CN103803714B - 一种石油降解菌协同降解采油废水的方法 - Google Patents

一种石油降解菌协同降解采油废水的方法 Download PDF

Info

Publication number
CN103803714B
CN103803714B CN201410069428.1A CN201410069428A CN103803714B CN 103803714 B CN103803714 B CN 103803714B CN 201410069428 A CN201410069428 A CN 201410069428A CN 103803714 B CN103803714 B CN 103803714B
Authority
CN
China
Prior art keywords
oil
parts
waste water
degradation
extraction waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410069428.1A
Other languages
English (en)
Other versions
CN103803714A (zh
Inventor
冯俊生
杨怀成
常杰云
刘兆跃
秦学成
陈皓
程汉东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201410069428.1A priority Critical patent/CN103803714B/zh
Publication of CN103803714A publication Critical patent/CN103803714A/zh
Application granted granted Critical
Publication of CN103803714B publication Critical patent/CN103803714B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

一种石油降解菌协同降解采油废水的方法,步骤如下:(1)将纯化的单一的铜绿假单胞菌、枯草杆菌、门多萨假单胞菌和鲍氏不动杆菌菌株接种到牛肉膏蛋白胨培养基中,培养18h,得到种子菌液;(2)制备种子菌液的驯化培养液;(3)将制备的驯化培养液按单株菌液等体积比加入发酵培养基中,培养;(4)将发酵菌液投入曝气池中进行采油废水的处理。复合高效除油菌株可对采油废水中的烃类化合物降解率在94%以上;选用的菌种不仅各自高效的原油降解率,菌种之间还能起到协同作用,几种细菌共同对原油进行降解效率远大于单独作用简单叠加的效果。

