CN103765291B - 成像系统、盒和使用其的方法 - Google Patents

成像系统、盒和使用其的方法 Download PDF

Info

Publication number
CN103765291B
CN103765291B CN201280043583.5A CN201280043583A CN103765291B CN 103765291 B CN103765291 B CN 103765291B CN 201280043583 A CN201280043583 A CN 201280043583A CN 103765291 B CN103765291 B CN 103765291B
Authority
CN
China
Prior art keywords
slide glass
slide
shelf
focusing
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201280043583.5A
Other languages
English (en)
Other versions
CN103765291A (zh
Inventor
R.赫伯特
G.C.洛尼
K.莫拉维克
D.莫里科尼
C.托德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ventana Medical Systems Inc
Original Assignee
Ventana Medical Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ventana Medical Systems Inc filed Critical Ventana Medical Systems Inc
Priority to CN201510705163.4A priority Critical patent/CN105204152B/zh
Publication of CN103765291A publication Critical patent/CN103765291A/zh
Application granted granted Critical
Publication of CN103765291B publication Critical patent/CN103765291B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/52Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/26Stages; Adjusting means therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/34Microscope slides, e.g. mounting specimens on microscope slides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/025Align devices or objects to ensure defined positions relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/18Transport of container or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/02Identification, exchange or storage of information
    • B01L2300/021Identification, e.g. bar codes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0822Slides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0832Geometry, shape and general structure cylindrical, tube shaped
    • B01L2300/0841Drums

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Microscoopes, Condenser (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种显微镜载片保持盒,包括用于围绕并保护显微镜的主体,以及能够保持显微镜载片的架子。架子具有向外延伸以便支撑载片的标签端部的支撑构件。在支撑构件的端部处携带的卡件能够在盒的运送期间限制载片的移动。为了将载片运送到不同的工作站,拾取装置可以在不接触载片的可能有胶的区域的情况下使用真空拾取载片。拾取装置可以加载和卸载盒。拾取装置可以具有低轮廓配置以进入相对小的空间以便灵活地进行处理。

Description

成像系统、盒和使用其的方法
技术领域
本申请涉及成像领域并且更特别地,涉及成像系统,载片盒以及处理载片上的生物样品的方法。
背景技术
指示疾病的细胞结构中的变化的分子成像识别对于在医学科学中更好地理解经常是重要的。显微术应用可以应用于微生物学(例如,革兰氏染色法等),植物组织培养,动物细胞培养(例如,相衬显微术等),分子生物学,免疫学(例如,ELISA等),细胞生物学(例如,免疫荧光,染色体分析等),共焦显微术,时移和活细胞成像,逐幅成像,和三维成像。
在手动的显微术方法中,手动地将样本承载载片加载到显微镜中并且通过显微镜的目镜进行查看。在医疗应用中,病理学家能够察看细胞特性,被感染的细胞对比于未被感染的细胞的计数或样本的其它特性。由于每个载片的处置时间的原因,分析大量的样本经常是耗时的。长的处理时间可能耽误精确的诊断和治疗。附加地,常规的显微镜经常不能捕获合适用于存档和稍后使用的高分辨率和高质量图像。
在自动的显微术方法中,数字图像经常被收集、在高分辨率监视器上查看、共享以及针对稍后使用而被存档。不幸的是,常规的自动载片处理系统经常出错,包括载片误处置、显微镜载片与光学部件(例如,照相机,成像捕获装置等)的误对准,以及显微镜载片的破损。以举例子的方式,常规的可靠设备经常夹持显微镜载片的标签端部。在标签处可能存在被露出的残留胶。如果夹持器接触邻近于标签的载片的边缘或标签的边缘,则露出的残留胶可能粘住或粘附于夹持器。这可能造成载片的误处置。
发明内容
在一些实施例中,保持盒的显微镜载片包括主体,多个架子以及多个支撑构件。主体被配置成围绕并保护显微镜载片并且包括第一侧壁和第二侧壁。架子能够支撑显微镜载片并且被定位在第一和第二侧壁之间。当保持盒的显微镜载片在直立的取向中时,架子能够被垂直地彼此分隔开。支撑构件远离相应的架子延伸并且包括伸长本体和卡件。卡件从伸长本体向上突出并且能够限制定位的显微镜载片沿着伸长本体移动。
在一些其它实施例中,一种运送显微镜载片的方法,包括:使用拾取装置在不接触显微镜载片上的标签的边缘的情况下并且不接触显微镜载片的邻近于标签的边缘的情况下拾取显微镜载片。使用拾取装置将显微镜载片运送到所需的位置。在一些实施例中,在不接触标签的边缘的情况下并且不接触载片边缘的情况下,在至少两个处理站(例如着色单元,盖片机,成像系统,光学扫描仪,光学成像系统)之间运送显微镜载片。
在一些实施例中,显微镜载片拾取装置包括端部执行器,端部执行器包括具有上表面和下表面的伸长平面平台。在平台的上侧定位流体管路。头元件包括连接器和吸头。连接器被定位在平台的上侧并且被耦接至流体管路。吸头被定位在平台的下侧。
附图说明
参照下面的附图描述非限定的并且非穷举的实施例。贯穿各个视图,除非另外指明,相同的参考数字指的是同似的部分或者动作。
图1是根据在此描述的系统的各种实施例的扫描显微镜和/或其它扫描装置的成像系统的示意性图解,扫描显微镜和/或其它扫描装置可以包括与数字病理学样品扫描和成像相关地使用的各种部件装置。
图2是示出根据在此描述的系统的实施例的包括聚焦系统的成像装置的示意性图解。
图3A和3B是示出控制系统可以包括适当的电子器件的控制系统的实施例的示意性图解。
图4是更详细地示出根据在此描述的系统的实施例的抖动聚焦台的示意性图解。
图5A-5E是示出根据在此描述的系统的聚焦操作的迭代的示意性图解。
图6A是示出根据在此描述的系统的实施例的抖动聚焦光学器件的命令波形和锐度确定的绘图的示意性图解。
图6B是示出用于抖动透镜的正弦波运动的一部分的所计算的锐度(Zs)值的绘图的示意性图解。
图7A和7B是示出根据在此描述的系统的实施例的样本(组织)的聚焦确定和调整的示意性图解。
图8是示出根据在此描述的系统的实施例的包括用于在由抖动聚焦光学器件采样的多个点处的每个锐度响应的锐度曲线和对比率的锐度轮廓的例子的示意性图解。
图9示出图解用以产生控制信号以控制缓慢聚焦台的对比度功能的使用的功能控制环框图。
图10是示出根据在此描述的系统的实施例的与聚焦处理相关地被拆分成各区的聚焦窗口的示意性图解。
图11示出用于依照在此的技术的实施例的在各时间点可获得的不同锐度值的图形图解。
图12是示出根据在此描述的系统的实施例的在经受检查的样本的扫描期间的动态即时聚焦处理的流程图。
图13是示出根据在此描述的系统的实施例的在缓慢聚焦台处进行处理的流程图。
图14是示出根据在此描述的系统的实施例的图像捕获处理的流程图。
图15是示出根据在此描述的系统的实施例的用于聚焦处理的替换布置的示意性图解。
图16是示出根据在此描述的系统的另一实施例的用于聚焦处理的替换布置的示意性图解。
图17是示出根据在此描述的系统的实施例的用以获取载片上的组织的马赛克图像的处理的流程图。
图18是示出根据在此描述的系统的实施例的XY台的精密台(例如,Y台部分)的实施方式的示意性图解。
图19A和19B是根据在此描述的系统的实施例的精密台的移动台块的更详细视图。
图20示出根据在此讨论的精密台特征的并且包括根据在此描述的系统的实施例的Y台、X台和底板的整个XY混合台的实施方式。
图21是示出根据在此描述的系统的实施例的载片缓存装置的示意性图解。
图22A是示出根据在此描述的系统的实施例的与第一载片相关的载片缓存处理的流程图。
图22B是示出根据在此描述的系统的实施例的与第二载片相关的载片缓存处理的流程图。
图23A和23B示出使用根据在此描述的系统的实施例的载片缓存技术的时序图并且图示出根据在此描述的系统的各种实施例的时间节省。
图24是示出根据在此描述的系统的另一实施例的载片缓存装置的示意性图解。
图25A是示出根据针对具有用于载片处理的两个XY混合台的载片缓存装置描述的系统的实施例的与第一载片相关的载片缓存处理的流程图。
图25B是示出根据针对具有用于载片处理的两个XY混合台的载片缓存装置描述的系统的实施例的与第二载片相关的载片缓存处理的流程图。
图26是示出根据在此描述的系统的另一实施例的载片缓存装置的示意性图解。
图27是示出根据图26的载片缓存装置的另一视图的示意性图解。
图28A-28J是示出根据在此描述的系统的实施例的图26和27的载片缓存装置的载片缓存操作的示意性图解。
图29是示出根据在此描述的系统的实施例的用于使用发光二极管(LED)照明组件来对载片进行照明的照明系统的示意性图解。
图30是示出根据在此描述的系统的用于LED照明组件的实施例的更详细的视图的示意性图解。
图31是示出根据在此描述的系统的实施例的LED照明组件的特定实施方式的爆炸视图的示意性图解。
图32是示出根据在此描述的系统的实施例的可以与数字病理成像相关地使用的高速载片扫描装置的示意性图解。
图33是更详细地示出根据在此描述的系统的实施例的高速载片扫描装置的托盘上的凹进处的示意性图解。
图34是示出相对于载片而言起始于第一径向位置以便对凹进处中的载片上的样本进行成像的成像路径的示意性图解。
图35A和35B是示出根据在此描述的系统的另一实施例的旋转载片保持器上的载片的替换布置的示意性图解。
图36是示出根据在此描述的系统的实施例的包括被设置成检查载片上的样本的物镜的成像系统的示意性图解。
图37是示出根据在此描述的系统的实施例的使用可旋转的托盘的高速载片扫描的流程图。
