以便进一步meanRTD选择。
在各种实施例中,在M>>N个测量后,信息包行程延迟模块310和/或时间校正模块312可以清除meanRTD测量并重复最小meanRTD确定。在一个例子中,重确定平均信息包行程延迟和/或delta MPD参数允许网络拓扑改变和/或网络状况更新(例如导致网络上的活动或显著业务量改变的日期改变)。
参数deltaMPD、N和M可以由经验(例如通过由专业人员配置)确定,或由处理器基于数据收集和历史自动确定。在一些实施例中deltaMPD可以取决于业务状况和链中交换机数目。这也可以用于M和N。M也可以在路径重配置时用源自网络的触发来替换。
图7是在一些实施例中用于为从装置伺服应用偏移的示例性方法。在步骤702中,从射频单元204(例如从装置如从装置504)的通信模块402和主射频单元202(例如主装置如主装置502)的通信模块302传输并接收多个信息包。多个信息包可以包括同步信息包(例如同步信息包506和510)、延迟请求信息包(例如延迟请求信息包508和512)或任何其他种类信息包。
在步骤704中,从射频单元204的从测量模块404可以测量信息包从主射频单元202接收的时间。从测量模块404也可以测量信息包准备向主射频单元202发送的时间。在步骤706中,通信模块302可以在信息包(例如延迟请求信息包508)内提供源自从测量模块304的一个或多个时间测量,并向主射频单元202提供该信息包。
在一些实施例中,从测量模块404可以计算多个信息包的对之间的偏差。例如,从测量模块404可以测量、跟踪和/或存储从装置发动发送信息包的时间(例如图5的时间T21和T32),以及从装置接收信息包的时间(例如时间T21和T22)。在各种实施例中,从装置的通信模块402向主射频单元202提供时间测量的全部或一些(例如在延迟请求信息包或任何信息包中)。
在步骤708中同步模块406从主射频单元202接收从时钟频率校正。在步骤710中同步模块406可以将从时钟频率校正应用到从时钟(例如在从时钟模块408或与其关联)。在一些实施例中同步模块406确认源自主射频单元的信息包的真实性、确认完整性和/或验证从时钟频率校正。
在步骤712中,从射频单元204继续接收信息包(例如经通信模块402)、测量信息包接收的时间、测量发送信息包的时间(例如经从测量模块404),并向主射频单元202提供时间。
在步骤714中,同步模块406从主射频单元202接收偏移。在步骤716中,同步模块406可以将偏移应用到从时钟(例如在从时钟模块408或与其关联)。在一些实施例中同步模块406确认源自主射频单元的信息包的真实性、确认完整性和/或验证偏移。
图8是在一些实施例中主时钟802和从时钟804之间通信的图示800。在一些实施例中,同步和延迟请求消息都用来做出时间校正。同步信息或同步信息包可以从具有主时钟伺服102的主数字装置向具有从时钟伺服104的从数字装置提供。延迟请求消息或延迟请求信息包可以由具有从时钟伺服104的从数字装置向具有主时钟伺服102的主数字装置提供。
对于同步消息,如果MSdelay小于minMPD,那么测量可以表示可以具有至少MSdelay-minMPD的时间偏移。在此情况下,时间校正可以基于偏移测量做出。如果MSdelay大于minMPD,那么可以具有关于误差是否由时间偏移引起或由包时延偏差(PDV)引起的不足信息。相似对于Delay_Req消息,如果SMdelay小于minMPD,那么测量可以表示具有至少minMPD-SMdelay的时间偏移。这可以导致所检测的正偏移而不是负偏移,如用MSdelay测量所见。在一些实施例中,时间校正可以通过在一段时期调整PTP时钟速率来实施。
为防止大速率波动,每个连接可以在量值上受限。由于限制连接,因此过程可以帮助减少由时间偏移的迅速校正导致的时间间隔误差。误差可以通过保持TimeError值来管理。如果确定由所接收的同步消息或所接收的延迟响应消息导致的新误差,表示更大的偏移,则TimeError可以采纳新值,否则TimeError可以保持不变。基于TimeError,受限校正可以做出并从TimeError减去。因此偏移的测量可以在其完全校正之前采取多次校正。该机制较小可能做出无效校正。
图9是可以用来模拟在此描述的一些实施例的示例性环境900。系统包括主装置902和从装置904。主装置902和从装置904可以通过交换机906-910中的一个或多个相互通信。数字示波器912可以耦合到主装置902和从装置904。PC914可以从数字示波器912接收输出。主装置902可以与GPS916耦合。业务发生器918和920可以模拟用于测试的业务。环境900可以用来生成测试数据例如在图13-27中示出的测试数据。
在一些实施例中,用于示例性测试的初始状况包括:
-GPS锁定
-IEEE1588主机锁定到GPS基准
-在主机和从机之间仅一台交换机
-PC业务发生器关闭
测试可以用无强制业务(即业务发生器918和920停用),并用主装置902和从装置904之间仅一台以太网交换机(例如交换机906)开始。在一个例子中示波器912可以表示源自主和从pps输出的1pps信号,并测量从1pps信号和主1pps信号之间的相位差。在与示波器912耦合的PC914上,所获取数据可以经分析产生从偏移图表和从偏移分布图表。测量可以用运行的第二和第三以太网交换机(例如交换机908和910)重复。
主装置902和从装置904都可以使用能够为IEEE1588事件消息产生时间戳的以太网PHY(例如国家半导体的DP83640)。在一些测试情境中,主装置902和从装置904运行IEE1588v2标准协议信息包交换。从装置904可以采用另外的时钟伺服。主装置902可以是任何数字装置。进一步地,从装置904可以是任何数字装置。
图10示出在一些实施例中的主射频单元202。主射频单元202可以经配置执行关于图6讨论的步骤的全部或一些。例如混频器1002可以从数字装置接收有待向从射频单元204提供的信息包(例如同步信息包、含速率校正的信息包、偏移或任何信息包)。主射频单元202可以包括混频器模块1002和1016,滤波器模块1004、1018和1022,振荡器模块1006和1020,调相器1010,自动增益控制(AGC)模块1012,放大/衰减模块1014和1024,波导滤波器1026和波导1028。传输射频单元102可以进一步包括可以控制调相器1010和/或AGC模块1012的信号质量模块。
在各种实施例中,主射频单元202是ODU210的一部分。混频器模块1002、滤波器模块1004和振荡器模块1006可以代表经配置将从增益模块接收的信号升频到中频信号的升频器。相似地,混频器模块1016、滤波器模块1018和振荡器模块1020可以代表经配置将信号进一步升频到RF信号的升频器。本领域技术人员认识到可以具有经配置在传输射频单元1002内将信号升频的任何数目的升频器。
混频器模块1002和1016可以包括经配置将由调制解调器提供的信号与一个或多个其他信号混频的混频器。混频器模块1002和1016可以包括具有许多不同电气性质的许多不同类型混频器。在一个例子中,混频器1002将从增益模块(未示出)接收的信号与源自滤波器模块1004和振荡器模块1006的滤波振荡信号混频。在另一例子中,混频器1016将从放大器/衰减器模块1014接收的信号与源自滤波器模块1018和振荡器模块1020的滤波振荡信号混频。
本领域技术人员认识到混频器1002和1016的每个可以与一个或多个其他混频器模块相同。例如混频器1002和1016可以都是共享相同电气性质的混频器,或可替换地,混频器1002和1016可以是另一种混频器和/或是具有不同电气性质的混频器。每个混频器模块1002和1016可以包括一个或多个部件。例如混频器模块1002可以包括一个或多个混频器。
滤波器模块1004、1008、1018和1022可以包括经配置将信号滤波的滤波器。滤波器模块1004、1008、1018和1022可以包括具有许多不同电气性质的许多不同类型滤波器(例如带通滤波器、低通滤波器、高通滤波器等)。在一个例子中,滤波器模块1004可以是经配置将从振荡模块1006提供的振荡信号(或信号分量)滤波的带通滤波器。相似地,滤波器模块1004、1008、1018和1022可以分别将源自振荡器模块1006、振荡器模块1020、混频器模块1002或混频器模块1016的信号(或信号分量)滤波。