Description

一种石油降解菌协同降解采油废水的方法
技术领域
本发明涉及污水处理技术领域,尤其是涉及一种除油菌协同降解采油废水的方法。
背景技术
在油田开发初期,通常情况下钻出油井后,原始地层能量如天然水驱、弹性能量驱、溶解气驱及重力驱等可将地层原油通过油流通道举升至地面,这种以自喷开采石油的方式,称为一次采油。一次采油采出液的含水率很低,约5~10%左右。一次采油造成原始地层能量迅速递减,靠原始地层能量开采原油的方式难以维持,这时需要向地底油层注水或注气以补充能量,来实施二次采油。全国大部分油井都采用注水开发的方式进行二次采油。而开发稠油油田则需要将高压水蒸汽从油井注入地层,待注入的高压水蒸气将稠油减粘后,水蒸气的冷凝水为油层提供能量,油水混合的采出液被一起从油井采出。随着油田开发时期的延长,注水或注气的二次采油方式使采出原油含水率不断上升。华东地区各油田的采出液含水率已经超过了85%。近些年来,我国大部分油田相继进入了采用聚合物驱和三元复合驱的三次采油阶段,该技术大面积应用于大庆油田和胜利油田。与一般油田采油废水相比,三次采油废水具有以下特点:三次采油废水中除了含有大量石油类有机物、悬浮固体颗粒、溶解性矿物质和微生物等常规污染物之外,还含有大量的碱、表面活性剂和高分子水解聚丙烯酰胺(HPAM)等驱油剂,因此三次采油废水COD高、黏度大、乳化程度高、有机污染物稳定性增强、可生物降解性降低。
随着油藏开采时期的延长和采油工艺技术的不断创新,淮安金南油田已进入三次采油阶段,出现了注水量大、采出液量大、采油废水量大、能量资源消耗高的“三大一高”现象。采油废水高达90%以上。废水粘度大,乳化油稳定,另含有溶解性矿物质、酚类化合物、细菌、悬浮固体杂质以及所投加的破乳剂、清蜡剂和降粘剂等采油助剂,具有有机成分复杂且难去除,悬浮物较多且粒径小的特点。采油废水处理后回注,不仅可以减少采油废水外排带来的严重的环境污染,极大地提高水资源的利用率,而且可以保护金南油田地下油层能量,维持油层压力并提高采油效率。但是回注水水质不合格,特别是回注水中的含油量、固体悬浮物及硫酸盐还原菌(SRB菌)超标,将会堵塞地层渗流孔道,腐蚀生产设施,严重危害注水开采油田。油田回注水处理技术的关键是去除采油废水中的油、细菌和悬浮物。以往处理含油废水主要采用的物理处理和化学方法均存在不足之处,物理法除油效果差且耗时长,化学法消耗大量混凝剂且产生二次污染。微生物法处理含油废水能够避免二次污染,净化效果好,且处理费用低廉,因而被越来越广泛的运用。能够筛选出高效降解石油菌对于油田废水的治理具有重大的意义并会带来巨大的社会效益,但是现有微生物法处理含油废水效率较低,废水处理时间较长。
发明内容
本发明要解决的技术问题是:为了克服现有技术中微生物法处理含油废水效率较低、处理时间较长的不足,提供一种除油菌协同降解采油废水的方法。
本发明解决其技术问题所采用的技术方案是:
一种石油降解菌协同降解采油废水的方法,包括如下步骤:
(1)将纯化的单一的铜绿假单胞菌、枯草杆菌、门多萨假单胞菌和鲍氏不 动杆菌菌株接种到牛肉膏蛋白胨培养基中,pH7.5、35℃、200r/min摇床培养18h,得到种子菌液;
(2)制备种子菌液的驯化培养液;
(3)将步骤(2)制备的驯化培养液按单株菌液等体积比加入发酵培养基中,在pH7.5、35℃、250r/min条件下,培养24~48h,使发酵菌液细胞浓度≥109CFU/mL;
(4)将发酵菌液投入曝气池中进行采油废水的处理。
进一步地,步骤(2)所述的驯化培养液制备方法如下:
取种子菌液加入含有原油样品的培养基,pH7.5、33℃、150r/min摇床培养2d,培养基中原油样品体积含量为1.5%,接种至新鲜的含有原油样品的培养基中;重复上述步骤4次,每一次转接的培养基内原有样品体积含量都以5‰的速度递增,8天后得到驯化培养液。
作为优选,所述的培养基为组成及重量份数为:KH2PO40.85份、K2HPO41.55份、MgSO4.H2O 0.5份、CaCl20.1份、NH4Cl 1.5份、MnSO4.H2O 0.5份、FeSO4.H2O0.005份、(NH4)2SO40.1份、H3BO30.01份、去离子水1000份;
所述的原油样品为120#溶剂油与渣油以质量比为1:3的混合物。 
作为优选,步骤(2)所述的驯化培养液制备方法如下:
取原油采出液,向其中加入对应无碳基础盐培养基和种子菌液,原油采出液与无碳基础盐培养基体积比为1:5,pH7.5、33℃、150r/min摇床培养2d;取步骤上述培养得到的培养液接种至相同的新鲜原油采出液和培养基内,于相同条件下培养2d,如此连续富集培养四次,8d后得到驯化培养液。