图38是示出根据在此描述的系统的实施例的光学双重图像系统的示意性图解。
图39A和39B是示出根据在此描述的系统的实施例的在图像传感器的前面的第一镜筒透镜和第二镜筒透镜的往复运动的光学双重图像系统的示意性图解。
图40是依照一个实施例的成像系统的前部、顶部和左侧等角视图。
图41是图40的成像系统的前部、顶部和左侧等角视图。外部保护外壳示出为被移除。
图42是图40的成像系统的后部、顶部和右侧等角视图,其中保护外壳示出为被移除。
图43是图40的成像系统的顶部平面视图。
图44是依照一个实施例的拾取装置的等角视图。
图45是图44的拾取装置的顶部平面视图。
图46是沿着图45的线46-46取得的拾取装置的截面视图。
图47是图44的拾取装置的等角视图。
图48是图46的拾取装置的详细视图。
图49是载片保持器装置的前部、顶部、右侧等角视图。
图50是图49的载片保持器装置的后部、顶部、左侧等角视图。
图51是图49的载片保持器装置的前部立视图。
图52是沿着图51的线52-52取得的载片保持器装置的截面视图。拾取装置被定位成将载片插入到载片保持器装置中。
图53是图52的载片保持器装置的详细的视图。
图54是上架子的端部的详细的视图。
图55是沿着图51的线53-53取得的载片保持器装置的截面视图。
图56A是被定位在载片保持器装置的上架子上方的载片的前部立视图。
图56B是放到图56A的上架子上的载片的前部立视图。
具体实施方式
图1是根据在此描述的系统的各种实施例的扫描显微镜和/或其它扫描装置的成像系统5的示意性图解,扫描显微镜和/或其它扫描装置可以包括与数字病理学样品扫描和成像相关地使用的各种部件装置。除了其它部件系统50以外,成像系统5可以包括具有聚焦系统10的成像装置,载片台系统20、载片缓存系统30和照明系统40,如在此于别处进一步详细讨论那样。还应注意,可以与如在Dietz等人的题为“Digital Microscope SlideScanning System and Methods(数字显微镜载片扫描系统和方法)”的美国专利申请公开号2008/0240613A1(通过引用将其合并于此)中描述的用于图像捕获、缝合以及放大的显微镜载片扫描仪器架构和技术相关地使用在此描述的系统,其包括在没有相当大的精确度损失的情况下与用放大重构图像并显示或存储被重构的图像相关联的特征。
图2是示出根据在此描述的系统的实施例的光学扫描显微镜和/或其它适当成像系统的成像装置100的示意性图解,其包括用于取得被设置在载片上的组织样品101和/或其它对象的聚焦图像的聚焦系统的部件。在此描述的聚焦系统提供随着快照被捕获而针对每个快照确定最佳聚焦,可以将其称为 “动态即时聚焦”。在此提供的装置和技术导致形成病理载片中的区域的数字图像所需的时间的明显减少。在此描述的系统将常规系统的两步方法的步骤集成并本质上消除了预聚焦所需的时间。在此描述的系统提供使用用于捕获快照的动态即时处理来创建显微镜载片上的样本的数字图像,其中用于捕获所有快照的总时间小于在捕获快照之前使用针对每个快照的预确聚焦点的步骤的方法所需的时间。
成像装置100可以包括成像传感器110,诸如电荷耦合器件(CCD)和/或互补金属氧化物半导体(CMOS)图像传感器,其可以是捕获数字病理图像的照相机111的一部分。成像传感器110可以从显微镜物镜120接收经由镜筒透镜112、束分离器114以及包括诸如聚光器116和光源118和/或其它适当光学部件119的被传输光显微镜的其它部件传输的被传输光。可以对显微镜物镜120进行无限远修正。在一个实施例中,束分离器114可以提供分配近似70%的光束源指向图像传感器110以及约30%的其余部分沿着路径指向抖动聚焦台150和聚焦传感器160。可以将被成像的组织样品101设置在可以沿着X和Y方向移动并且可以被如在此于别处进一步讨论的那样进行控制的XY移动台130上。聚焦台140可以控制显微镜物镜120沿Z方向的移动以使由图像传感器110捕获的组织101的图像聚焦。聚焦台140可以包括用于使显微镜物镜120移动的电动机和/或其它合适的装置。抖动聚焦台150和聚焦传感器160被用于根据在此描述的系统提供用于动态即时聚焦的细聚焦控制。在各种实施例中,聚焦传感器160可以是CCD和/或CMOS传感器。
抖动聚焦台150和聚焦传感器160根据在成像处理期间快速地计算的锐度值和/或其它度量来提供动态即时聚焦以随着每个图像快照被捕获而获得用于每个图像快照的最佳聚焦。如在此于别处进一步详细地讨论的,可以使抖动聚焦台150以一定的频率,例如以正弦运动来进行移动,其独立于并且超过对于显微镜物镜120的更缓慢运动而言可行的移动频率。由聚焦传感器160进行用于在抖动聚焦台150的运动范围内的组织查看的聚焦信息的多个测量。聚焦电子器件和控制系统170可以包括用于控制聚焦传感器和抖动聚焦台150的电子器件、主时钟、用于控制缓慢聚焦台140(Z方向)的电子器件、XY移动台130以及依照在此的技术的系统的实施例的其它部件。聚焦电子器件和控制系统170可以被用于使用来自抖动聚焦台150和聚焦传感器160的信息来执行锐度计算。可以在由抖动移动定义的正弦曲线的至少一部分内计算锐度值。聚焦电子器件和控制系统170然后可以使用该信息来确定用于组织的最佳聚焦图像的位置并命令缓慢聚焦台140使显微镜物镜120移动到所需的位置(沿着Z轴,如所示那样)以便在成像处理期间获得最佳聚焦图像。控制系统170还可以使用该信息来控制XY移动台130的速度,例如,台130沿Y方向的移动的速度。在实施例中,可以通过对相邻像素的对比度值进行差分化,对其求平方并将那些值加在一起以形成一个分数来计算锐度值。在此于别处进一步讨论了用于确定锐度值的各种算法。
在根据在此描述的系统的各种实施例中,并且依照在此于别处讨论的部件,一种用于创建显微镜载片上的样本的数字图像的装置包括:被无穷远修正的显微镜物镜;束分离器;照相机聚焦透镜;高分辨率照相机;传感器聚焦透镜组;抖动聚焦台;聚焦传感器;聚焦粗(缓慢)台;以及聚焦电子器件。该装置可以允许在不需要在捕获快照之前预定用于所有快照的聚焦点的情况下使物镜聚焦并通过照相机来捕获每个快照,并且其中用于捕获所有快照的总时间小于要求在捕获快照之前预定用于每个快照的聚焦点的步骤的系统所需的时间。该系统可以包括计算机控制,用于:i)在组织上确定第一聚焦点以通过使粗聚焦台移动通过整个z范围并监视锐度值来建立标称聚焦面;ii)以在所关心区域的一角处开始的x和y来对组织进行定位;iii)将抖动细聚焦台设定为运动,其中抖动聚焦台被同步到主时钟,该主时钟也控制xy台的速度;iv)命令台从帧移动到邻近帧,和/或v)产生触发信号以获取图像传感器上的帧并触发光源以创建光脉冲。
进一步地,根据另一实施例,在此描述的系统可以提供用于创建在显微镜载片上的样本的数字图像的计算机实施方法。该方法可以包括确定包括显微镜载片的区域(该区域包括样本的至少一部分)的扫描区域。可以将该扫描区域划分成多个快照。可以使用显微镜物镜和照相机来捕获快照,其中可以在不需要在捕获快照之前预定用于所有快照的聚焦点的情况下针对每个快照进行使物镜和显微镜聚焦并通过照相机来捕获每个快照。用于捕获所有快照的总时间可以小于要求在捕获快照之前预定用于每个快照的聚焦点的步骤的方法所需的时间。
图3A是包括聚焦电子器件161、主时钟163和台控制电子器件165的聚焦电子器件和控制系统170的实施例的示意性图解。图3B是聚焦电子器件161的实施例的示意性图解。在所图解的实施例中,聚焦电子器件161可以包括诸如合适地快速的A/D转换器171和具有可以用于作出锐度计算的微处理器173的现场可编程门阵列(FPGA)172的适当的电子器件。A/D转换器171可以从被耦合到FPGA 172和微处理器173并被用于输出锐度信息的聚焦传感器160接收信息。包括在系统170中的主时钟可以向聚焦电子器件161、台控制电子器件165以及系统的其它部件供给主时钟信号。台控制电子器件165可以生成被用于控制缓慢聚焦台140、XY移动台130、抖动聚焦台150的控制信号和/或其它控制信号和信息,如在此于别处进一步讨论的那样。除了其它信息以外,FPGA 172可以向聚焦传感器160供给时钟信号。实验室中的测量示出可以在18微秒内作出640×32像素帧上的锐度计算,容易地快到足以用于在此描述的系统的合适的操作。在实施例中,聚焦传感器160可以包括被窗口化成640×32条的单色CCD照相机,如在此于别处进一步讨论的那样。
扫描显微镜可以获取包括RGB或某个其它色彩空间中的对比度信息和/或强度信息的1D或2D像素阵列,如在此于别处进一步讨论的那样。系统在例如25 mm×50 mm玻璃载片上的大的视野内找到最佳聚焦点。许多商用系统对由具有CCD阵列的20x、0.75 NA显微镜物镜产生的场景进行采样。给定物镜和聚光器的0.75的NA和500 nm的波长,光学系统的横向分辨率为大约0.5微米。为了以尼奎斯特频率对该分辨率元素进行采样,对象处的像素大小为大约0.25微米。对于具有7.4微米的像素大小、以30 fps运行的4 M像素照相机(例如Dalsa Falcon 4M30/60)而言,从对象到成像照相机的放大是7.4/0.25=30x。因此,2352×1728下的一个帧可以覆盖对象处的0.588 mm×0.432 mm的区域,其对于在面积上被定义为15 mm×15 mm的典型组织切片而言等同大约910个帧。在聚焦尺寸的组织空间改变比对象处的帧大小更低得多的情况下理想地使用在此描述的系统。实际上聚焦的改变在更大的距离内发生并且作出大部分的聚焦调整以修正偏斜。这些偏斜在对象处一般地在每帧尺寸0.5-1微米的范围内。
对于当前扫描系统(例如BioImagene iScan Coreo系统)而言所得到的时间对于20x 15 mm×15 mm场的预扫描和扫描而言为大约3.5分钟并且对于15 mm×15 mm场的40x扫描而言为大约15分钟。通过在26个道次中运行35个帧来扫描15 mm×15 mm场。可以用1秒的回扫描时间单向地进行扫描。使用根据在此描述的系统的技术来进行扫描的时间可以为大约5秒以找到标称聚焦面,每道次1.17秒(25道次),总共5+25×(1.17+1)=59.25秒(大约1分钟)。相比于常规方法而言这是相当大的时间节省。在此描述的系统的其它实施例可以允许甚至更快的聚焦时间,但是可能发生对用以避免连续扫描上的运动模糊的短照明时间所需的光量的限制。允许高峰值照明的脉冲调制或选通光源118可以缓解该问题,该光源118可以如在此于别处进一步讨论的那样为LED光源。在实施例中,可以由聚焦电子器件和控制系统170来控制光源118的脉冲调制。另外,双向地运行系统将消除回描时间,对于20x扫描节省大约25秒,导致35秒的扫描时间。
应当注意到,与聚焦电子器件和控制系统170相关地使用的部件还可以更一般地被称为用于与在此描述的技术的实施例相关地执行多种不同功能的电部件。
图4是根据在此描述的系统的实施例的更详细地示出抖动聚焦台150的示意性图解。抖动聚焦台150可以包括可以被诸如声音线圈致动器的一个或多个致动器152a、b移动并且可以被安装到刚性外壳153中的抖动聚焦透镜151。在实施例中,透镜可以是如市售的具有50 mm焦距的消色差透镜,参见例如Edmund Scientific,NT32-323。替换地,抖动聚焦透镜151可以是由塑料构成的,非球面并且被成形为使得透镜的重量被减小(极其低质量)。可以将挠曲结构154附着于刚性外壳153并附着于刚性接地点并且可以仅允许抖动透镜151的例如大约600-1000微米的小距离的平移运动。在实施例中,挠曲结构154可以由沿弯曲方向大约0.010''厚的适当的不锈钢片构成并且形成四连杆机构。挠曲结构154可以由在远离其疲劳极限(五分之一以下)的工作应力下的合适的弹簧钢设计而成以在许多周期上操作。
可以将抖动聚焦透镜151和挠曲结构154的移动质量设计为提供大约60 Hz或以上的第一机械谐振。可以用诸如电容传感器或涡流传感器的合适的高带宽(例如,大于1 kHz)位置传感器155来监视移动质量,以向控制系统170提供反馈(参见图2)。例如,KLA Tencor的ADE部门制造了对于此应用合适的具有1 kHz带宽、1 mm测量范围和77纳米分辨率的电容传感器5 mm 2805探针。诸如由包括在系统170中的功能表示的抖动聚焦和控制系统可以将抖动聚焦透镜151的振幅保持到指定聚焦范围。抖动聚焦和控制系统可以依赖于公知的增益控制振荡器电路。当谐振地操作时,可以以低电流来驱动抖动聚焦透镜151,在声音线圈绕组中耗散低功率。例如,使用BEI Kimco LAO8-10(绕组A)致动器,平均电流可以小于180mA并且耗散的功率可以小于0.1 W。