本领域技术人员认识到滤波器模块1004、1008、1018和1022的每个可以与一个或多个其他滤波器模块相同。例如滤波器模块1004和1008可以都是共享相同电气性质的滤波器,而滤波器模块1018可以是另一种滤波器。在另一例子中滤波器模块1004和1008可以都是相似类型滤波器但具有不同电气性质。
每个滤波器模块1004、1008、1018和1022可以包括一个或多个部件。例如滤波器模块1004可以包括一个或多个滤波器。
振荡器模块1006和1020可以包括经配置提供振荡信号的振荡器,该振荡信号可以用来将信号升频。振荡器模块1006和1020可以包括具有任何不同电气性质的任何种类振荡器。在一个例子中振荡器模块1006向滤波器模块1004提供振荡信号。振荡器模块1020可以向滤波器模块1018提供振荡信号。
振荡器模块1006和1020个别或一起可以是本地的或远程的。在一个例子中振荡模块1006和/或振荡模块1020可以远程定位,并经配置向一个或多个传输射频单元提供振荡信号。在一些实施例中单个振荡模块可以向混频器模块1002和1016(例如任选地经滤波器)分别提供振荡信号。在一个例子中,源自振荡器模块的振荡器信号可以更改(例如增大或减小的振荡)并向电路的不同部分提供。
本领域技术人员认识到振荡器模块1006和1020的每个可以相互相同。例如振荡器模块1006和1020可以都是共享相同电气性质的振荡器,或可替换地,振荡器模块1006和1020可以是另一种振荡器和/或是具有不同电气性质的振荡器。每个振荡器模块1006和1020可以包括一个或多个部件。例如振荡器模块1006可以包括一个或多个振荡器。
在各种实施例中,主射频单元202包括信号质量模块。信号质量模块可以经配置生成相位控制信号从而控制所处理信号的相位。在一个例子中信号质量模块从放大器/衰减器模块1024接收升频RF信号,并将放大或衰减信号与滤波振荡器信号或源自第二升频器的升频信号混频。信号质量模块可以将信号滤波并比较滤波、混频信号与预定相位值,从而基于该比较生成相位控制信号。
调相器1010包括经配置增大或减小有待传输信号的相位的可变相位控制电路。调相器1010可以包括具有不同电气性质的任何不同类型调相器或移相器。在一个例子中调相器1010增大或减小从滤波器模块1008接收的信号的相位。调相器1010可以基于源自信号质量模块的相位控制信号调整信号的相位。
调相器1010可以包括一个或多个部件。例如调相器1010可以包括一个或多个相位控制元件。
AGC模块1012可以包括自动增益控制(AGC)电路,该电路经配置增大或减小从调相器1010接收的信号的增益。AGC模块1012可以包括具有许多不同电气性质的许多不同类型AGC。在一个例子中AGC模块1012增大或减小从调相器1010接收的信号的增益。AGC模块1012可以基于增益控制信号调整信号的增益。
AGC模块1012可以包括一个或多个部件。例如AGC模块1012可以包括一个或多个AGC。
在各种实施例中,为调整信号相位或信号振幅,信号质量控制模块可以提供控制信号从而调整源自滤波器模块1008的滤波信号以实现所希望的调整。例如为调整信号的相位或振幅,信号质量模块可以基于预定相位值和/或预定振幅值,比较有待向波导滤波器1026和/或波导1028提供的信号的相位和振幅。基于该比较,信号质量模块可以生成相位和增益控制信号从而实现所希望的调整。
在一些实施例中,预定相位值和振幅值可以与由一个或多个其他传输射频单元输出的无线信号的相位和振幅相同或基本相似。在一个例子中,一个或多个传输射频单元的相位和振幅可以同步。
放大/衰减模块1014和1024可以包括经配置放大和/或衰减信号的放大器和/或衰减器。放大/衰减器模块1014和1024可以是任何种类放大器和/或衰减器。进一步地,放大/衰减器模块1014和1024可以每个都包括具有任何种类电气性质的放大器和/或衰减器。
在一些实施例中,放大器/衰减器模块1014从AGC模块1012接收信号。放大器/衰减器模块1014可以放大或衰减信号。进一步地,放大器/衰减器模块1024可以在信号由混频器模块1016、滤波器模块1018和振荡器模块1020升频之后衰减信号(或信号分量)。然后放大器/衰减器模块1024可以向信号质量模块和/或波导滤波器1026提供信号。
本领域技术人员认识到放大器/衰减器模块1014和1024的每个可以与一个或多个其他放大器/衰减器模块相同。例如,放大器/衰减器模块1012和1024可以都是共享相同电气性质的放大器。在另一例子中,放大器/衰减器模块1012和1024可以都是放大器但具有不同电气性质。
主射频单元202可以包括波导滤波器1026和波导1028。波导滤波器1026可以是耦合到波导1028,并经配置将电磁波滤波(例如移除噪声)的任何滤波器。波导1028可以经双工器向天线提供信号。双工器可以向天线提供信号。波导1028可以是任何波导种类或波导类型。例如波导1028可以是空芯的或电介质的。在一些实施例中波导1028包括矩形到圆形波导。
图11示出根据一些实施例的示例性数字装置1100。数字装置1100包括通信地耦合到总线1114的处理器1102、存储器系统1104、存储系统1106、通信网络接口1108、I/O接口1100和显示接口1112。处理器1102可以经配置执行可执行指令(例如程序)。在一些实施例中处理器1102包括能够处理可执行指令的电路或任何处理器。
存储器系统1104是经配置存储数据的任何存储器。存储器系统1104的一些例子是存储装置例如RAM或ROM。存储器系统1104可以包括RAM缓存。在各种实施例中数据存储在存储器系统1104内。存储器系统1104内的数据可以清除或最终传递到存储系统1106。
存储系统1106是经配置检索并存储数据的任何存储。存储系统1106的一些例子是闪存驱动器、硬盘驱动器、光盘驱动器和/或磁带。在一些实施例中,数字装置1100包括RAM形式的存储器系统1104和闪存数据形式的存储系统1106。存储器系统1104和存储系统1106都包括可以存储可由包括处理器1102的计算机处理器执行的指令或程序的计算机可读介质。
通信网络接口(com.网络接口)1108可以经链路1116耦合到数据网络(例如数据网络1104或1114)。通信网络接口1108可以支持经由例如以太网连接、串行连接、并行连接或ATA连接的通信。通信网络接口1108也可以支持无线通信(例如802.11a/b/g/n、WiMax)。通信网络接口1108可以支持许多有线和无线标准对本领域技术人员是显而易见的。
任选输入/输出(I/O)接口1110是从用户接收输入并输出数据的任何装置。任选显示接口1112是可以经配置向显示器输出图形和数据的任何装置。在一个例子中显示接口1112是图形适配器。
本领域技术人员认识到数字装置1100的硬件元件不限于在图11中示出的硬件元件。数字装置1100可以包括比示出更多或更少的硬件元件。进一步地,硬件元件可以共享功能性并仍在这里描述的各种实施例内。在一个例子中编码和/或解码可以由处理器1102和/或定位在GPU上的协处理器执行。
图12是包括测试数据的表格,该测试数据用于涉及利用在此描述的一些实施例输出图13-31的测试的模拟。图12包括交换机数目、模拟的业务量、模拟的业务类型、标准差、最小偏移、最大偏移、平均偏移、最大delta MPD、同步和时间。
图13-31包括输出数据和图表,该输出数据和图表涉及利用在此描述的一些实施例分离模拟的输出。
上述功能和部件可以由在存储介质例如计算机可读介质上存储的指令构成。指令可以由处理器检索并执行。指令的一些例子是软件、程序代码和固件。存储介质的一些例子是存储器装置、磁带、磁盘、集成电路和服务器。指令在由处理器执行时是操作的从而引导处理器根据一些实施例操作。本领域技术人员熟悉指令、处理器和存储介质。