进一步地,所述的无碳基础盐培养基组份及重量份数为:KH2PO448.28份、K2HPO450.10份、MgSO4.7H2O 13.41份、CaCl21.20份、KNO375.75 份、FeSO4.7H2O 15.15份、Na2EDTA 3.72份、MnSO4.H2O 1.69份、H3BO31.22份和去离子水1000份。
作为优选,步骤(3)中所述的驯化菌液体积为发酵培养基体积的2.5%;所述的发酵培养基组分及重量份数为:水解植物蛋白粉WA—3 10份、牛肉膏5份、NaCl 5份、去离子水1000份。
作为优选,步骤(4)中所述的发酵菌液体积是采油废水体积的2‰。
进一步地,步骤(4)中所述的曝气池中按每天进水量补充尿素22g/m3和钙镁磷肥64g/m3,曝气池通气量为0.004m3/s,DO约3.5~4.5mg/L。
本发明的有益效果是,(1)复合高效除油菌株可对采油废水中的烃类化合物降解率在94%以上;
(2)降解采油废水的最适温度为33~37℃、pH为7.5~8.0、盐度为1.3%~1.50%、溶解氧为3.5~4.5mg/L,且所述复合菌株在外环境温度≧-7℃的低温及盐度≦40%、pH≦9.0的高盐碱条件下仍具有良好的降解能力。
(3)本发明所选用的菌种不仅各自高效的原油降解率,菌种之间还能起到协同作用,几种细菌共同对原油进行降解效率远大于单独作用简单叠加的效果,而且极容易适应所述油田现场的生化池降解环境,并具有持续循环性。
具体实施方式
下面结合具体实施例,进一步对本发明进行阐述,应理解,引用实施例仅用于说明本发明,而不用于限制本发明的范围。
从金南油田采集污染土样及原油采出液,将污染土样及原油采出液中原油降解菌经驯化、分离和纯化即得到本发明所使用的铜绿假单胞菌、枯草杆菌、门多萨假单胞菌和鲍氏不动杆菌。具体步骤如下:
1、取10g油污土壤样品,接入装有250ml培养基(含有原油样品为63μL)的500mL三角瓶中,pH7.5、33℃、150r/min摇床培养2d,取富集液5mL接种至相同新鲜培养基内,此时原油样品增至70μL,于相同条件下培养2d,如此连续富集培养四次,且每一次转接原油样品都以7μL的递增速度增加,8d后得到驯化培养液;
或者取所述原油采出液250ml装入500ml三角瓶中,加入对应无碳基础盐,pH7.5、33℃、150r/min摇床培养2d,取富集液5ml接种至相同新鲜培养基内,于相同条件下培养2d,如此连续富集培养四次,8d后得到驯化培养液。
2、在无菌条件下,分别取1ml上述得到的驯化培养液,用无菌水按倍数稀释,取10-4、10-5、10-6三个梯度备用,吸取0.5mL菌悬液注入牛肉膏蛋白胨平板培养基内,用涂布棒均匀涂匀,每个梯度均做4只平行样,待培养基表面液体被吸收后倒置放于恒温培养箱内33℃条件下培养1~2d。
3、对所述平板每隔12小时观察一次,并对平板内菌落生长数量和形态特征情况做好记录。找出不同形态菌落,用接种环挑取单个菌落划线接种至新鲜固体牛肉膏蛋白胨平板培养基内,避免带入原来的基质,不同的菌株每株重复4个平行样,继续放于恒温培养箱内33℃培养,如此连续划线分离3次,得到单一典型菌落数株。
4、经生理生化实验、16SrDNA的序列分析以及NCBI信息数据库中的Blast比对分析鉴定出铜绿假单胞菌、枯草杆菌、门多萨假单胞菌和鲍氏不动杆菌即为本发明所采用几种除油菌。
实施例1
(1)将纯化的单一的铜绿假单胞菌、枯草杆菌、门多萨假单胞菌和鲍氏不动杆菌菌株接种到牛肉膏蛋白胨培养基中,pH7.5、35℃、200r/min摇床培养18h, 得到种子菌液;
(2)制备富集菌液的驯化培养液,方法如下:
取种子菌液加入含有原油样品的培养基,pH7.5、33℃、150r/min摇床培养2d,培养基中原油样品体积含量为1.5%,接种至新鲜的含有原油样品的培养基中;重复上述步骤4次,每一次转接的培养基内原油样品体积含量都以5‰的速度递增,8天后得到驯化培养液。
其中所述的培养基为组成及重量份数为:KH2PO40.85份、K2HPO41.55份、MgSO4.H2O 0.5份、CaCl20.1份、NH4Cl 1.5份、MnSO4.H2O 0.5份、FeSO4.H2O0.005份、(NH4)2SO40.1份、H3BO30.01份、去离子水1000份;所述的原油样品为120#溶剂油与渣油以质量比为1:3的混合物。
(3)将步骤(2)制备的驯化培养液加入发酵培养基中,其中驯化培养液体积为发酵培养基体积的2.5%,在pH7.5、35℃、250r/min条件下,培养24~48h,使发酵菌液细胞浓度≥109CFU/mL;所述的发酵培养基组分及重量份数为:水解植物蛋白粉WA—3 10份、牛肉膏5份、NaCl 5份、去离子水1000份;