应注意,可以与在此描述的系统的各种实施例相关地使用抖动透镜的其它类型的运动以及其它类型的致动器152a、b。例如,可以使用压电致动器作为致动器152a,b。进一步地,抖动透镜的运动可以是在不同于保持独立于显微镜物镜120的运动的谐振频率下的运动。
如依照在此的技术的实施例中可以被包括的诸如上面提及的电容传感器的传感器155,可以提供关于抖动聚焦透镜位于何处的反馈(例如,关于对应于透镜移动的正弦波或周期)。如将会在此于别处描述的那样,可以作出关于使用聚焦传感器获得的哪个图像帧产生最佳锐度值的确定。对于该帧,可以相对于如由传感器155指示的正弦波位置来确定抖动聚焦透镜的位置。如由传感器155所指示的位置可以被170的控制电子器件使用以确定用于聚焦台140的适当调整。例如,在一个实施例中,可以由缓慢聚焦台140的缓慢步进电动机来控制显微镜物镜120的移动。由传感器155所指示的位置可以被用于确定相对应的移动量(以及对应的(多个)控制信号)以将显微镜物镜120沿Z方向定位于最佳聚焦位置处。可以将(多个)控制信号传输至缓慢聚焦台140的步进电动机以引起显微镜物镜120在最佳聚焦位置处的任意必要的重新定位。
图5A-5E是示出根据在此描述的系统的聚焦操作的迭代的示意性图解。该图示出图像传感器110、聚焦传感器160、具有抖动透镜的抖动聚焦台150和显微镜物镜120。图解了沿着Y轴,即在XY移动台130上移动的组织101,同时执行聚焦操作。在例子中,抖动聚焦台150可以以所需的频率—诸如60 Hz或以上(例如,80 Hz,100 Hz)—使抖动透镜移动,但应注意在其它实施例中,在此描述的系统还可以根据可应用的状况在抖动透镜以更低的频率(例如50 Hz)下移动的情况下进行操作。可以命令XY移动台130例如沿Y方向从帧移动到邻近帧。例如,可以命令台130以13 mm/sec的恒定量移动,其对于20x物镜而言对应于大约30帧/秒的获取速率。由于抖动聚焦台150和XY移动台130可以被锁相,因此抖动聚焦台150和传感器160可以每秒作出60次聚焦计算,或者双向地运行(关于正弦波的向上和向下运动读取)每秒120个聚焦点或每帧4个聚焦点。对于1728像素的帧高度而言,这等同于每432个像素一个聚焦点或者对于20x物镜而言为每108微米一个聚焦点。由于XY移动台130正在运动,因此应在非常短的时间段内捕获聚焦点,例如330 μsec(或更少),以将场景中的改变保持最小。
在各种实施例中,如在此于别处进一步讨论的那样,可以存储该数据并将其用于对下一帧的聚焦位置进行外插,或者替换地可以不使用外插并将最后一个聚焦点用于活动帧的聚焦位置。用60 Hz的抖动频率和每秒30帧的帧速率在与被快拍的帧的中心相距不超过帧的1/4的位置处取得聚焦点。一般地,组织高度不会在帧的1/4中变化足够多而使该聚焦点不精确。
可以在组织上找到第一聚焦点以建立标称聚焦面或参考面101'。例如,可以通过最初使用缓慢聚焦台140使显微镜物镜120移动通过整个Z范围,比方说+1/-1 mm,并且监视锐度值来确定参考面101'。一旦找到参考面101',则可以在所关心区域的一角和/或其它特定位置处开始沿X和Y将组织101定位,并且将抖动聚焦台150设定成移动,和/或否则继续监视抖动聚焦台150的移动,在图5A中开始。
可以使抖动聚焦台150同步到控制系统170中的主时钟(参见图2),其还可以与控制XY移动台130的速度相关地使用。例如,如果抖动聚焦台150将在60赫兹下通过0.6毫米p-v(峰值至谷值)的正弦运动来进行移动,采用32%的占空比以使用正弦波的更多线性范围,则可以在2.7兆秒时段内通过聚焦范围收集8个点。在图5B-5D中,抖动聚焦台150以正弦运动来使抖动透镜运动,并且携带聚焦样品通过正弦曲线的至少一部分。因此将每330 μsec或以3 kHz的速率来取得聚焦样品。在对象与聚焦传感器160之间的5.5x的放大的情况下,0.6 mm p-v的抖动透镜处的运动等同于物镜处的20微米p-v运动。该信息被用于将计算最高锐度处的位置,即最佳聚焦传递到缓慢聚焦台140的更慢的步进电动机。如图5E中所示,缓慢聚焦台140被命令使显微镜物镜120及时地移动到最佳聚焦位置(由运动范围120'图解)以便图像传感器110捕获组织101的所关心区域的最佳聚焦图像110'。在实施例中,可以例如由控制系统170来触发图像传感器110以在抖动透镜运动的特定数目的周期之后对图像进行快照。XY移动台130移动到下一帧,抖动聚焦台150中的抖动透镜的周期运动继续,并且重复图5A-5E的聚焦操作。可以以不妨碍处理的速率,例如3 kHz来计算锐度值。
图6A是示出根据在此描述的系统的实施例的抖动聚焦光学器件的命令波形和锐度确定的绘图200的示意性图解。在基于与图5A-5E的例子相关地讨论的时间的实施例中:
T=16.67 msec,/*如果透镜在60 Hz下谐振的抖动透镜正弦波的周期*/
F=300 μm,/*聚焦值的正范围*/
N=8,/*在周期E中获得的聚焦点的数目*/
Δt=330 μsec,/*每330 μsec获得的聚焦点样品*/
E=2.67 msec,/*其间获得N个聚焦点的时段*/
在聚焦行程的中心处Δf=1.06 μm。/*聚焦曲线的步长*/
因此,用32%的该占空比,通过聚焦处理对8.48 μm(8×1.06 μm=8.48 μm)进行采样。
图6B是示出用于绘图210中所示的抖动透镜的正弦波运动的一部分的所计算锐度(Zs)值的绘图210的示意性图解。由等式1给出作为每个点i的函数来采样的用于每个聚焦面的位置(z):
等式1。
将CCD照相机向下窗口化可以提供对于在此描述的系统合适的高帧速率。例如,加拿大安大略市沃特卢的公司Dalsa生产了Genie M640-1/3 640×480黑白照相机。GenieM640-1/3将以640×32的帧尺寸在3,000帧/秒下操作。CCD阵列上的像素大小是7.4微米。在对象与聚焦面之间的5.5x放大下,一个聚焦像素等价于对象处的大约1.3微米。虽然可能发生每个聚焦像素的大约16个对象像素(4×4)的某些平均,但是保留了足够高的空间频率对比度变化以获得良好的聚焦信息。在实施例中,可以根据锐度计算绘图210的峰值来确定最佳聚焦位置。在附加实施例中,应注意可以使用其它聚焦计算和技术根据其它度量来确定最佳聚焦位置,包括对比度度量的使用,如在此于别处进一步讨论的那样。
图7A和7B是示出根据在此描述的系统的实施例的样本(组织)的聚焦确定和调整的示意性图解。在图7A中,图解250是根据在此讨论的XY移动台130的移动与样本沿着Y轴的移动相关的近似图像帧中示出的样本的视图。在250中图解了与样本沿着Y轴的运动(例如,根据XY台的移动)相关的在样本上的一次历遍或道次。图解250'是图解250的一部分的放大型式。图解250'的一个帧被指定为dtp,参考样本的明确的组织点。在图解250'的例子中,示出了样本边界,并且在其上面的扫描期间,依照在此描述的系统来执行多次聚焦计算。在帧251中,并且以举例子的方式,图解了在与对样本进行成像相关地执行4次聚焦计算(被示出为聚焦位置1、2、3和0*)之后作出最佳聚焦确定,然而可以与在此描述的系统相关地执行更多的聚焦计算。图7B示出了显示显微镜物镜的Z轴位置相对于正在被检查的样本的Y轴位置的绘图的示意性图解260。图解的位置261示出根据在此描述的系统的实施例的用于调整显微镜物镜120以实现最佳聚焦的沿着Z轴确定的位置。
应当注意,在此描述的系统相比于常规系统而言提供了显著的优点,常规系统诸如在被通过引用合并于此的美国专利号7,576,307和7,518,642中描述的那些,其中整个显微镜物镜以正弦或三角形图案移动通过聚焦。在此提供的系统有利之处在于其合适供显微镜物镜和沉重的(尤其是如果经由转动架来添加其它物镜)并且不能在使用抖动光学器件所描述的更高频率下移动的随附台一起使用。在此描述的抖动透镜可以具有已调整的质量(例如,使得更轻,更少的玻璃)并且聚焦传感器上的成像需求比由显微镜物镜施加的更小。如在此所描述的那样,可以以高速率取得聚焦数据以使计算锐度时的场景改变最小化。通过使场景改变最小化,在此描述的系统减少了由于在组织在显微镜物镜下移动时系统聚焦和散焦地移动所致的锐度度量的不连续性。在常规系统中,这种不连续性向最佳聚焦计算添加噪声。
图8是示出根据在此描述的系统的实施例的包括用于在由抖动聚焦光学器件采样的多个点处的每个锐度响应的锐度曲线和对比率的由运动通过聚焦位置所产生的锐度轮廓的例子的示意性图解300。绘图310示出x轴中的以微米为单位的抖动透镜振幅和沿着Y轴的锐度单位。如所图解的那样,可以使抖动透镜运动以代表性点A,B,C,D和E为中心;然而,应注意的是在此描述的计算可以应用于锐度曲线上的每个点。在绘图310a-e中分别示出了当抖动透镜的运动以点A,B,C,D和E中的每一个为中心时针对抖动透镜正弦波的半周期从聚焦传感器160产生的锐度响应。基于此,根据对比度函数=(max-min)/(max+min)来计算用于具有点A-E中的相对应的一个的每个锐度响应的对比率。与针对点A-E(例如,抖动透镜运动以这些点处为中心)中的一个和锐度响应曲线310a-e中的相对应的一个确定的对比度函数相关,max表示从锐度响应曲线获得的最大锐度值并且min表示从锐度响应曲线获得的最小锐度值。在锐度曲线绘图310下面示出了得到的对比度函数绘图320并且其对与抖动透镜根据抖动透镜振幅的移动相对应的对比率值进行绘图。绘图320中的对比度函数的最小值是最佳聚焦位置。基于对比度函数和最佳聚焦位置确定,可以生成控制信号,该控制信号被用于控制缓慢聚焦台140以在图像传感器110捕获图像110'之前使显微镜物镜120运动到最佳聚焦位置。
图9示出图解用以产生控制信号以控制缓慢聚焦台140的对比度功能的使用的功能控制环框图350。例如,可以将Ud考虑成对聚焦控制环的干扰并且其可以表示载片偏斜或变化的组织表面高度。功能块352示出可以由聚焦传感器160生成并且被通信至聚焦电子器件和控制系统170的锐度矢量信息的生成。功能块354示出抖动透镜正在对聚焦进行采样的点处的对比度数(例如,对比度函数的值)的生成。将该对比度数与在其中先前建立最佳聚焦的初始步骤处产生的设定点或基准值(Ref)相比较。从与适当地应用的增益K1的该比较(在功能块356处)产生的误差信号对作出动作(在功能块358处)以保持场景合焦(infocus)的缓慢聚焦电动机进行修正。应注意实施例可以依照最小或阈值移动量来调整显微镜物镜120的位置。因此,这样的实施例可以避免作出小于阈值的调整。
图10是示出根据在此描述的系统的实施例的与聚焦处理相关地将聚焦窗口402分成各区的示意性图解。在所图解的实施例中,聚焦窗口被再分成8个区(402');然而,可以与在此描述系统相关地使用少于或多于8个区。该区的第一子集可以在快照n内且该区的第二子集在快照n+1内。例如,区2、3、4、5在已在时间t1处快拍的图像帧404内。区6和7可以完全在随着XY移动台130在图中自下而上地历遍时要快拍的下一个图像帧内和/或区0和1可以完全在随着台130在图中自上而下地历遍时要快拍的下一个图像帧内。可以使用聚焦位置0、1、2和3来对用于位置0*处的下一个快拍帧的最佳聚焦位置进行外插。可以例如通过执行蛇形图案历遍整个所关心区域来建立组织的覆盖。
可以使图像传感器的矩形窗口404沿着台130的行进方向取向,诸如使在成像期间获取的帧的列与矩形聚焦窗口402对准。使用30x放大的镜筒透镜,使用例如Dalsa 4M30/60CCD照相机的图像帧406中的对象的大小是0.588 mm×0.432 mm。阵列大小可以是(2352×7.4微米/30)×(1720×.7.4微米/30)。图像帧406的更宽维度(0.588 mm)可以与聚焦窗口402垂直地取向并允许在组织的切片上历遍的最小列数。在聚焦分支(leg)中,使用5x放大,聚焦传感器是0.05 mm × 0.94 mm。矩形聚焦窗口402可以是(32×.7.4微米/5.0)×(640×7.4微米/5.0)。因此,聚焦传感器的帧402可以比图像传感器的帧404高约2.2x,并且可以有利地与牵涉多个区的先行聚焦技术相关地使用,如在此于别处进一步讨论的那样。根据在此描述的系统的实施例,可以每秒作出120次最佳聚焦确定,其中每333μsec进行锐度计算,导致在2.67 msec内计算的8个锐度,所述2.67 msec等于用于抖动透镜运动的8.3 msec半抖动周期的近似32%的占空比。