Claims (27)

1.一种将主时钟和从时钟同步的方法,所述方法包括:
在具有所述主时钟的主装置和具有所述从时钟的从装置之间传输多个信息包;
计算在所述从装置接收的所述多个信息包的第一对之间的时间的第一偏差和在所述主装置的所述第一对之间的第二偏差;
计算所述第一偏差和所述第二偏差之间的比率;
向所述从装置提供所述从时钟的从时钟频率校正,从而允许所述从装置校正从时钟频率;
通过使用所述主装置发动向所述从装置发送所述多个信息包中的信息包的时间、所述主装置接收源自所述从装置的响应的时间、所述从装置接收所述信息包的校正的时间和所述从装置发动发送所述响应的校正的时间,计算第一信息包行程延迟;
基于所述第一信息包行程延迟计算所述主时钟和所述从时钟之间的第一偏移;以及
向所述从装置提供所述第一偏移。
2.根据权利要求1所述的方法,进一步包括计算在所述从装置的所述多个信息包的随后一对之间的其他偏差和在所述主装置的所述第一对之间的随后偏差,并计算所述其他偏差和所述随后偏差之间的比率的重复步骤。
3.根据权利要求1所述的方法,进一步包括计算在所述从装置的多个信息包的第二对之间的第三偏差和在所述主装置的所述第二对之间的第四偏差,并计算所述第三偏差和所述第四偏差之间的比率。
4.根据权利要求3所述的方法,其中向所述从装置提供所述从时钟的所述从时钟频率校正包括如果所述第一偏差和所述第二偏差之间的所述比率近似于所述第三偏差和所述第四偏差之间的所述比率,则向所述从装置提供所述从时钟的所述从时钟频率校正。
5.根据权利要求4所述的方法,其中当所述比率之间的差小于预定阈值时,所述第一偏差和所述第二偏差之间的所述比率近似于所述第三偏差和所述第四偏差之间的所述比率。
6.根据权利要求1所述的方法,进一步包括利用所述多个信息包的子组重复计算随后信息包行程延迟。
7.根据权利要求6所述的方法,进一步包括确定所述第一和至少一些随后信息包行程延迟的最小值。
8.根据权利要求7所述的方法,进一步包括获得相对于所述第一和随后信息包行程延迟的所述最小值的阈值、将一个或多个随后信息包行程延迟与相对于所述第一和随后信息包行程延迟的所述最小值的所述阈值比较、基于所述比较计算第二偏移,并基于所述第一信息包行程延迟提供所述主时钟和所述从时钟之间的所述第二偏移。
9.根据权利要求1所述的方法,其中计算在所述从装置的所述多个信息包的所述第一对之间的所述第一偏差和在所述主装置的所述第一对之间的所述第二偏差,并计算所述第一偏差和所述第二偏差之间的所述比率包括Rms=(T22-T21)/(T12-T11),其中Rms是从频率速率,T22是所述从装置从所述主装置接收所述第一对的第二信息包的时间,T21是所述从装置从所述主装置接收所述第一对的第一信息包的时间,T12是所述主装置传输所述第二对的所述第二信息包的时间,以及T11是所述主装置传输所述第二对的所述第一信息包的时间。
10.根据权利要求1所述的方法,其中计算在所述从装置的所述多个信息包的第二对之间的所述第三偏差和在所述主装置的所述第二对之间的所述第四偏差,并计算所述第三偏差和所述第四偏差之间的比率包括Rsm=(T32-T31)/(T42-T41),其中Rsm是逆向从频率速率,T32是所述从装置传输源自所述主装置的所述第三对的第二信息包的时间,T31是所述从装置传输源自所述主装置的所述第三对的第一信息包的时间,T42是所述主装置接收所述第二对的所述第二信息包的时间,以及T41是所述主装置接收所述第二对的所述第一信息包的时间。
11.根据权利要求1所述的方法,其中通过使用所述主装置发动向所述从装置发送所述多个信息包中的信息包的所述时间、所述主装置接收源自所述从装置的所述响应的所述时间、所述从装置接收所述信息包的校正的时间和所述从装置发动发送所述响应的所述校正的时间,计算第一信息包行程延迟包括其中T4是所述主装置接收源自所述从装置的所述响应的所述时间,T1是所述主装置发动向所述从装置发送所述信息包的所述时间,T3是所述从装置发动发送所述响应的所述时间,T2是所述从装置接收所述信息包的所述时间,以及R是所述第一偏差和所述第二偏差之间的所述比率。
12.根据权利要求1所述的方法,其中基于所述第一信息包行程延迟计算所述主时钟和所述从时钟之间的所述第一偏移即offset包括offset=T2-T1-RTD,其中T2是所述从装置接收所述信息包的所述时间,T1是所述主装置发动向所述从装置发送所述信息包的所述时间,以及RTD是所述第一信息包行程延迟。
14.根据权利要求1所述的方法,其中基于所述第一信息包行程延迟计算所述主时钟和所述从时钟之间的所述第一偏移即offset包括offset=T3-T4+meanRTD,其中T3是所述从装置发动发送所述响应的所述时间,T4是所述主装置接收源自所述从装置的所述响应的所述时间,以及RTD是所述第一信息包行程延迟。
15.一种用于将主时钟和从时钟同步的系统,所述系统包括:
通信模块,所述通信模块经配置在具有所述主时钟的主装置和具有所述从时钟的从装置之间传输多个信息包;
频率速率模块,所述频率速率模块经配置计算在所述从装置接收的所述多个信息包的第一对之间的基于时间的第一偏差,并计算在所述主装置的所述第一对之间的第二偏差,并计算所述第一偏差和所述第二偏差之间的比率;
速率校正模块,所述速率校正模块经配置向所述从装置提供所述从时钟的从时钟频率校正,从而允许所述从装置校正从时钟频率;
信息包行程延迟模块,所述信息包行程延迟模块经配置通过使用所述主装置发动向所述从装置发送所述多个信息包中的信息包的时间、所述主装置接收源自所述从装置的响应的时间、所述从装置接收所述信息包的校正的时间和所述从装置发动发送所述响应的校正的时间,计算第一信息包行程延迟;以及
时间校正模块,所述时间校正模块经配置基于所述第一信息包行程延迟计算所述主时钟和所述从时钟之间的第一偏移,并向所述从装置提供所述第一偏移。