(4)将发酵菌液投入曝气池中进行采油废水的处理,发酵菌液体积是采油废水体积的2‰,曝气池中按每天进水量补充尿素22g/m3和钙镁磷肥64g/m3,曝气池通气量为0.004m3/s,DO约3.5mg/L。
本实施例中加入曝气池中的采油废水含油量约90.1mg/L,控制曝气池内温度为33~37℃、pH为7.5~8.0、盐度为1.3%~1.50%,定期检测,结果如下:降解24h后检测浓度为11.62mg/L,降解率达到87.1%,降解48h后检测浓度为4.86mg/L,降解率达到94.6%,出水指标达到SY/T5329-94中A1级标准,满足低渗透油田注入水水质要求。
实施例2
(1)将纯化的单一的铜绿假单胞菌、枯草杆菌、门多萨假单胞菌和鲍氏不动杆菌菌株接种到牛肉膏蛋白胨培养基中,pH7.5、35℃、200r/min摇床培养18h,得到种子菌液;
(2)制备富集菌液的驯化培养液,方法如下:
取原油采出液,向其中加入对应无碳基础盐培养基和种子菌液,原油采出液与无碳基础盐培养基体积比为1:5,pH7.5、33℃、150r/min摇床培养2d;取上述培养得到的培养液接种至相同的新鲜原油采出液和培养基内,于相同条件下培养2d,如此连续富集培养四次,8d后得到驯化培养液。
所述的无机基础盐培养基组份及重量份数为:KH2PO448.28份、K2HPO450.10份、MgSO4.7H2O 13.41份、CaCl21.20份、KNO375.75份、FeSO4.7H2O15.15份、Na2EDTA 3.72份、MnSO4.H2O 1.69份、H3BO31.22份和去离子水1000份。
(3)将步骤(2)制备的驯化培养液加入发酵培养基中,其中驯化培养液体积为发酵培养基体积的2.5%,在pH7.5、35℃、250r/min条件下,培养24~48h,使发酵菌液细胞浓度≥109CFU/mL;所述的发酵培养基组分及重量份数为:水解植物蛋白粉WA—3 10份、牛肉膏5份、NaCl 5份、去离子水1000份;
(4)将发酵菌液投入曝气池中进行采油废水的处理,发酵菌液体积是采油废水体积的2‰,曝气池中按每天进水量补充尿素22g/m3和钙镁磷肥64g/m3,曝气池通气量为0.004m3/s,DO约4.5mg/L。
本实施例中加入曝气池中的采油废水含油量为91.450mg/L,控制曝气池内温度为33~37℃、pH为7.5~8.0、盐度为1.3%~1.50%,定期检测,结果如下:降解24h后检测浓度为9.209mg/L,降解率达到89.93%,降解48h后检测浓度为4.48mg/L,降解率达到95.1%,出水指标达到SY/T5329-94中A1级标准,满 足低渗透油田注入水水质要求。
当外环境温度≧-7℃的低温:12月至来年一月份,淮安金湖的室外温度为0度左右,集装箱内的生化池没有加热保温措施,生化池的进水温度为20℃左右,生化池内水温在微生物的生命活动作用下约28℃,降解48h,生化池内原油降解率及COD降解率均高达85%以上。
盐度≦40%、pH≦9.0的高盐碱条件:在实验室探究该复合菌群降解采油废水的最优无机盐配比的初期,发现在N源≧5000mg/L,P源≧4000mg/L,pH约9.0左右时,降解48h,原油降解率仍可保持在75%左右,此时测水中盐度≦40%,且水中有铵盐等的结晶。
对比实施例1
按照实施例2的方法,分别对铜绿假单胞菌、枯草杆菌、门多萨假单胞菌和鲍氏不动杆菌进行驯化,最后将驯化后的四种菌先后加入同一采油废水中,加入另一种菌前使前一种菌失活(加热等),每种菌均分都为24h或48h。经检测:每种菌都作用24h时,最终含油量由91.450mg/L将低到41.188mg/L,降解率只有55.12%;每种菌都作用48h时,最终含油量由91.450mg/L将低到28.81mg/L,降解率只有68.5%。
对比实施例2
按照实施例2的方法,所使用的细菌为枯草杆菌、门多萨假单胞菌和鲍氏不动杆菌,其他条件不变。经检测:降解24h时,最终含油量由91.450mg/L将低到36.01mg/L,降解率只有60.62%;降解48h时,最终含油量由91.450mg/L将低到22.04mg/L,降解率只有75.9%。
由以上结果可以看出,本发明采用四种菌同时对采油废水进行处理效果远大于四种菌单独对采油废水进行处理的效果,而且若去掉其中任何一种细菌其 降解效果都远不如本发明,说明四种菌在降解采油废水时存在协同作用。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (8)