可以计算并存储用于每个区的锐度度量。当使用多个区来计算用于单个聚焦点的锐度度量时,可以针对每个区确定锐度度量并将其组合,例如,诸如通过针对在这种单个点处考虑的所有区将所有锐度度量相加。在等式2中示出了每个区的锐度计算的例子(例如,基于被窗口化为640×32条的照相机的使用)。对于第i行、达到32的维度n以及第j列、达到640/z的维度m而言,其中,z是区的数目,可以由等式 2来表示用于区的锐度:
锐度 等式2
其中,k是在1和5之间或等于1和5的整数。还可以与在此描述的系统相关地使用其它锐度度量和算法。随着XY移动台130沿着y轴运动,系统获取用于聚焦窗口402中的全部的区0-7的锐度信息。随着台130移动而得知组织切片高度如何改变是理想的。通过计算锐度曲线(最大锐度是最佳聚焦),通过改变聚焦高度,区6和7例如可以在使下一个最佳聚焦面所处地方的上面的下一个帧移动之前提供信息。如果通过该先行而预期到大的聚焦变化,则可以使台130减慢以提供更紧密间隔的点以更好地跟踪高度过渡。
在扫描处理期间,确定系统是否从空白空间(无组织)过渡至更暗空间(组织)可能是有利的。通过在区6和7中计算锐度,例如,可能预测该过渡是否即将发生。在扫描列的同时,如果区6和7示出增加的锐度,则可以命令XY移动台130慢下来以在组织边界上创建更紧密间隔的聚焦点。如果另一方面检测到从高锐度至低锐度的移动,则可以确定扫描仪视野正在进入空白空间,并且使台130慢下来以在组织边界上创建更紧密间隔的聚焦点可能是理想的。在其中这些过渡不发生的区域中,可以命令台130以更高的恒定速度移动以增加载片扫描的总吞吐量。该方法可以允许有利地快速地扫描组织。根据在此描述的系统,可以在收集聚焦数据的同时取得快照。此外,可以在第一扫描中收集所有的聚焦数据并将其存储,并且可以在后续的扫描期间在最佳聚焦点处取得快照。实施例可以用锐度值以与如在此描述的方式类似的方式来使用对比率或函数值以检测聚焦变化并因此确定进或出包含组织或空白空间的区域的过渡。
例如,对于15mm×15mm 20x扫描而言,在0.588×0.432 mm的图像帧大小下,存在26列的数据,每列具有35个帧。在30 fps的成像速率下,在1.2秒或大约30秒的扫描时间中历遍每列。由于聚焦传感器160每秒计算120个(或更多)聚焦点,所以在此描述的系统可以每帧获得4次聚焦(120次聚焦/秒除以30 fps)。在60 fps的成像速率下,扫描时间是15秒和每帧两次焦点(120次聚焦/秒除以60 fps)。
在另一实施例中,可以使用彩色照相机作为聚焦传感器160,并且可以替换地和/或附加地将色度度量确定为锐度对比度度量。例如,根据本实施例,可以合适地使用640×480 Genie照相机的Dalsa彩色版本作为聚焦传感器。可以将色度度量描述为相对于被类似地照亮的白色的亮度的彩度。在等式形式(等式 3A和3B)中,色度(C)可以是R、G、B色彩测量的线性组合:
等式3A
等式3B
注意R=G=B,CB=CR=0。基于CB和CR,可以确定表示总色度的用于C的值(例如,诸如通过添加CB 和 CR)。
随着XY移动台130沿着y轴移动,聚焦传感器160可以获取色彩(R、G、B)信息,如在亮场显微镜中那样。随着台移动,得知组织切片高度正如何变化是理想的。和对比度技术一样,RBG色彩信息的使用可被用来确定系统是否正在从空白空间(无组织)过渡至彩色空间(组织)。通过计算区6和7中的色度,例如,预测此过渡是否即将发生是可能的。如果例如检测到非常小的色度,则C=0且可以认识到没有组织边界正在靠近。然而,在扫描聚焦列的同时,如果区6和7示出增加的色度,则可以命令台130慢下来以在组织边界上创建更紧密间隔的聚焦点。如果另一方面检测到从高色度至低色度的移动,则可以确定扫描仪正在进入空白空间,并且使台130慢下来以在组织边界上创建更紧密间隔的聚焦点可能是理想的。在其中这些过渡不发生的区域中,可以命令台130以更高的恒定速度移动以增加载片扫描的总吞吐量。
与使用锐度值、对比率值和/或色度值来确定视场或即将到来的(多个)帧正在进入或离开具有组织的载片区域的时间相关地,可以实现处理改变。例如,当从空白区域(例如在组织区域之间)进入具有组织的区域时,可以减少沿Y方向的运动且还可以增加所获得的聚焦点的数目。当观看空白空间或组织样本之间的区域时,可以增加沿Y方向中的移动且直至检测到在包含组织的区域上的移动前更少的焦点被确定(例如诸如,通过增加的色度和/或锐度值)。
图11示出依照在此的技术的实施例中的在各时间点可以获得的不同锐度值的图形图解。顶部部分462包括对应于抖动透镜运动的半正弦波周期(例如,单个峰值到峰值周期或时段的一半)的曲线452。X轴对应于此周期期间的抖动透镜振幅值且Y轴对应于锐度值。诸如点462a的每个点表示在其处使用聚焦传感器来获得帧的点,其中,每个帧是在由点的X轴值表示的抖动透镜振幅下获得的且具有由点的Y轴值表示的锐度值。底部部分464中的元素465表示针对如在用于所图解的数据点的部分462中表示的所获得锐度值组拟合的曲线。
图12是示出根据在此描述的系统的实施例的在经受检查的样本的扫描期间的动态即时聚焦处理的流程图500。在步骤502,可以针对被检查的样本确定标称聚焦面或参考面。在步骤502之后,处理进行到步骤504,其中根据在此描述的系统,将抖动透镜设定成以特定的谐振频率运动。在步骤504之后,处理进行到步骤506,其中命令XY移动台以特定速度运动。应注意,如在此讨论的处理的其它步骤的情况那样,可以依照在此描述的系统适当地修改步骤504和506的顺序。在步骤506之后,处理进行到步骤508,其中根据在此描述的系统,与抖动透镜的运动(例如正弦的)相关地执行相对于被检查的样本的用于聚焦点的锐度计算。锐度计算可以包括对比度,色度和/或其它适当测量的使用,如在此于别处进一步讨论的那样。
在步骤508之后,处理进行到步骤510,其中根据在此描述的系统,针对与图像传感器相关地使用以捕获图像的显微镜物镜的位置来确定最佳聚焦位置。在步骤510之后,处理进行到步骤512,其中关系到最佳聚焦位置的控制信号被发送到控制显微镜物镜的位置(z轴)的缓慢聚焦台。步骤512还可以包括向照相机(例如图像传感器)发送触发信号以捕获在物镜下面的样本部分的图像。触发信号可以是引起图像传感器进行的图像捕获的控制信号,诸如例如在特定数目的周期(例如如与抖动透镜移动有关)之后。在步骤512之后,处理进行到测试步骤514,其中确定是否应调整将样本保持在扫描下的XY移动台的速度。如在此于别处进一步详细讨论的那样,可以使用聚焦视场中的多个区的锐度和/或其它信息根据先行处理技术作出确定。如果在测试步骤514处,确定要调整XY台的速度,则处理进行到其中调整XY移动台的速度的步骤516。在步骤516之后,处理返回进行到步骤508。如果在测试步骤514处,确定将不作出对XY移动台的速度的调整,则处理进行到其中确定聚焦处理是否将继续的测试步骤518。如果处理将继续,则处理返回到步骤508。否则,如果处理不继续(例如,当前样本的扫描已完成),则结束聚焦处理并且处理完成。
图13是示出根据在此描述的系统的实施例的缓慢聚焦台处的处理的流程图530。在步骤532,控制显微镜物镜的位置(例如沿着Z轴)的缓慢聚焦台接收具有用于调整正在检查样本的显微镜物镜的位置的信息的控制信号。在步骤532之后,处理进行到步骤534,其中根据在此描述的系统,缓慢聚焦台调整显微镜物镜的位置。在步骤534之后,处理进行到等待步骤536,其中缓慢聚焦台等待接收另一控制信号。在步骤536之后,处理返回进行到步骤532。
图14是示出根据在此描述的系统的实施例的图像捕获处理的流程图550。在步骤552处,照相机的图像传感器接收触发信号和/或其它指令,其触发用以捕获在经受显微镜检查的样本的图像的处理。在各种实施例中,根据在此描述的系统,可以从控制系统接收触发信号,控制系统控制在已在聚焦处理中使用的抖动透镜的运动的特定数目的周期之后的图像传感器图像捕获处理的触发。替换地,可以基于XY移动台上的位置传感器来提供触发信号。在实施例中,位置传感器可以是Renishaw线性编码器模型No. T1000-10A。在步骤552之后,处理进行到步骤554,其中图像传感器捕获图像。如在此详细讨论的那样,根据在此描述的系统,由图像传感器捕获的图像与聚焦系统的操作相关而可以是合焦的。依照在此参考的其它技术,可以将所捕获的图像缝合在一起。在步骤554之后,处理进行到步骤556,其中图像传感器等待接收另一触发信号。在步骤556之后,处理返回进行到步骤552。
图15是示出根据在此描述的系统的实施例的用于聚焦处理的替换布置的示意性图解600。窗口化聚焦传感器可以具有可被偏斜或者以别的方式定位为对角地扫描与成像传感器帧FOV 604的宽度基本上相等的一行的帧视场(FOV)602。如在此所描述那样,可以使窗口沿着行进方向偏斜。例如,可以使偏斜的聚焦传感器的帧FOV 602旋转至45度,其将在对象(组织)处具有0.94×0.707=0.66 mm的有效宽度。成像传感器的帧FOV 604可以具有0.558 mm的有效宽度,因此随着保持组织的XY移动台在物镜下运动,偏斜的聚焦传感器帧FOV 602看到图像传感器所观察到的该行的边缘。在视图中,示出了在时间上在中间位置(0,1,2和3)处被叠加在图像传感器帧FOV 604上的偏斜的聚焦传感器的多个帧。可以在聚焦列中的邻近帧的中心之间的三个点处取聚焦点。使用聚焦位置0,1,2和3来对用于位置0*处的下一快拍帧的最佳聚焦位置进行外插。用于这种方法的扫描时间将与在此于别处描述的方法类似。虽然偏斜的聚焦传感器的帧FOV 602具有更短的先行,这种情况下,0.707×(0.94-0.432)/2=0.18 mm或偏斜的聚焦传感器42%地侵占将要获取的下一帧,偏斜的聚焦传感器的帧FOV 602相对于图像传感器帧FOV 604是斜的,在扫描行的边缘上看到组织,这在某些情况下对提供边缘聚焦信息可能是有利的。
图16是示出根据在此描述的系统的另一实施例的用于聚焦处理的替换布置的示意性图解650。如在图解650中那样,示出了偏斜的聚焦传感器的帧FOV 652和图像传感器的帧FOV 654。偏斜的传感器的帧FOV 652可以用于获取关于跨组织的向前道次的聚焦信息。在向后道次中,成像传感器在聚焦台使用在先向前道次的聚焦数据进行调整的同时对帧进行快拍。如果一个人要在在先方法中在跳过中间位置0,1,2,3的每个图像帧处取得聚焦数据,若假定高速率的聚焦点获取,则XY移动台可以在向前道次中以4x速度移动。例如,对于20x下的15 mm×15 mm而言,一列数据是35个帧。因为每秒在120个点处获取聚焦数据,所以可以在0.3秒中执行向前道次(每秒35帧/120个聚焦点)。在该例子中列的数目为26,因此可以在26×0.3或7.6秒中完成聚焦部分。30 fps下的图像获取约为32秒。因此,总扫描时间的聚焦部分仅为20%,这是高效的。此外,如果允许聚焦每隔一个帧跳跃,则扫描时间的聚焦部分将进一步大大地下降。
应注意,在其它实施例中,聚焦传感器的聚焦条可以被定位在视场内的其它位置处并且在其它取向下,以对邻近的数据列采样来提供可以与在此描述的系统相关地使用的附加先行信息。
传递载片的XY移动台可以相对于向后行进上产生的最佳聚焦点重复在向前行进上产生的那些。对于其中聚焦深度为0.9微米的20x 0.75 NA物镜而言,重复至约0.1微米将是理想的。台可以被构造为满足0.1微米向前/向后可重复性,并且因此,这个要求在技术上是可行的,如在此于别处进一步讨论的那样。
在实施例中,根据在此描述的系统的正在被检查的玻璃载片上的组织或涂片可以覆盖整个载片或近似25 mm×50 mm区域。分辨率取决于物镜的数值孔径(NA)、到载片的耦合介质、聚光器的NA和光的波长。例如,在60x下,对于0.9 NA的显微镜物镜、平面复消色差透镜(平面APO)而言,在绿光(532 nm)下的空气中,显微镜的横向分辨率为大约0.2 μm,具有0.5 μm的聚焦深度。