16.根据权利要求15所述的系统,其中所述频率速率模块经进一步配置重复计算在所述从装置的所述多个信息包的随后一对之间的基于时间关联的其他偏差和在所述主装置的所述第一对之间的随后偏差,并计算所述其他偏差和所述随后偏差之间的比率。
17.根据权利要求15所述的系统,其中所述频率速率模块经进一步配置计算在所述从装置的所述多个信息包的第二对之间的基于时间的第三偏差和在所述主装置的所述第二对之间的第四偏差,计算所述第三偏差和所述第四偏差之间的比率。
18.根据权利要求17所述的系统,其中所述速率校正模块经配置向所述从装置提供所述从时钟的所述从时钟频率校正,包括如果所述第一偏差和所述第二偏差之间的所述比率近似于所述第三偏差和所述第四偏差之间的所述比率,则所述速率校正模块经配置向所述从装置提供所述从时钟的所述从时钟频率校正。
19.根据权利要求18所述的系统,其中当所述比率之间的差小于预定阈值时,所述第一偏差和所述第二偏差之间的所述比率近似于所述第三偏差和所述第四偏差之间的所述比率。
20.根据权利要求15所述的系统,其中所述信息包行程延迟模块经进一步配置利用所述多个信息包的子组重复计算随后信息包行程延迟。
21.根据权利要求20所述的系统,其中所述信息包行程延迟模块经进一步配置确定所述第一和至少一些随后信息包行程延迟的最小值。
22.根据权利要求21所述的系统,其中所述信息包行程延迟模块经进一步配置获得相对于所述第一和随后信息包行程延迟的所述最小值的阈值、将一个或多个随后信息包行程延迟与相对于所述第一和随后信息包行程延迟的所述最小值的所述阈值比较、基于所述比较计算第二偏移,并基于所述第一信息包行程延迟提供所述主时钟和所述从时钟之间的所述第二偏移。
23.根据权利要求15所述的系统,其中所述频率速率模块经配置计算在所述从装置的所述多个信息包的所述第一对之间的所述第一偏差和在所述主装置的所述第一对之间的所述第二偏差,并计算所述第一偏差和所述第二偏差之间的所述比率包括Rms=(T22-T21)/(T12-T11),其中Rms是所述从频率速率,T22是所述从装置从所述主装置接收所述第一对的第二信息包的时间,T21是所述从装置从所述主装置接收所述第一对的第一信息包的时间,T12是所述主装置传输所述第二对的所述第二信息包的时间,以及T11是所述主装置传输所述第二对的所述第一信息包的时间。
24.根据权利要求15所述的系统,其中所述频率速率模块经配置计算在所述从装置的所述多个信息包的第二对之间的所述第三偏差和在所述主装置的所述第二对之间的所述第四偏差,并计算所述第三偏差和所述第四偏差之间的所述比率包括Rsm=(T32-T31)/(T42-T41),其中Rsm是逆向从频率速率,T32是所述从装置传输源自所述主装置的所述第三对的第二信息包的时间,T31是所述从装置传输源自所述主装置的所述第三对的第一信息包的时间,T42是所述主装置接收所述第二对的所述第二信息包的时间,以及T41是所述主装置接收所述第二对的所述第一信息包的时间。
25.根据权利要求15所述的系统,其中所述信息包行程延迟模块经配置通过使用所述主装置发动向所述从装置发送所述多个信息包中的所述信息包的所述时间、所述主装置接收源自所述从装置的所述响应的所述时间、所述从装置接收所述信息包的校正的时间和所述从装置发动发送所述响应的所述校正的时间,计算所述第一信息包行程延迟包括其中T4是所述主装置接收源自所述从装置的所述响应的所述时间,T1是所述主装置发动向所述从装置发送所述信息包的所述时间,T3是所述从装置发动发送所述响应的所述时间,T2是所述从装置接收所述信息包的所述时间,以及R是所述第一偏差和所述第二偏差之间的所述比率。
26.根据权利要求15所述的系统,其中所述时间校正模块经配置基于所述第一信息包行程延迟计算所述主时钟和所述从时钟之间的所述第一偏移即offset包括offset=T2-T1-RTD,其中T2是所述从装置接收所述信息包的所述时间,T1是所述主装置发动向所述从装置发送所述信息包的所述时间,以及RTD是所述第一信息包行程延迟。
27.根据权利要求15所述的系统,其中所述时间校正模块经配置基于所述第一信息包行程延迟计算所述主时钟和所述从时钟之间的所述第一偏移即offset包括offset=T3-T4+meanRTD,其中T3是所述从装置发动发送所述响应的所述时间,T4是所述主装置接收源自所述从装置的所述响应的所述时间,以及RTD是所述第一信息包行程延迟。
28.一种包括可执行指令的计算机可读介质,所述指令可由处理器执行从而执行将主时钟和从时钟同步的方法,所述方法包括:
在具有所述主时钟的主装置和具有所述从时钟的从装置之间传输多个信息包;
计算在所述从装置的所述多个信息包的第一对之间的第一偏差和在所述主装置的所述第一对之间的第二偏差;
计算所述第一偏差和所述第二偏差之间的比率;
向所述从装置提供所述从时钟的从时钟频率校正,从而允许所述从装置校正从时钟频率;
通过使用所述主装置发动向所述从装置发送所述多个信息包中的信息包的时间、所述主装置接收源自所述从装置的响应的时间、所述从装置接收所述信息包的校正的时间和所述从装置发动发送所述响应的校正的时间,计算第一信息包行程延迟;
基于所述第一信息包行程延迟计算所述主时钟和所述从时钟之间第一偏移;以及
向所述从装置提供所述第一偏移。
CN201280045548.7A 2011-07-20 2012-07-20 网络同步的系统和方法 Pending CN103814338A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161509971P 2011-07-20 2011-07-20
US61/509,971 2011-07-20
PCT/US2012/047756 WO2013066437A2 (en) 2011-07-20 2012-07-20 Systems and methods of network synchronization