1.一种石油降解菌协同降解采油废水的方法,其特征在于:包括如下步骤:
(1)将纯化的单一的铜绿假单胞菌、枯草杆菌、门多萨假单胞菌和鲍氏不动杆菌菌株接种到牛肉膏蛋白胨培养基中,pH7.5、35℃、200r/min摇床培养18h,得到种子菌液;
(2)制备种子菌液的驯化培养液;
(3)将步骤(2)制备的驯化培养液按等体积比加入发酵培养基中,在pH7.5、35℃、250r/min条件下,培养24~48h,使发酵菌液细胞浓度≥109CFU/mL;
(4)将发酵菌液投入曝气池中进行采油废水的处理。
2.根据权利要求1所述的石油降解菌协同降解采油废水的方法,其特征在于:步骤(2)所述的驯化培养液制备方法如下:
取种子菌液加入含有原油样品的培养基,pH7.5、33℃、150r/min摇床培养2d,培养基中原油样品体积含量为1.5%,接种至新鲜的含有原油样品的培养基中;重复上述步骤4次,每一次转接的培养基内原油样品体积含量都以5‰的速度递增,8天后得到驯化培养液。
3.根据权利要求2所述的石油降解菌协同降解采油废水的方法,其特征在于:所述的培养基为组成及重量份数为:KH2PO40.85份、K2HPO41.55份、MgSO4.H2O 0.5份、CaCl20.1份、NH4Cl 1.5份、MnSO4.H2O 0.5份、FeSO4.H2O0.005份、(NH4)2SO40.1份、H3BO30.01份和去离子水1000份;
所述的原油样品为120#溶剂油与渣油以质量比为1:3的混合物。
4.根据权利要求1所述的石油降解菌协同降解采油废水的方法,其特征在于:步骤(2)所述的驯化培养液制备方法如下:
取原油采出液,向其中加入无碳基础盐培养基和种子菌液,原油采出液与无碳基础盐培养基体积比为1:5,pH7.5、33℃、150r/min摇床培养2d;取上述培养得到的培养液接种至相同的新鲜原油采出液和无碳基础盐配制成的培养基内,于相同条件下培养2d,如此连续富集培养四次,8d后得到驯化培养液。
5.根据权利要求4所述的石油降解菌协同降解采油废水的方法,其特征在于:所述的无碳基础盐培养基组份及重量份数为:KH2PO448.28份、K2HPO450.10份、MgSO4.7H2O 13.41份、CaCl21.20份、KNO375.75份、FeSO4.7H2O15.15份、Na2EDTA 3.72份、MnSO4.H2O 1.69份、H3BO31.22份和去离子水1000份。
6.根据权利要求1所述的石油降解菌协同降解采油废水的方法,其特征在于:步骤(3)中所述的驯化菌液体积为发酵培养基体积的2.5%;所述的发酵培养基组分及重量份数为:水解植物蛋白粉WA—3 10份、牛肉膏5份、NaCl 5份和去离子水1000份。
7.根据权利要求1所述的石油降解菌协同降解采油废水的方法,其特征在于:步骤(4)中所述的发酵菌液体积是采油废水体积的2‰。
8.根据权利要求1所述的石油降解菌协同降解采油废水的方法,其特征在于:步骤(4)中所述的曝气池中按每天进水量补充尿素22g/m3和钙镁磷肥64g/m3,曝气池通气量为0.004m3/s,DO约3.5~4.5mg/L。
CN201410069428.1A 2014-02-27 2014-02-27 一种石油降解菌协同降解采油废水的方法 Expired - Fee Related CN103803714B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410069428.1A CN103803714B (zh) 2014-02-27 2014-02-27 一种石油降解菌协同降解采油废水的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410069428.1A CN103803714B (zh) 2014-02-27 2014-02-27 一种石油降解菌协同降解采油废水的方法