与在此描述的系统的操作相关地,可以通过经由线扫描传感器或CCD阵列在所关心区域上使有限的视场移动并将有限视场或帧或拼接片组装在一起以形成马赛克来获得数字图像。在观看者跨整个图像操纵时,马赛克看起来是无缝的,没有可见的拼接、聚焦或辐照不规则是理想的。
图17是示出根据在此描述的系统的实施例的用以获取载片上的组织的马赛克图像的处理的流程图700。在步骤702处,可以获取载片的缩略图像。缩略图像可以是约1x或2x放大的低分辨率。如果在载片标签上存在条形码,则可以在该步骤处对该条形码解码并将其附着于载片图像。在步骤702之后,处理进行到步骤704,其中可以使用标准图像处理工具在载片上找到组织。可以对组织划定界限以将扫描区域缩窄至给定的所关心区域。在步骤704之后,处理进行到步骤706,其中可以将XY坐标系附着于组织面。在步骤706之后,处理可以进行到步骤708,其中可以针对组织以规则的X和Y间距生成一个或多个聚焦点,并且可以使用聚焦技术来确定最佳聚焦,诸如在此于别处讨论的动态即时聚焦技术中的一个或多个。在步骤708之后,处理可以进行到步骤710,其中可以保存所需的聚焦点的坐标和/或其它适当的信息并且可以将其称为锚定点。应注意在帧位于锚定点之间的情况下可以对聚焦点进行内插。
在步骤710之后,处理可以进行到步骤712,其中依照在此于别处讨论的技术,将显微镜物镜定位于最佳聚焦位置处。在步骤712之后,处理进行到步骤714,其中对图像进行收集。在步骤714之后,处理进行到测试步骤716,其中确定是否整个所关心区域已被扫描并成像。如果没有,则处理进行到步骤718,其中根据在此于别处所讨论的技术,XY台使组织沿着X和/或Y方向移动。在步骤718之后,处理返回进行到步骤708。如果在测试步骤716,确定整个所关心区域已被扫描和成像,则处理进行到步骤720,其中根据在此描述的系统并使用在此于别处讨论的技术(参考例如美国专利申请公开号NO.2008/0240613),将所收集的图像帧拼接或以其它方式组合在一起以创建马赛克图像。在步骤720之后,处理完成。应注意还可以与在此描述的系统相关地使用其它适当的顺序以获取一个或多个马赛克图像。
为了在此描述的系统的有利操作,z位置可重复性可以可重复至物镜的聚焦深度的一小部分。在拼接系统(2D CCD或CMOS)中和在线扫描系统的邻近列中,容易地看到由聚焦电动机返回至z位置中的小的误差。对于60x下的上面提到的分辨率而言,约150纳米或以下的z峰值可重复性是理想的,并且这样的可重复性将相应地合适于其它物镜,诸如4x,20x和/或40x物镜。
进一步根据在此描述的系统,提供了用于病理学显微术应用的包括XY台的载片台系统的各种实施例,其可以与用于在此讨论的数字病理成像的特征和技术相关地使用,包括例如充当与动态即时聚焦技术相关的在此于别处讨论的XY移动台130。根据实施例,并且如在此于别处进一步详细地讨论的那样,XY台可以包括硬质基座块。该基座块可以包括被支撑在提高凸台上的扁平玻璃块和被支撑在提高凸台上的具有三角形截面的第二玻璃块。两个块可以被用作用以引导移动台块的平滑并且笔直的轨道或道路。
图18是示出根据在此描述的系统的实施例的XY台的精密台800(例如Y台部分)的实施方式的示意性图解。例如,精密台800可以在25 mm×50 mm区域上实现约150纳米或以下的z峰值可重复性。如在此于别处进一步讨论的那样,可以与在此于别处讨论的特征和技术相关地使用精密台800,包括例如与相对于动态即时聚焦技术讨论的XY移动台130相关地工作。精密台800可以包括硬质基座块810,其中扁平玻璃块812被支撑在提高凸台上。这些凸台的间距使得简单支撑体上的玻璃块的由于精密台800的重量而引起的下垂被最小化。具有三角形截面的第二玻璃块814被支撑在提高凸台上。可以用不损伤玻璃块的半刚性环氧树脂将玻璃块812,814粘性地结合到基座块810。玻璃块812,814可以是笔直的并且被抛光至500 nm下的光的一个或两个波。可以采用诸如Zerodur的低热膨胀的材料作为用于玻璃块812,814的材料。还可以与在此描述系统相关地使用其它适当类型的玻璃。切口816可以允许来自显微镜聚光器的光照亮载片上的组织。
可以使用两个玻璃块812,814作为用以引导移动台块820的平滑并且笔直的轨道或道路。移动台块820可以包括接触玻璃块的硬塑球形按钮(例如,5个按钮),如在位置821a-e处所示。由于这些塑料按钮是球形的,所以可以使接触表面局限于由塑料的弹性模数确定的非常小的区域<<0.5 mm)。例如,可以使用来自英国GGB Bearing技术公司的PTFE或其它热塑混合物加其它润滑剂添加剂并被浇铸成约3 mm直径的接触按钮的形状。在实施例中,塑料按钮与抛光玻璃之间的摩擦系数应尽可能低,但是避免使用液体润滑剂以节省仪器维护可能是理想的。在实施例中,可以在无润滑运转的情况下易于实现在0.1和0.15之间的摩擦系数。
图19A和19B是根据在此描述系统的实施例的移动台块820的更详细的视图,示出在位置821a-e处接触玻璃块810,812的球形按钮822a-e。可以将按钮布置在允许沿除驱动方向(Y)之外的所有方向的优良硬度的位置上。例如,两个塑料按钮可以彼此面对以接触三角形玻璃块814的侧面(即4个按钮822b-e)并将一个塑料按钮822a定位为接触扁平玻璃块812。移动台块820可以包括将轻重量并被成形为将重力中心放在由塑料支撑按钮822a-e的位置形成的三角形的质心826处的一个或多个孔824。以这种方式,三角形828的拐角处的每个塑料按钮822a-e可以在台800的运动期间的所有时间具有相等的重量。
返回参考图18,经由嵌套832中的弹簧加载臂830夹住载片801。可以将载片801手动地放置在嵌套832中和/或用辅助机构以机器人方式放置在嵌套832中。硬质悬臂840支撑并刚性地夹紧可以由高疲劳强度钢制成的小直径挠曲杆842的端部。在一个例子中,此直径可以是0.7 mm。可以将杆挠曲部分842的另一端部附着于移动台820上的质心位置826。可以将悬臂840附着于可以在硬化钢导轨852上经由再循环承载设计运行的承载块850。可以将导引螺钉组件854附着于承载块850并且可以由步进式电动机856来使导引螺钉组件854旋转。用于上面提及的元件的合适的组件可以是通过诸如日本的THK的几家公司获得的。导引螺钉组件854在导轨852上驱动承载块850,其经由杆挠曲部分842拉动或推动移动台块820。
杆挠曲部分842的弯曲劲度可以是小于其塑料垫片上的移动台块820的硬度(这是与跟沿z方向的移动台的面正交的力相反的硬度)大于6000x的因数。这有效地将移动台块820与由承载噪声产生的承载块850/悬臂840的上下运动隔离。
在此描述的精密台800的设计中的精细的质量平衡和对几何结构的注意使将产生小的摇摆运动的移动台块820上的力矩最小化。另外,由于移动台块820在抛光玻璃上行进,所以移动台块820具有小于足以用于60x放大下的扫描的150纳米峰值的z位置可重复性。由于60x条件是最严格的,所以诸如20x和40x的其它更低放大的高NA物镜也示出与在60x条件下获得的性能类似的合适的性能。
图20示出根据在此讨论的精密台特征并且包括根据在此描述的系统的实施例的Y台920,X台940和底板960的整个XY混合台900的实施方式。在该情况下,用于Y台920的基座块变成作为沿X方向的移动台的X台940。用于X台940的基座块是可以被紧固至底面的底板960。根据在此描述的系统,XY混合台900提供约150纳米的沿Z方向的可重复性以及沿X和Y方向的约1-2微米(或以下)的可重复性。如果台经由带刻度包括反馈位置,诸如由英国Gloucestershire的Renishaw生产的那些,则根据在此描述的系统,可以实现亚微米精确度。
根据在此描述的系统的台设计可以优越于球形承载支撑的移动台,因为根据在此描述的系统的XY台不遭受由于非球形滚珠承载或非圆筒形交叉辊子承载而引起的可重复性误差。另外,在重复循环承载设计时,不同大小滚珠处的新滚珠补充可以引起非可重复运动。在此描述的实施例的附加益处是台的成本。玻璃元件利用标准研磨和抛光技术并且不是过于昂贵的。承载块和导引螺钉组件不需要是特别高的质量,因为杆挠曲部分将移动台从承载块解耦。
进一步根据在此描述的系统,减少数字病理载片的扫描期间的扫描时间和/或以其它方式使其最小化是有利的。在临床环境中,理想的工作流程是将载片的支架放置到机器人载片扫描显微镜中,关闭门并命令系统扫描载片。理想的是在扫描所有载片之前不需要用户干预。批量大小可以包括多个载片(例如,160个载片)且扫描所有载片的时间称为批量时间。载片吞吐量是每小时处理的载片的数目。周期时间是准备好观看的每个可用载片图像之间的时间。
在获取图像中周期时间可能受到以下步骤的影响:(a)以机器人方式拾取载片;(b)创建载片组织区域和标签的缩略图或概图图像;(c)计算限定载片组织的所关心区域;(d)对有界组织区域进行预扫描以找到组织上的最佳聚焦点的规则阵列;(e)根据台和/或传感器的移动来扫描组织;(f)创建准备好观看的压缩输出图像;以及(g)存放载片,准备下一个载片。应注意如果根据在此描述的系统来执行动态聚焦或“动态即时”聚焦,则步骤(d)可能不是必需的,并且其中相应地,由于使用动态即时聚焦技术,可以减少扫描/图像获取时间。
在此描述的系统可以进一步牵涉消除或明显地缩短用以执行步骤(a)、(b)、(c)和(g)的时间。根据在此描述系统的各种实施例,这些增益可以例如通过使用缓存概念来实现,其中用于一个载片的上面提到的步骤(a)、(b)、(c)和(g)在时间上与用于另一载片的步骤(d)、(e)和(f)重叠,如在此进一步详细讨论的那样。在各种实施例中,用于一个载片的步骤(a)、(b)和(c)与用于另一载片的步骤(d)、(e)和(f)的重叠与其中用于一个载片的步骤(a)、(b)和(c)与用于另一载片的步骤(d)、(e)和(f)不重叠的系统相比可以提供10%、25%或者甚至50%的增益。
图21是示出根据在此描述系统的实施例的载片缓存装置1000的示意性图解。可以将载片拾取头1002定位为拾取载片1001。拾取头1002可以使用机械装置和/或真空装置来拾取载片1001。载片1001可以是批量中的载片集合中的一个,例如一批160个载片。可以将载片的此集合设置在载片支架1003中。拾取头1002被附着于在钢轨1005上行进的承载车或块1004。承载块1004被旋转导引螺钉1006移动。可以用旋转编码器1007来检测电动机计数并将其转换成线性行进以控制沿Y方向的载片位置。元件1002-1007可以包括称为载片加载器/卸载器1008的移动组件。载片加载器/卸载器1008还在导轨1010上沿x方向在电动承载车或块1009上运动,这允许载片加载器/卸载器1008沿X和Y方向两者运动。
在操作中,可以将仍被保持在拾取头1002上的载片放置在低分辨率照相机1011下面以获得载片组织区域和标签的缩略图或概图(例如,上述步骤(b))。一旦此操作完成,则可以执行步骤(c)并将载片放置到载片缓冲器1012上的位置上。载片缓冲器1012可以包括两个(或更多)缓冲器槽或位置1018a、1018b,并且被示出为在缓冲器位置1018a中包括载片1017。
在实施例中,混合XY台1013可以包括沿Y方向运动且被安装到沿x方向运动的板1015的台板1014。XY台1013可以具有与在此于别处所讨论的类似的特征和功能,包括例如在此讨论的混合XY台900的特征。台板1014还可以包括附加载片拾取头1016。拾取头1016可以类似于上述拾取头1012。拾取头1016可以使用机械装置和/或真空装置来拾取载片。
混合XY台1013的拾取头1016可以移动至缓冲器位置1018a并拾取载片1017。载片1017现在可以继续至上面提到的步骤中的一个或多个,包括步骤:(d)预扫描,(e)扫描和(f)创建输出图像步骤。在正在执行此处理的同时,载片加载器/卸载器1008可以拾取另一载片(例如载片1001),使用照相机1011来获得载片1001的缩略视图,并将载片1001放置在用虚线1001'示意性地示出的载片缓冲器1012中的空位置1018b上。当在前一载片(载片1017)上完成扫描时,XY混合台1013的载片拾取头1016可以将载片1017放置到缓冲器位置1018a上并从缓冲器位置1018b拾取准备好进行扫描的下一载片(载片1001)。混合XY台1013可以依照在此于别处讨论的特征和技术在高分辨率光学系统显微镜光学器件和照相机1019下面以规则的来回扫描模式运动以获取生物组织的高分辨率图像。应进一步注意可以由控制系统中的一个或多个处理器来控制混合XY台1013和/或载片加载器/卸载器1008的运动和载片选择。