Publications (1)

Publication Number Publication Date
CN103814338A true CN103814338A (zh) 2014-05-21

Family

ID=47912604

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280045548.7A Pending CN103814338A (zh) 2011-07-20 2012-07-20 网络同步的系统和方法

Country Status (6)

Country Link
US (4) US9335785B2 (zh)
EP (1) EP2734904B1 (zh)
CN (1) CN103814338A (zh)
MY (1) MY168816A (zh)
SI (1) SI2734904T1 (zh)
WO (1) WO2013066437A2 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104270218A (zh) * 2014-10-17 2015-01-07 中怡(苏州)科技有限公司 频率校正方法
WO2016177240A1 (zh) * 2015-07-01 2016-11-10 中兴通讯股份有限公司 一种实现频率同步的方法和装置
CN108023723A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 频率同步的方法以及从时钟
CN109769124A (zh) * 2018-12-13 2019-05-17 广州华多网络科技有限公司 混流方法、装置、电子设备及存储介质
CN111579973A (zh) * 2019-02-19 2020-08-25 深圳市汇顶科技股份有限公司 芯片同步测试方法、芯片、电子设备及存储介质
CN113225805A (zh) * 2021-05-18 2021-08-06 中移(上海)信息通信科技有限公司 定位基站同步偏离的确定方法及装置