Publications (2)

Publication Number Publication Date
CN103803714A CN103803714A (zh) 2014-05-21
CN103803714B true CN103803714B (zh) 2015-08-05

Family

ID=50701165

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410069428.1A Expired - Fee Related CN103803714B (zh) 2014-02-27 2014-02-27 一种石油降解菌协同降解采油废水的方法

Country Status (1)

Country Link
CN (1) CN103803714B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104059867B (zh) * 2014-06-17 2016-11-23 中国科学院成都生物研究所 处理油基钻屑的微生物复合菌剂、其制备方法及应用
CN104031870A (zh) * 2014-06-24 2014-09-10 西北民族大学 一种微生物复合菌剂及由其制备的土壤联合修复剂及二者的应用
CN104312936B (zh) * 2014-08-22 2020-06-16 中国石油化工集团公司 一种油基钻屑降解菌及其制备和应用方法
CN104528949B (zh) * 2014-12-28 2016-05-11 国家电网公司 一种处理发电厂脱硫污水的工艺
CN104528918B (zh) * 2015-01-15 2016-11-02 河北大学 一种应用pfu采集微型生物群落降解石油的方法
CN105254025B (zh) * 2015-09-29 2017-06-20 哈尔滨工程大学 一种提高除油菌除油效能的方法
CN105316269B (zh) * 2015-12-08 2018-07-31 山东大学 一株耐受微氧和高盐环境的铜绿假单胞菌及其在降解石油中的应用
CN105886426B (zh) * 2016-03-18 2019-11-15 天津大学 溢油修复菌剂及其在污染环境中的应用
CN106635871B (zh) * 2016-10-08 2020-02-04 浙江双良商达环保有限公司 一种复合菌剂及其应用
CN106986462B (zh) * 2017-02-28 2020-10-27 广东省食品工业研究所有限公司 一种采用微生物降解三氯蔗糖废水中n,n-二甲基甲酰胺的方法
CN109576184A (zh) * 2018-12-25 2019-04-05 重庆融极环保工程有限公司 一种用于碱性印染废水处理的微生物复合菌剂
CN110590063B (zh) * 2019-09-17 2022-04-15 昆山科技大学 具有创能及节能功效之含油废水处理方法
CN114084964B (zh) * 2020-08-24 2023-02-24 中国石油化工股份有限公司 一种芳香有机化合物废水生物处理促进剂及制备方法和应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2652898B2 (ja) * 1990-03-22 1997-09-10 日本ヘルス工業株式会社 含油廃水の処理方法
EP1132462A1 (en) * 2000-03-09 2001-09-12 Technology Licensing Organization Inc. Bacteria strains having heavy oil degrading ability, mixtures thereof and nurturing composition therefore
CN1990854A (zh) * 2005-12-27 2007-07-04 中国科学院沈阳应用生态研究所 一种处理稠油污水的微生物菌剂及制备方法
CN101234823A (zh) * 2008-03-03 2008-08-06 暨南大学 一种修复水体石油污染的方法
WO2011074007A2 (en) * 2009-12-18 2011-06-23 Bharat Petroleum Corporation Limited Process and composition for bioremediation of oily sludge
CN101717725B (zh) * 2009-12-25 2012-09-19 中国海洋石油总公司 溢油污染海岸线生物修复用菌剂及制备方法
WO2012160526A2 (en) * 2011-05-23 2012-11-29 Ofir Menashe Formulations of microorganism comprising particles and uses of same
CN102515366B (zh) * 2011-12-23 2013-07-10 重庆文泰节能环保科技有限公司 一种硝基苯类工业废水微生物降解方法

Also Published As

Publication number Publication date
CN103803714A (zh) 2014-05-21

Similar Documents

Publication Publication Date Title
CN103803714B (zh) 一种石油降解菌协同降解采油废水的方法
CN101182093B (zh) 油气田钻井废弃泥浆的微生物无害化处理方法
Xia et al. Comparative study of biosurfactant produced by microorganisms isolated from formation water of petroleum reservoir
CN103436464B (zh) 一株耐低温石油降解芽孢杆菌、培养方法及其应用
CA2814400C (en) Prevention of biomass aggregation at injection wells
CN102409016A (zh) 一株铜绿假单胞菌及其培养方法与应用
CN102391847A (zh) 一种复合微生物驱油剂及其用途
CN102533589A (zh) 一株铜绿假单胞菌及其应用
CN101974446A (zh) 一种产生生物乳化剂和降解烷烃的耐盐红球菌及其在石油污染盐碱土壤生物修复中的应用
CN106854632A (zh) 一种用于降解污水中蛋白质和脂肪的混合菌剂及其制备方法和应用
CN105110480A (zh) 高含盐难降解采油污水的深度处理技术
CN111733098B (zh) 一种芽孢杆菌在低温降解石油烃中的应用
CN103834590A (zh) 一株活性嗜热菌及其应用
CN104830708A (zh) 一株原油降解菌株及其应用
CA2974914C (en) Enhanced oil recovery and environmental remediation
CN109779587B (zh) 一种环保型的生物采油方法
CN104745506A (zh) 一株石油烃降解菌及其应用
CN108587987A (zh) 一株微生物采油菌w-y6及其应用
CN103614127A (zh) 一种微生物与脂肽组合低温油藏采油与清防蜡技术
CN110566168A (zh) 一种通过注入迪茨菌属激活内源微生物生物强化采油或污染治理的方法
CN103381418B (zh) 一种处理烟草废弃物或有机氟废水的方法
CN103865821B (zh) 一种螯合球菌及其制备和应用
CN104928210B (zh) 产表面活性剂的堀越氏芽孢杆菌及其分离方法和应用
Titah et al. Biodegradation of crude oil spill using Bacillus subtilis and Pseudomonas putida in sequencing method
CN106477716B (zh) 一种用于废弃钻井液处理的活性污泥培养方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150805

Termination date: 20210227

CF01 Termination of patent right due to non-payment of annual fee