载片加载器/卸载器1008可以移动至缓冲器位置1018a并拾取载片1017且将载片1017存放至载片支架1003中。此载片1017已完成上述列举的所有步骤。载片加载器/卸载器1008然后可以继续拾取另一载片并将其加载至载片缓冲器1012中,并最后拾取载片1001并将其返回至载片支架1003。与上面所描述的类似的处理可以继续直到在载片支架1003中的所有载片已被扫描。
根据在此描述系统的载片缓存技术提供有利时间节省。例如,在20x 15 mm×15mm场处的系统中,拾取时间为约25秒,缩略图获取为约10秒,预扫描时间为约30秒且扫描时间为90秒。输出文件生成与扫描过程同时地完成且可以增加约5秒。载片的存放为约20秒。将所有这些时间加在一起指示180秒周期时间。XY混合台仍需要时间以拾取并存放已扫描载片,其可以占约10秒。因此,扫描时间的减少因此为约1-(180-55+ 10)/180 = 25%。对于使用动态聚焦技术的系统而言,诸如在此于别处进一步讨论的动态即时聚焦那样,可以消除预扫描时间,并且用高数据速率照相机,不与拾取和存放相关联的时间可以减少至20-30秒。使用载片缓存时的扫描时间的减少在这种情况下可以为约1- (75-55+ 10)/75 = 50%。
图22A是示出与第一载片相关的根据在此描述系统的实施例的载片缓存处理的流程图1100。在步骤1102处,从载片支架拾取第一载片。在步骤1102之后,处理进行到步骤1104,其中获得缩略图像和/或对第一载片执行其它缩略图处理,其可以包括确定载片上的组织的所关心区域。在步骤1104之后,处理进行到步骤1106,其中第一载片被存放至载片缓冲器中。在步骤1106之后,处理进行到步骤1108,其中从载片缓冲器拾取第一载片。在步骤1108之后,处理进行到步骤1110,其中根据与在此于别处进一步讨论的相同的技术对第一载片进行扫描和成像。应注意在各种实施例中,扫描和成像技术可以包括预扫描聚焦步骤和/或使用动态聚焦技术,诸如动态即时聚焦技术。在步骤1110之后,处理进行到步骤1112,其中,将第一载片存放在载片缓冲器中。在步骤1112之后,处理进行到步骤1114,其中从载片缓冲器拾取第一载片。在步骤1114之后,处理进行到步骤1116,其中将第一载片存放在载片支架中。在步骤1116之后,相对于第一载片的处理完成。
图22B是示出根据在此描述系统的实施例的与第二载片相关的载片缓存处理的流程图1120。如在此进一步讨论的那样,可以与流程图1100的步骤并行地执行流程图1120的各种步骤。在步骤1122处,从载片支架拾取第二载片。在步骤1102之后,处理进行到步骤1124,其中获得缩略图像和/或对第二载片执行其它缩略图处理,其可以包括确定载片上的组织的所关心区域。在步骤1124之后,处理进行到步骤1126,其中第二载片被存放至载片缓冲器中。在步骤1126之后,处理进行到步骤1128,其中从载片缓冲器拾取第二载片。在步骤1128之后,处理进行到步骤1130,其中根据与在此于别处进一步讨论的相同的技术对第二载片进行扫描和成像。应注意在各种实施例中,扫描和成像技术可以包括预扫描聚焦步骤和/或使用动态聚焦技术,诸如动态即时聚焦技术。在步骤1130之后,处理进行到步骤1132,其中将第二载片存放在载片缓冲器中。在步骤1132之后,处理进行到步骤1134,其中从载片缓冲器拾取第二载片。在步骤1134之后,处理进行到步骤1136,其中将第二载片存放在载片支架中。在步骤1136之后,相对于第二载片的处理完成。
依照解决载片缓存的在此描述的系统的实施例,可以由载片缓存装置来与相对于第二载片的流程图1120的步骤并行地执行相对于第一载片的流程图1100的步骤以便减少周期时间。例如,用于第二载片的流程图1120的步骤1122、1124、1126(例如,与从载片支架拾取第二载片、缩略图像处理和将第二载片存放到载片缓冲器中相关的步骤)可以与相对于第一载片的流程图1100的步骤1108、1110和1112(例如,与从载片缓冲器拾取第一载片、对第一载片进行扫描和成像并将第一载片存放到载片缓冲器中相关的步骤)重叠。此外,步骤1134和1136(例如,与从载片缓冲器拾取第二载片并将载片存放到载片支架中相关的步骤)也可以与第一载片的扫描步骤重叠。与每次处理一个载片相比,根据在此描述系统,可以根据并行载片处理技术获得达到50%的时间增益,具有使用在此描述系统和技术的其它方面的可能的附加增益。
图23A和23B示出使用根据在此描述系统的实施例的载片缓存技术的时序图,并且图解根据在此描述系统的各种实施例的时间节省。
图23A示出用于其中使用预扫描步骤的情形的时序图1150。该时序图示出与使用载片缓存来执行载片处理步骤相关的用于近似为300秒的跨度内的三个载片(载片1、2和3)的时序,所述载片处理步骤包括从载片支架拾取载片、缩略图像处理、将载片存放在缓冲器中、从缓冲器拾取、预扫描、扫描载片并输出文件、存放到缓冲器中并存放到载片支架中。如所图解的那样,在实施例中,用于所图解的处理的周期时间可以为近似150秒。
图23B示出用于其中使用动态即时聚焦技术(无预扫描)的情形的时序图1160。该时序图示出与使用载片缓存来执行载片移动和扫描步骤相关的用于约150秒的跨度内的三个载片(载片1、2和3)的时序,所述载片移动和扫描步骤包括从载片支架拾取载片、缩略图像处理、将载片存放在缓冲器中、从缓冲器拾取、扫描载片并输出文件、存放到缓冲器中并存放到载片支架中。如所图解的那样,在实施例中,用于所图解的处理的周期时间可以为约50秒。
图24是示出根据在此描述系统的另一实施例的载片缓存装置1200的示意性图解。在所图解的实施例中,不需要缓冲器,并且使用载片缓存装置1200,可以从周期时间消除拾取、缩略图和存放时间。载片缓存装置1200可以包括独立地操作的两个XY混合台1210、1220。XY混合台1210、1220中的每一个可以具有与在此相对于XY混合台1013所讨论的那些类似的特征。可以将第一载片支架1211定位于台1210的端部处且可以将第二载片支架1221定位于台1220的端部处。应注意与在此描述系统的另一实施例相关,可以替代地将第一载片支架1211和第二载片支架1211称为一个载片支架的各部分。两个缩略照相机1212、1222可以为XY混合台1210、1220中的每一个服务。载片支架1211、1221中的每一个可以用相应的拾取头将载片提供给其配套XY混合台1210、1220。一个显微镜光具组1230可以为两个XY混合台1210、1220提供服务。例如,在XY混合台(例如台1210)中的一个正在扫描载片的同时,另一个(例如台1220)用另一载片执行其拾取、缩略图和存放功能。这些功能可以与扫描时间重叠。因此,可以用载片的扫描时间来确定周期时间,并且根据在此描述系统的所图解的实施例,因此从周期时间中消除了拾取、缩略图和存放时间。
图25A是示出针对具有用于载片处理的两个XY混合台的载片缓存装置描述的系统的实施例的与第一载片相关的载片缓存处理的流程图1250。在步骤1252处,从载片支架拾取第一载片。在步骤1252之后,处理进行到步骤1254,其中,对第一载片执行缩略图处理。在步骤1254之后,处理进行到步骤1256,其中,根据与在此于别处进一步讨论的相同的技术对第一载片进行扫描和成像。应注意在各种实施例中,扫描和成像技术可以包括预扫描聚焦步骤和/或使用动态聚焦技术,诸如动态即时聚焦技术。在步骤1256之后,处理进行到步骤1258,其中将第一载片存放回载片支架中。在步骤1258之后,相对于第一载片的处理完成。
图25B是示出针对具有用于载片处理的两个XY混合台的载片缓存装置描述的系统的实施例的与第二载片相关的载片缓存处理的流程图1270。在步骤1272处,从载片支架拾取第二载片。在步骤1272之后,处理进行到步骤1274,其中对第二载片执行缩略图处理。在步骤1274之后,处理进行到步骤1276,其中,根据与在此于别处进一步讨论的技术相似的技术对第二载片进行扫描和成像。应注意在各种实施例中,扫描和成像技术可以包括预扫描聚焦步骤和/或使用动态聚焦技术,诸如动态即时聚焦技术。在步骤1276之后,处理进行到步骤1278,其中将第二载片存放回载片支架中。在步骤1278之后,相对于第二载片的处理完成。
依照牵涉载片缓存的在此描述系统的实施例,可以由载片缓存装置来与关于第二载片的流程图1270的步骤并行地执行关于第一载片的流程图1250的步骤以便减少周期时间。例如,用于第二载片的步骤1272、1274和1278(例如,拾取、缩略图处理和存放)可以与第一载片的步骤1256(例如,第一载片的扫描/成像)重叠,并且反之亦然,使得用于拾取、缩略图处理和存放的时间被从周期时间消除。因此根据在此描述系统的实施例,仅由载片的扫描时间来确定周期时间。
图26是示出根据在此描述系统的另一实施例的载片缓存装置1300的示意性图解。载片缓存装置1300可以包括被配置为圆盘传送带1310的载片支架、载片搬运器1320、缓冲器1330和XY台1340。圆盘传送带1310可以包括定义位置1312、1312'、1312"的一个或多个载片保持器装置(例如,盒),可以在诸如载片1301的载片被成像装置1350成像之前和/或之后将其放置于位置1312、1312'、1312",成像装置1350可以具有与在此于别处所讨论的特征和功能相似的特征和功能。
位置1312、1312'、1312"被示出为楔形物阵列(例如,8个楔形物),并且如在此于别处进一步讨论的那样,圆盘传送带1310可以具有高度,使得多个载片位置在所示的顶层楔形物位置1312、1312'、1312"中的每一个下面延伸。载片搬运器1320可以包括充当拾取头的臂1322且可以包括用以拾取载片的机械和/或真空装置。载片搬运器1320上的臂1322可以在位置1322a-d之间移动以使载片在圆盘传送带1310、缓冲器1330和XY台1340之间移动。
缓冲器1330可以包括多个缓冲器位置1332、1334。可以将一个缓冲器位置1332指定为返回缓冲器位置1332,被经由XY台1340从成像装置1350返回的载片在被载片搬运器1320移动回至圆盘传送带1310之前可以被放置其中。可以将另一缓冲器位置1334指定为照相机缓冲器位置1334,其中将被发送到成像装置1350的载片可以首先具有根据在此于别处讨论的技术捕获的载片的缩略图像。在已在照相机缓冲器位置1334处捕获载片的缩略图像之后,可以将载片运动至XY台1340上的位置1342,XY台1340将载片传送至成像装置1350以便根据在此于别处所讨论的技术进行扫描和成像。
图27是示出载片缓存装置1300的另一视图的示意性图解。载片缓存装置1300的部件可以具有以各种移动并以多个移动自由度进行操作的功能。例如,圆盘传送带1310可以是可沿着方向1311旋转的且可以在每个旋转位置处包括在多个高度位置处的多个载片位置1312a-d以容纳多个载片(被示出为载片1、2、3和4)。在实施例中,楔形物位置1312、1312'、1312"中的每一个中的多个载片位置1312a-d可以包括用于例如等距地定位于圆盘传送带1310的高度内的40个载片的位置,所述圆盘传送带1310的高度在一个实施例中可以测量为12英寸。进一步地,圆盘传送带310还可以包括具有一个或多个载片位置1314a、b的用户托盘1314,在所述一个或多个载片位置1314a、b处,用户可以插入除圆盘传送带1310中的其它载片之外的要成像的载片。载片到用户托盘1314中的相互作用(例如提起用户托盘1314的盖和/或将载片插入用户托盘1314的位置1314a、b中的一个中)可以用于触发旁路模式,在该旁路模式下,处理来自用户托盘1314的载片而不是来自圆盘传送带1310的楔形物位置的下一个载片。