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9178846B1 (en) 2011-11-04 2015-11-03 Juniper Networks, Inc. Deterministic network address and port translation
JP5459628B2 (ja) * 2012-01-12 2014-04-02 横河電機株式会社 時刻同期システム
EP2832066A4 (en) * 2012-03-30 2015-08-12 Ericsson Telefon Ab L M METHOD AND SYSTEM FOR ROBUST PRECISION TIME PROTOCOL SYNCHRONIZATION
US8954609B1 (en) * 2012-04-25 2015-02-10 Juniper Networks, Inc. Time adjustment using time-to-live values
US9686169B2 (en) * 2012-07-02 2017-06-20 Ixia Real-time highly accurate network latency measurement with low generated traffic or data requirements
US8873589B2 (en) * 2012-09-04 2014-10-28 Khalifa University Of Science, Technology And Research Methods and devices for clock synchronization
CN103248471B (zh) * 2013-05-22 2016-06-08 哈尔滨工业大学 基于ptp协议与反射内存网的时钟同步方法
CN103580846B (zh) * 2013-08-23 2017-03-01 北京东土科技股份有限公司 一种跨非1588网络传输精密时钟报文的方法及系统
JP6179344B2 (ja) * 2013-10-24 2017-08-16 富士通株式会社 情報処理方法、プログラム、情報処理装置、及びコンピュータシステム
US10142088B2 (en) * 2014-01-31 2018-11-27 University Of North Dakota Network clock skew estimation and calibration
KR102222337B1 (ko) * 2014-08-05 2021-03-04 삼성전자주식회사 전자 기기의 어플리케이션 동기화 방법 및 장치
US9671822B2 (en) * 2014-12-11 2017-06-06 Khalifa University Of Science, Technology And Research Method and devices for time transfer using end-to-end transparent clocks
US9665121B2 (en) * 2014-12-11 2017-05-30 Khalifa University Of Science, Technology And Research Method and devices for time transfer using peer-to-peer transparent clocks
WO2016133442A1 (en) * 2015-02-20 2016-08-25 Telefonaktiebolaget Lm Ericsson (Publ) Methods and nodes for synchronisation of networks
RO131470A2 (ro) 2015-04-10 2016-10-28 Ixia, A California Corporation Metode, sisteme şi suport citibil pe calculator pentru măsurarea întârzierii unei linii de comunicaţii unidirecţionale
US9736804B2 (en) 2015-04-16 2017-08-15 Ixia Methods, systems, and computer readable media for synchronizing timing among network interface cards (NICS) in a network equipment test device
US10019333B2 (en) 2015-04-16 2018-07-10 Keysight Technologies Singapore (Holdings) Pte. Ltd. Methods, systems, and computer readable media for emulating network devices with different clocks
RO131471A2 (ro) 2015-04-21 2016-10-28 Ixia, A California Corporation Metode, sisteme şi suport citibil pe calculator pentru testarea calităţii tactului recuperat
US9602271B2 (en) * 2015-06-01 2017-03-21 Globalfoundries Inc. Sub-nanosecond distributed clock synchronization using alignment marker in ethernet IEEE 1588 protocol
US10129207B1 (en) 2015-07-20 2018-11-13 Juniper Networks, Inc. Network address translation within network device having multiple service units
US9813226B2 (en) 2015-08-05 2017-11-07 Ixia Modeling a clock
US9800595B2 (en) 2015-09-21 2017-10-24 Ixia Methods, systems, and computer readable media for detecting physical link intrusions
CN105450320B (zh) * 2015-11-06 2017-10-20 国网福建省电力有限公司 一种智能变电站全程us级精度无线以太网络同步装置及方法
TWI618432B (zh) * 2016-02-01 2018-03-11 財團法人資訊工業策進會 頻率校正裝置及方法
US9935661B2 (en) * 2016-02-16 2018-04-03 Thomson Licensing Apparatus and method for controlling a filter in a signal communication device
US11044260B2 (en) * 2016-04-01 2021-06-22 The Regents Of The University Of Michigan Fingerprinting electronic control units for vehicle intrusion detection
US10405287B1 (en) * 2016-07-27 2019-09-03 Robotic Research, Llc Covert timing synchronization
US10469446B1 (en) 2016-09-27 2019-11-05 Juniper Networks, Inc. Subscriber-aware network address translation
US10602471B2 (en) * 2017-02-08 2020-03-24 Htc Corporation Communication system and synchronization method
JPWO2018150474A1 (ja) * 2017-02-14 2019-12-12 Quadrac株式会社 装置及びシステム
US10609054B2 (en) 2017-04-07 2020-03-31 Keysight Technologies Singapore (Sales) Pte. Ltd. Methods, systems, and computer readable media for monitoring, adjusting, and utilizing latency associated with accessing distributed computing resources
US10425321B2 (en) 2017-04-25 2019-09-24 Keysight Technologies Singapore (Sales) Pte. Ltd. Methods, systems, and computer readable media for testing time sensitive network (TSN) elements
SG11202000761VA (en) 2017-07-26 2020-02-27 Aviat Networks Inc Airframe timestamping technique for point-to-point radio links
SG11202000760SA (en) 2017-07-26 2020-02-27 Aviat Networks Inc Distributed radio transparent clock over a wireless network
CN108390752B (zh) * 2018-01-25 2020-12-22 固高科技(深圳)有限公司 信号接收方法
US10939401B2 (en) * 2018-07-09 2021-03-02 Qualcomm Incorporated Round trip time estimation based on a timing advance applied to a timing response
US11018789B2 (en) * 2018-07-16 2021-05-25 Khalifa University of Science and Technology End-to-end transparent clocks and methods of estimating skew in end-to-end transparent clocks
CN109450582A (zh) * 2018-11-01 2019-03-08 百度在线网络技术(北京)有限公司 传感器时间戳同步测试方法、装置、设备、介质及车辆
US10965392B2 (en) 2019-01-25 2021-03-30 Keysight Technologies, Inc. Active network tap supporting time sensitive network (TSN) standards
US11563768B2 (en) 2019-01-31 2023-01-24 Keysight Technologies, Inc. Methods, systems, and computer readable media for detecting and mitigating effects of timing attacks in time sensitive networks
WO2020201950A1 (en) * 2019-04-01 2020-10-08 Zomojo Pty Ltd A method and apparatus for network time syncing
US11876790B2 (en) * 2020-01-21 2024-01-16 The Boeing Company Authenticating computing devices based on a dynamic port punching sequence
WO2021164882A1 (en) * 2020-02-21 2021-08-26 Bayerische Motoren Werke Aktiengesellschaft Method and system for performing time-synchronization
EP4123955A4 (en) * 2020-04-13 2023-09-06 Huawei Technologies Co., Ltd. METHOD FOR DETERMINING A CLOCK AND ASSOCIATED DEVICE
US11038550B1 (en) * 2020-05-29 2021-06-15 Landis+Gyr Innovations, Inc. Multi-radio synchronization within a single connected system
CN111628914B (zh) * 2020-06-19 2021-06-29 西安微电子技术研究所 一种周期通信网络的链路延时测量方法、系统及fpga
CN112040539B (zh) * 2020-09-03 2021-09-14 广州视源电子科技股份有限公司 时钟同步方法、装置及存储介质
US11695490B2 (en) * 2020-09-25 2023-07-04 Marvell Asia Pte Ltd Robust link synchronization in ethernet networks
CN114258126A (zh) * 2020-09-25 2022-03-29 上海华为技术有限公司 数据处理方法及其装置
US11431359B2 (en) 2020-11-30 2022-08-30 Silicon Laboratories Inc. DC offset compensation in zero-intermediate frequency mode of a receiver
US11743852B2 (en) 2020-11-30 2023-08-29 Silicon Laboratories Inc. Phase measurements for high accuracy distance measurements
US11737038B2 (en) 2020-11-30 2023-08-22 Silicon Laboratories Inc. Correction of frequency offset between initiator and reflector
US11438200B2 (en) * 2020-11-30 2022-09-06 Silicon Laboratories Inc. Frequency offset compensation at reflector during frequency compensation interval
US11638116B2 (en) 2020-12-01 2023-04-25 Silicon Laboratories Inc. Adjusting DFT coefficients to compensate for frequency offset during a sounding sequence used for fractional time determination
US11502883B2 (en) 2020-12-01 2022-11-15 Silicon Laboratories Inc. Adjusting receiver frequency to compensate for frequency offset during a sounding sequence used for fractional time determination
US11868175B2 (en) * 2020-12-03 2024-01-09 Syng, Inc. Heterogeneous computing systems and methods for clock synchronization
US11632733B2 (en) 2021-09-13 2023-04-18 Silicon Laboratories Inc. System, apparatus and method for acquisition of signals in wireless systems with adverse oscillator variations
EP4160948A1 (en) * 2021-09-30 2023-04-05 Siemens Aktiengesellschaft Determining a skew between a master clock and a local clock
CN114390666B (zh) * 2022-01-28 2023-08-15 高新兴物联科技股份有限公司 一种通信模组时间同步方法、设备及计算机可读存储介质
CN114338361B (zh) * 2022-03-15 2022-06-07 浙江中控技术股份有限公司 通讯装置的通讯方法、通讯装置及分布式控制系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1396711A (zh) * 2002-07-31 2003-02-12 上海芯华微电子有限公司 具有很少系数的音频采样频率变换及时钟再同步装置
US20080080567A1 (en) * 2006-09-29 2008-04-03 Codrut Radu Radulescu Methods and Apparatus for Unidirectional Timing Message Transport Over Packet Networks
WO2009056638A1 (en) * 2007-11-02 2009-05-07 Nortel Networks Limited Synchronization of network nodes

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5530846A (en) * 1993-12-29 1996-06-25 International Business Machines Corporation System for decoupling clock amortization from clock synchronization
US6373834B1 (en) * 1997-12-19 2002-04-16 Telefonaktiebolaget Lm Ericsson Synchronization for cellular telecommunications network
US6212225B1 (en) * 1998-05-14 2001-04-03 Bradcom Corporation Startup protocol for high throughput communications systems
US7023816B2 (en) * 2000-12-13 2006-04-04 Safenet, Inc. Method and system for time synchronization
US20020078243A1 (en) * 2000-12-15 2002-06-20 International Business Machines Corporation Method and apparatus for time synchronization in a network data processing system
US6907002B2 (en) * 2000-12-29 2005-06-14 Nortel Networks Limited Burst switching in a high capacity network
US6839860B2 (en) * 2001-04-19 2005-01-04 Mircon Technology, Inc. Capture clock generator using master and slave delay locked loops
US7080274B2 (en) * 2001-08-23 2006-07-18 Xerox Corporation System architecture and method for synchronization of real-time clocks in a document processing system
US7251199B2 (en) * 2001-12-24 2007-07-31 Agilent Technologies, Inc. Distributed system time synchronization including a timing signal path
US7139748B1 (en) * 2002-05-02 2006-11-21 Palmsource, Inc. N-way synchronization of computer databases
AU2003254276A1 (en) * 2002-07-31 2004-02-16 Tellabs Operations, Inc. Methods and apparatus for improved communications networks
EP1782559A1 (en) 2003-01-14 2007-05-09 Honeywell International Inc. Method and apparatus for the synchronization of a system time of a communications network with a clock reference
EP1639759B1 (en) 2003-06-23 2012-06-06 Computer Associates Think, Inc. Time skew correction in data time stamping
US7483448B2 (en) * 2004-03-10 2009-01-27 Alcatel-Lucent Usa Inc. Method and system for the clock synchronization of network terminals
US7730157B2 (en) * 2005-02-03 2010-06-01 The Trustees Of Columbia University In The City Of New York Methods, media, and systems for displaying information on a thin-client in communication with a network
US20060288165A1 (en) * 2005-06-17 2006-12-21 Microsoft Corporation Serialization of media transfer communications
US7664118B2 (en) * 2005-06-28 2010-02-16 Axerra Networks, Inc. System and method for high precision clock recovery over packet networks
US7617408B2 (en) 2006-02-13 2009-11-10 Schweitzer Engineering Labortories, Inc. System and method for providing accurate time generation in a computing device of a power system
KR100736680B1 (ko) * 2006-08-10 2007-07-06 주식회사 유니테스트 반도체 소자 테스트 장치의 캘리브레이션 방법
WO2008026976A1 (en) 2006-08-28 2008-03-06 Telefonaktiebolaget Lm Ericsson (Publ) Clock skew compensation
KR100876776B1 (ko) * 2007-04-17 2009-01-09 삼성전자주식회사 통신 시스템에서 gps 정보를 이용한 시간 동기화 방법및 장치
US8473638B2 (en) 2008-05-02 2013-06-25 James Aweya Method and apparatus for time and frequency transfer in communication networks
CN101359238B (zh) * 2008-09-02 2012-01-18 中兴通讯股份有限公司 一种多核系统的时间同步方法及系统
US7773606B2 (en) * 2008-09-22 2010-08-10 Telefonaktiebolaget L M Ericsson (Publ) Timing distribution within a network element while supporting multiple timing domains
US8108557B2 (en) 2009-01-22 2012-01-31 Hewlett-Packard Development Company, L.P. System and method for measuring clock skew on a network
US20110035511A1 (en) * 2009-08-07 2011-02-10 Cisco Technology, Inc. Remote Hardware Timestamp-Based Clock Synchronization
CN102035639B (zh) * 2009-09-30 2014-09-17 华为技术有限公司 时间同步方法、装置和系统
EP2312775B1 (en) * 2009-10-15 2013-01-30 Alcatel Lucent Physical time-stamping
US8385212B2 (en) * 2009-12-07 2013-02-26 Symmetricom, Inc. Method and apparatus for finding latency floor in packet networks
US8819472B1 (en) * 2010-02-12 2014-08-26 Linear Technology Corporation Method and system for clock edge synchronization of multiple clock distribution integrated circuits by configuring master device to produce at least one gated clock output signal
US8949648B2 (en) * 2011-04-13 2015-02-03 Semtech Corp. System and method to overcome wander accumulation to achieve precision clock distribution over large networks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1396711A (zh) * 2002-07-31 2003-02-12 上海芯华微电子有限公司 具有很少系数的音频采样频率变换及时钟再同步装置
US20080080567A1 (en) * 2006-09-29 2008-04-03 Codrut Radu Radulescu Methods and Apparatus for Unidirectional Timing Message Transport Over Packet Networks
WO2009056638A1 (en) * 2007-11-02 2009-05-07 Nortel Networks Limited Synchronization of network nodes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHONGNING NA等: "Optimal Estimation and Control of Clock Synchronization Following the Precision Time Protocol", 《2010 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104270218A (zh) * 2014-10-17 2015-01-07 中怡(苏州)科技有限公司 频率校正方法
WO2016177240A1 (zh) * 2015-07-01 2016-11-10 中兴通讯股份有限公司 一种实现频率同步的方法和装置
CN108023723A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 频率同步的方法以及从时钟
WO2018082665A1 (zh) * 2016-11-04 2018-05-11 华为技术有限公司 频率同步的方法以及从时钟
US11038608B2 (en) 2016-11-04 2021-06-15 Huawei Technologies Co., Ltd. Frequency synchronization method and slave clock
CN109769124A (zh) * 2018-12-13 2019-05-17 广州华多网络科技有限公司 混流方法、装置、电子设备及存储介质
CN111579973A (zh) * 2019-02-19 2020-08-25 深圳市汇顶科技股份有限公司 芯片同步测试方法、芯片、电子设备及存储介质
CN111579973B (zh) * 2019-02-19 2022-03-08 深圳市汇顶科技股份有限公司 芯片同步测试方法、芯片、电子设备及存储介质
CN113225805A (zh) * 2021-05-18 2021-08-06 中移(上海)信息通信科技有限公司 定位基站同步偏离的确定方法及装置