示出了在运动中具有至少三个自由度的载片搬运器1320的臂1322。例如,臂1322可以沿方向1321a旋转以便啮合圆盘传送带1310、缓冲器1330和XY台1340中的每一个。另外,臂1322可以是可与圆盘传送带1310的位置1312a-d的不同高度相对应地沿着方向1321b调整的。另外,臂1322可以与从圆盘传送带1310、缓冲器1330和XY台1340加载和卸载载片相关地沿着方向1321c延伸。在实施例中,使臂1322旋转的弧距最小化和/或使臂1322和/或载片搬运器1320历遍的其它距离最小化以便使载片缓存装置1300的空载时间最小化是有利的,如以下进一步讨论的那样。在各种实施例中,可以由与在此于别处讨论的相同的控制系统来控制圆盘传送带1310、载片搬运器1320和XY台1340的运动。还应注意在实施例中,缓冲器1330和XY台1340可以处于同一高度。
载片可以携带不同类型的生物学样品。生物学样品可以是从受检体植物移除的组织样品(例如,任意的细胞收集)。在一些实施例中,生物学样品包括(非限制地)组织切片、器官、肿瘤切片、涂片、冰冻切片、细胞学抹片或细胞系。可以使用切取活检、空芯活检、切除活检、细针吸取活检、空芯针活检、立体定向活检、开放性活检或者手术活检来获得样品。在一些实施例中,样品可以是植物或植物组织培养等的切片。
载片一般可以是能够携带用于使用诸如光学器材(例如显微镜或其它光学装置)的器材的检查的样品的平坦透明的衬板。例如,图26的载片1301可以一般地为具有用于支撑样品的正面的透明材料矩形片。显微镜载片1301可以采用由玻璃或其它透明材料制成的标准显微镜载片的形式。在一些实施例中,载片1301具有大约3英寸(75 mm)的长度,以及大约1英寸(25 mm)的宽度和大约1 mm的厚度。
载片1301可以包括标签。标签可以包括具有被编码的指令(例如,成像指令)、受检体信息或跟踪信息等的机器可读代码(诸如一维或多维条形码或infoglyph,RFID标签,布拉格衍射光栅,磁条或纳米条形码)。可以由位于载片缓存装置1300中的不同位置处的读取器来分析标签。
载片可以包括用于保护样品的盖片。如果载片1301是标准的显微镜载片,则盖片可以具有大约0.5英寸(13 mm)到大约3英寸(76 mm)的范围的长度、大约0.5英寸(13 mm)到大约1英寸(25.5 mm)的范围的宽度以及大约0.02英寸(0.5 mm)到大约0.08英寸(2 mm)的范围的厚度。在一些实施例中,使用具有大约50 mm长、大约24 mm宽并且大约0.2 mm厚的标准盖片。如果需要或是所需,则其它尺寸也是可能的。盖片可以整体或部分地由一个或多个聚合物、塑料、合成物、玻璃及它们的组合、或者可以是一般地刚性、半刚性或柔性的其它合适的材料来制成。
图28A-28J是示出根据在此描述系统的实施例的图26和27的载片缓存装置的载片缓存操作的示意性图解。根据实施例,在此讨论的载片操作使系统的空载时间 (即不与载片扫描和成像操作重叠的载片拾取和转移操作期间的时间)最小化。空载时间可以包括例如其中XY台1340运动至允许载片搬运器1320拾取载片的位置的停泊时间。对空载时间的其它贡献包括使载片运动至缓冲器1330的返回位置并对XY台1340重新加载载片。
图28A开始其中载片2当前正在成像装置1350处被扫描并成像的所图解的顺序。载片1、3和4在圆盘传送带1310中等待被扫描并成像,并且载片搬运器1320在用于使载片2被递送至XY台1340的位置上。图28B示出载片搬运器1320旋转并下降以加载要被扫描和成像的下一个载片(载片3),同时载片2继续被扫描和成像。图28C显示载片搬运器1320将载片3运送至缓冲器1330的照相机缓冲器位置1334以便获得载片3的缩略图像。图28D显示载片搬运器1320被定位为在载片2的扫描已完成之后将载片2从已从成像装置1350返回的XY台1340卸载。应注意XY台1340运动至将被卸载的位置的时间是松弛时间的例子。XY台1340处于将被卸载在其上面等待被卸载的载片2的位置之后、并且载片3等待被加载到XY台1340上的时间是停泊时间的例子。
图28E示出载片2被载片搬运器1320从XY台1340运送至缓冲器1330的返回位置1332。载片搬运器1320然后进行到从照相机缓冲器位置1334拾取载片3的位置。图28F示出载片3被从照相机缓冲器位置1334拾取并卸载到XY台1340上。图28G示出载片3当前正在被扫描,同时载片2正在被载片搬运器1320从返回缓冲器位置1332拾取。图28H示出载片2被旋转并平移地移动至适当位置的载片搬运器1320返回至其在圆盘传送带1310中的位置。图28I示出载片搬运器1320平移地移动至适当的位置以从圆盘传送带1310拾取载片1。图28J示出载片搬运器1320运送并在其中获得载片1的缩略图像的照相机缓冲器位置处卸载载片1,同时载片3当前仍在被扫描。可以相对于圆盘传送带1310上的任何其余载片(例如,载片4)和/或针对被用户插入用户托盘1314中以发起在此所讨论的旁路模式操作的任何用户载片执行与所图解的序列相关地讨论的类似的进一步迭代。
进一步根据在此描述的系统,可以与可应用于在此描述系统的各种技术和特征的显微术实施例相关地使用照明系统。已知的是显微镜可以一般地使用用于亮场显微术的柯勒照明。柯勒照明的主要特征是照明的数值孔径和面积二者是经由可调整虹彩(iris)可控的,使得可以使照明适应于以变化的放大、视场和数值孔径对大范围的显微镜物镜进行机械加工。柯勒照明提供理想的结果,但是可能需要占用大量空间体积的多个部件。因此,在此描述系统的各种实施例进一步提供了用于显微术应用中的有利照明的特征和技术,其在保持柯勒照明的优点的同时避免了已知柯勒照明系统的某些缺点。
图29是示出根据在此描述系统的实施例的用于使用发光二极管(LED)照明组件1402来照亮载片1401的照明系统1400的示意性图解。LED照明组件1402可以具有根据在此进一步讨论的多个实施例的各种特征。来自LED照明组件1402的光经由反射镜1404和/或其它适当光学组件被传输至聚光器1406。聚光器1406可以是具有合适的工作距离(例如至少28mm)以容纳XY台1408的任何要求工作距离的聚光器,如在此于别处进一步讨论的那样。在实施例中,聚光器可以是具有28 mm工作距离的由Motic制造的聚光器SG03.0701。聚光器1406可以包括控制照亮载片1401上的样品的光的数值孔径(锥角)的可调整虹彩光圈。可以将载片1401设置在显微镜物镜1410下面的XY台1408上。可以与对载片1401上的样本进行扫描和成像相关地使用LED照明组件1402,根据在此描述系统的特征和技术,包括例如关于XY台的移动、载片缓存和/或动态聚焦的操作。
LED照明组件1402可以包括LED 1420,诸如亮白LED、可以被用作收集器元件的透镜1422以及可以控制载片1401上的照明区域的可调整虹彩场光圈1424。LED 1420的发射表面可以被透镜1422成像到聚光器1406的入射光瞳1406a上。入射光瞳1406a可以与聚光器1406的NA调整光圈1406b共同定位。可以将透镜1422选择为收集LED 1420的输出光的一大部分,并且还以适当的放大倍率使LED 1420的图像聚焦到聚光器1406的NA调整光圈1406b上,使得LED 1402的图像填充聚光器1406的NA调整光圈1406b的孔径。
可以用NA调整光圈1406b使用聚光器1406来使LED 1420的光聚焦到载片1401上。可以由安装在LED照明组件1402中的场光圈1424来控制载片1401上的照明区域。可以调整视场光圈和/或聚光器1406与场光圈1424之间的间隔以将来自LED 1420的光成像到载片1401的面上,使得场光圈1424可以控制被照亮的载片1401的区域。
因为图像传感器在包含载片的Y台移动的同时获取帧,所以可以使LED 1420脉冲接通和关断(例如选通)以允许在短时间内有非常高的亮度。例如,对于以大约13mm/sec移动的Y台而言,为了保持不超过0.5像素(0.250微米/像素)模糊,可以将LED 1420脉冲接通达10微秒。依照在此于别处进一步讨论的聚焦系统和技术,LED光脉冲可以被主时钟触发,该主时钟已被锁定于抖动透镜谐振频率。
图30是示出根据在此描述的系统且对应于在此相对于LED照明组件1402描述的特征的用于LED照明组件1402'的实施例的更详细侧视图的示意性图解。相对于且与其它结构支撑和调整部件1436相关地示出了LED 1430、透镜1432以及场光圈1434的实施方式和配置。
图31是示出根据在此描述系统的实施例的具有与相对于LED照明组件1402所讨论的特征和功能相似的特征和功能的LED照明组件1402"的特定实施方式的爆炸视图的示意性图解。可以使用适配器1451、底座1452、夹具1453以及底座1454来将LED 1455牢固地安装并定位于LED照明组件1402"中,从而被相对于透镜1462牢固地定位。可以进一步使用适当的螺钉和垫圈部件1456-1461来固定和安装LED照明组件1402"。在各种实施例中,LED1455可以是Luminus、PhlatLight White LED CM-360系列,这是具有4,500流明的光学输出和70,000小时的长寿命的亮白LED和/或由Luxeon制造的合适的LED。透镜1462可以是MG9P6mm、12mm OD(外径)透镜。可以使用镜筒透镜部件1463、适配器1464、堆叠镜筒透镜部件和挡圈1467来相对于可调整场光圈部件1465对透镜1462进行定位和安装。可调整场光圈部件1465可以是由Thor Labs制造的环激活虹彩光圈,零件号码SM1D12D。堆叠镜筒透镜1466可以是由Thor Labs制造的P3LG堆叠镜筒透镜。镜筒透镜1463可以是由Thor Labs制造的P50D或P5LG镜筒透镜。可以在适当的情况下使用其它垫圈1468和螺钉部件1469来进一步固定和安装LED照明组件1402"的元件。
进一步根据在此描述的系统,提供了用于针对根据在此描述系统的各种实施例的数字病理学应用的高速载片扫描的装置和技术。在实施例中,用于病理学显微镜的载片保持器可以包括:(i)圆盘形式的托盘和(ii)在托盘中形成的多个凹进处,其中,每个凹进处适合于容纳载片且该凹进处被沿圆周地设置在托盘中。该托盘可以包括中心轴孔和两个锁孔,其中,锁孔适合于接近(pick up on)适合于以高速度绕正交于托盘的轴旋转的驱动器。该凹进处可以是在托盘中的不同角位置处铣削的凹进处。凹进处可以具有半圆形突出体以碰触载片但不过度地约束载片,从而允许载片基本上是无应变的。凹进处还可以具有允许指孔由操作员来放置并从凹进处提取载片的切口。在各种实施例中,可以与在此于别处针对成像系统所讨论的特征和技术相关地使用载片保持器及其操作。
图32是示出根据在此描述系统的实施例的可以与数字病理成像相关地使用的高速载片扫描装置1500的示意性图解。载片保持器1510可以包括具有设置在托盘1512上的圆周或环形圈1515的角度位置上的凹进处1514a、b、...n的托盘1512,并且可以将每个凹进处1514a-n的大小确定为保持载片1501。托盘1512被图解为圆形盘且可以被制造为保持所需数目的载片。例如,为了保持16个载片,托盘1512可以在直径上测量出约13英寸。应注意可以与在此描述系统相关(在适当的情况下)使用载片以及托盘的大小和形状的其它配置,并且可以适当地修改凹进处1514a-n的取向和配置。可以将载片放置在托盘1512的每个凹进处1514a-n中,诸如将载片1501放置在凹进处1514a中,并且可以将托盘1512放置到高速载片扫描装置1500中。托盘1512可以包括中心轴孔1516c和两个锁孔1516a和1516b,其可以啮合使载片保持器1510以高速沿旋转方向1519绕轴1518旋转的驱动器。可以将托盘1512放置到被代表性地示为1502的低剖面抽屉中,其可以使托盘1512缩回至装置1500中。
图33是更详细示出根据在此描述系统的实施例的高速载片扫描装置的托盘上的凹进处1520的示意性图解。凹进处1520可以是凹进处1514a-n中的任何一个。凹进处1520可以包括多个半圆形突出体,诸如三个突出体1522a-c,以碰触载片1501,但不过度地约束载片1501,从而允许载片1501基本上是无应变的。切口1523允许指孔由操作员来放置并从凹进处1520提取载片1501。由载片保持器1510/托盘1512随着其围绕轴1518旋转而产生的用箭头1521示意性地示出的向心加速度可以向载片1501施加小的保持力以在成像发生的同时将载片1501保持在适当的位置。可以最初通过使托盘1512以大于100rpm的速率旋转来将该保持力设计为至少0.1g's以使载片1501抵靠着半圆形突出体1522a-c配准。一旦载片1501被配准,则可以依照与在此于别处所讨论的成像速率相似的系统的成像速率来减小旋转速率。在更低速率下,即使轻微的保持力也将使载片1501抵靠突出体1522a-c稳定化。