Also Published As

Publication number Publication date
US20130080817A1 (en) 2013-03-28
WO2013066437A3 (en) 2013-07-04
US20160241381A1 (en) 2016-08-18
EP2734904A2 (en) 2014-05-28
US10608807B2 (en) 2020-03-31
US10594470B2 (en) 2020-03-17
US20180198598A1 (en) 2018-07-12
SI2734904T1 (en) 2018-05-31
MY168816A (en) 2018-12-04
US20180198599A1 (en) 2018-07-12
US9335785B2 (en) 2016-05-10
EP2734904B1 (en) 2018-03-07
EP2734904A4 (en) 2015-05-06
WO2013066437A2 (en) 2013-05-10
US9912465B2 (en) 2018-03-06

Similar Documents

Publication Publication Date Title
CN103814338A (zh) 网络同步的系统和方法
US7865331B2 (en) Estimating a time offset between stationary clocks
RU2536178C2 (ru) Способ и система для точной тактовой синхронизации посредством взаимодействия между уровнями и подуровнями связи для систем связи
CN103563287B (zh) 同步设备和同步方法
KR20090065403A (ko) 무선 센서망에서의 이동 노드의 위치 추정 방법
US9301267B2 (en) Radio over Ethernet
JP2010528495A (ja) 移動端末において時間変化を決定する方法
KR20050086799A (ko) 타이밍 정보 획득 장치, 시스템 및 방법
CN111385051B (zh) 时钟同步方法、装置和存储介质
US20220038252A1 (en) Methods, Apparatus and Computer-Readable Media for Synchronization Over an Optical Network
WO2016177090A1 (zh) 时钟同步方法及装置
CN108738127B (zh) 射频拉远单元、基带处理单元、分布式基站及其同步方法
AU757626B2 (en) Frame phase synchronous system and a method thereof
CN103582109A (zh) 一种时间同步方法及装置
JP5291429B2 (ja) 移動端末、測位方法
CN207884639U (zh) 一种网络节点、时间噪声传递特性测量装置和同步通信网络
CN101505214A (zh) 时间同步的方法、装置和系统
CN104780602A (zh) 无线通信网络中的时钟自同步方法
CN102710359A (zh) 一种基于ieee1588的精确时钟频率同步方法及装置
US20170117980A1 (en) Time synchronization for network device
CN110098885B (zh) 一种时钟同步电路、装置及其方法
US7167717B1 (en) System and method for wired network synchronization for real time location tracking
JP2014132263A (ja) 無線通信システム
CN112040540A (zh) 一种基于三级无线传感网的时间同步架构及时间同步方法
KR20080051307A (ko) 다중 안테나를 이용한 무선 채널 측정 시스템에서의 타이밍 동기 신호 획득 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140521