再次参考图32,可以将与在此于别处详细地讨论的显微镜成像系统相似的显微镜成像系统1530设置在旋转托盘1512之上以对其中放置了载片的圆周环1515的区域进行成像。成像系统1530可以包括高NA显微镜物镜1532,例如具有大工作距离的0.75 NA、中间透镜1534和被放置在适当距离处以将载片1501上的对象放大至图像传感器1536的CCD或CMOS2D阵列图像传感器1536。图像传感器1536可以具有高帧速率,诸如大于100帧/秒。例如,图像传感器1536可以是以100帧/秒操作的Dalsa Falcon 1.4M100照相机的一部分或等同物。可以将成像系统1530刚性地安装到2轴电动驱动器,其可以由诸如DC电动机或步进式电动机、球或导引螺钉和/或直线引导件的部件构成。一个轴、径向轴1531a可以例如以10微米的分辨率的1mm步幅径向地通过小的运动而使成像系统1530或其至少一个部件运动,以对下面的自旋托盘1512上的一个或多个环进行成像。另一轴,聚焦轴1531b以0.1微米的分辨率以5-10微米的小的运动进行运动。可以将聚焦轴构造为以高速执行移动,例如在几毫秒内执行小的移动。可以由控制系统来控制显微镜物镜1534的移动且可以与在此于别处所讨论的相同的动态聚焦技术相关地使用该移动。
可以将照明系统1540放置在旋转托盘1502之下且其包括光源1542,诸如高亮度白光LED、诸如反射镜1544的一个或多个光学路径部件以及与在此于别处讨论的照明组件相似的聚光器1546。在实施例中,可以将显微镜的聚光器和成像路径连接在一起并作为刚性体移动,照明系统1540的移动的这样的方向1541在与成像系统1530的径向方向1531a相同的方向上。在聚焦方向1531b上,可以将成像路径从聚光器路径解耦,使得成像系统1530的一个或多个部件可以包括沿聚焦方向1531b的独立移动以执行高速聚焦移动。
图34是示出相对于载片1501起始于第一径向位置以便对凹进处1520中的载片1501上的样品1501'进行成像的成像路径的示意性图解。具有载片1501的凹进处1520沿旋转方向1524随着载片保持器1510旋转。可以根据在此于别处所讨论的图像捕获技术针对帧(例如帧1525)来捕获图像。如所示出的那样,随着托盘1512在成像系统1530下旋转针对用于载片保持器1510上的每个载片的一行帧(例如帧1525)捕获图像。在托盘1512的一个完整旋转之后,增加成像系统1530的径向位置以针对用于每个载片的另一行帧捕获图像。以临时冻结下面的场景的高速获取每个帧。亮场照明可以充分地发光以允许这样的短曝光。这些曝光可以在几十至几百微秒的时间帧内。该处理继续至到用于载片保持器1510中的每个载片的整个所关心区域被成像为止。与本实施例相关,收集的图像到所关心区域的马赛克图像的处理要求合适的组织机构和/或图像标记以正确地使在托盘1512上旋转的多个载片之间的多行帧相关。可以使用合适的成像处理技术来对图像进行标记,从而使捕获的图像与恰当的载片相关,因为可以用已知拼接软件来解决图像片集合的弧线运动且可以将其变换成病理学家在在标准显微镜下面观看时将理解的视图。
作为例子,用以6 rpm旋转的直径为13.2英寸的圆盘形式的托盘,NA=0.75的20x显微镜物镜产生约1 mm2的视场。在约10 msec内历遍该弧形视场。对于15 mm2有效区域内的组织切片且采取视场之间的25%重叠,将需要沿着旋转轴增加20个场。如果帧传送短到足以不限制获取时间,则20个完整旋转将足以对圆盘上的16个载片进行成像。这将在200秒内以6 rpm或每12.5秒1个载片的吞吐量发生。
图35A和35B是示出根据在此描述系统的另一实施例的旋转载片保持器上的载片的替换布置的示意性图解。图35A示出具有凹进处1514'的托盘1512',其被配置为使得载片1501的更长维度沿着沿方向1519'旋转的圆盘状托盘1512'的半径定向。在该配置中,更多载片(例如,30个载片)可以配合在托盘1512'上。图35B是示出用于如上面提及的那样配置的凹进处1520'中的载片1501的成像路径的示意性图解。在所图解的实施例中,载片1501被根据沿方向1521'和突出体1522a'-c'所示的向心力保持在凹进处1520'中。针对用于样品1501'的帧1525'的图像集合示出了在其上面执行图像处理的旋转1524'的方向。以载片的长度方面的增量来增加成像系统1530的径向位置以针对用于每个载片的连续行的帧捕获图像。在例子中,针对15 mm×15 mm有效区域并采取场之间的25%的重叠。将需要沿着径向轴增加二十个场。再次地,6 rpm下的20次旋转将在200秒内提供完全成像,但用给定的更高效扫描,载片的定向和因此的吞吐量将增加至每6.67秒一个载片。
图36是示出根据在此描述系统的实施例的包括被设置用于检验载片1551上的样品1551'的物镜1552的成像系统1550的示意性图解。在实施例中,可以通过图像获取之前的圆盘的在先更慢旋转来预定聚焦位置。用于自动聚焦的每个载片多达20秒的预算将使得每个载片的总扫描时间在30秒以下—比现有系统的当前状态更快一个数量级。作为载片1551被设置在其上面、沿方向1561旋转的托盘1560,物镜1552可以经历沿方向1562的微小运动以被定位在根据在此描述系统确定的最佳聚焦处。将不需要针对每个视场1553设置不同的自动聚焦值,但是应用于载片1551上的不同的更大区1554,例如由于载片翘曲或组织厚度的更大空间频率而引起的3×3视场或子帧。将在载片在其弧形路径中在照相机下面运动的同时应用最佳聚焦对自动聚焦值进行内插。
替换地,可以与在此提供的高速扫描系统相关地有利地采用动态聚焦技术,诸如在此于别处描述的动态即时聚焦技术。应注意的是用于获取聚焦点(例如每秒120个聚焦点)的时间使得能够连同上面所讨论的高速旋转扫描技术一起使用动态即时聚焦。还应进一步注意其很好地在控制系统的场内以将旋转圆盘的速度控制在1/10,000内,允许在不依赖圆盘的旋转反馈的情况下的每个图像的开环采样。
一般地,产生载片的低分辨率缩略图像。这可以通过将低分辨率照相机设置在圆盘的角度位置上从而不与刚刚描述的高分辨率显微镜相干扰来实现。对于极高体积的应用而言,圆盘形式有助于机器人搬运。可以使用半导体晶片机器人搬运300mm(~12")圆盘来将圆盘从缓冲器存货处移动至高速扫描装置。此外,大多数技术在步进式和重复运动中通过直线台将载片定位于显微镜物镜下面。这些运动支配图像获取次数。使用旋转运动的在此描述系统是高效且高度可重复的。自动聚焦和图像获取次数比现有技术产品的当前状态更小一个数量级。
大多数系统还要求夹紧机构或弹簧压具以在台的停止和开始运动期间将载片保持在适当的位置。在此描述系统不要求压制机构,因为旋转运动产生向心加速度,其将载片推入向圆盘中切割的凹进处中的预定位置。这使得载片保持器的构造更简单且更可靠。另外,载片压具可能翘曲或使载片发生应变,使自动聚焦过程复杂化,并且根据在此描述系统被有利地避免。
当前系统对于每个载片15mm的有效面积而言具有2-3分钟的峰值速度。对于上面列出的例子而言,在此提供的系统和方法允许在30秒下扫描相同的有效面积。许多病理学实验室期待每天扫描从100个载片至200个载片。用图像获取的这些高速率,操作员可以在一小时内通过载片的日常存货进行工作,包括加载和卸载圆盘、条形码读取、预聚焦的附加步骤。这允许得到结果的更快时间和用于实验室的增强的经济效果。
图37是示出根据在此描述系统的实施例的使用可旋转托盘的高速载片扫描的流程图1600。在步骤1602处,将载片定位于可旋转托盘的凹进处中。在步骤1602之后,处理进行到步骤1604,其中可旋转托盘被相对于扫描和成像系统运动至载片扫描位置。在步骤1604之后,处理进行到步骤1606,其中发起可旋转托盘的旋转。如上面所讨论的那样,可旋转托盘的旋转引起作用在载片上的向心力以将载片保持在所需的成像位置上。在步骤1606之后,处理进行到步骤1608,其中所述成像系统根据在此描述的系统和技术且包括动态聚焦技术,针对用于可旋转托盘的圆周环上的每个载片的一行帧捕获图像。在步骤1608之后,处理进入到测试步骤1610,其中确定可旋转托盘上的每个载片上的所需的所关心区域是否已被扫描和成像。如果不是,则处理进行到步骤1612,其中沿着可旋转托盘的径向方向使成像系统和/或其某些部件移动一个增量。在步骤1612之后,处理返回进行至步骤1608。如果在测试步骤1610处,确定每个载片上的所关心区域已被扫描和成像,则处理进行到步骤1614,其中对应于针对每个载片成像的所关心区域创建一个或多个马赛克图像。在步骤1614之后,处理完成。
进一步根据在此描述系统,可以提供光学倍频(doubling)装置和技术并与在此描述成像系统特征相关地使用。在实施例中,在此描述系统可以对由20x 0.75 NA Plan Apo物镜产生的分辨率元素进行采样。该分辨率元素在500 nm的波长下为约0.5微米。为了获得该分辨率元素的进一步采样,可以改变在成像传感器的前面的镜筒透镜。给定物镜透镜,用于计算镜筒透镜的焦距的近似计算(f_tube lens=在图像传感器前面的镜筒透镜的焦距)是:
pix_sensor=CCD或CMOS图像传感器上的像素大小
pix_object= 对象或组织上的像素大小
f_tube lens = pix_object/pix_sensor*9 mm。
为了针对Dalsa Falcon 4M30/60(7.4微米传感器像素)在0.25微米的对象处获得像素大小,镜筒透镜的焦距应为约266 mm。对于0.125微米的对象处的像素大小,镜筒透镜的焦距应为约532 mm。可能理想的是在这两个对象像素大小之间切换且这可以通过将两个或更多镜筒透镜安装到在成像传感器前面穿梭往返的台来实现。给定与每个新焦距相关联的不同路径长度,还需要添加折叠反射镜以使路径折叠以折叠出用于固定的图像传感器位置的路径。
图38是示出根据在此描述系统的实施例的光学倍频图像系统1700的示意性图解。如在此于别处所描述的那样,光学倍频图像系统1700可以包括照相机1711的图像传感器1710和显微镜物镜1720。应注意还可以将与在此讨论的系统和技术相关的其它部件(诸如动态即时聚焦系统)与所图解的光学倍频图像系统1700一起使用。为了实现两个或更多对象像素大小,可以与在此描述系统相关地提供多个镜筒透镜,例如第一镜筒透镜1740和第二镜筒透镜1750。台1730可以分别使第一镜筒透镜1740和第二镜筒透镜1750在成像传感器前面往返穿梭。在实施例中,台1730可以是沿着方向1731运动的线性致动台,然而应注意可以与在此描述系统相关地使用其它类型的台及其移动。相对于第二镜筒透镜1750示出了反射镜组件1752,其可以包括一个或多个折叠反射镜以调整从第二镜筒透镜1750至图像传感器1710的光程。
图39A和39B是示出根据在此描述系统的实施例的使第一镜筒透镜1740和第二镜筒透镜1750在图像传感器1710前面往返穿梭的光学倍频图像系统1700的示意性图解。图39A示出用于被定位于台1730上的图像传感器1710前面的第一镜筒透镜1740的光程1741。图39B示出用于经由台1730在图像传感器1710前面往返穿梭之后的第二镜筒透镜1750的光程1751。如所图解的那样,使用反射镜组件1752的一个或多个反射镜,已经增加光程1751。在两个图中,应注意光学倍频图像系统1700可以包括与在此于别处详细讨论的结构和光学部件相似的其它适当结构和光学部件1760。
图40示出具有一般地类似于图1,2和26所示的部件的许多部件的成像系统2000。可以打开进入门2002以将盒加载到圆盘传送带。盒可以携带被加盖的载片。在加载盒之后,可以关闭入口门2002。可以使用控制器2004来操作成像系统2000。在对样品成像之后,可以打开门2002并且移除盒。有利地,可以在用户对圆盘传送带进行加载和卸载的同时对载片成像以增加实验室吞吐量。这还避免了不必要的等待时间并且确保载片总是对于处理准备就绪。
在图41中示出移除了图40的保护外壳2010。图41示出包括具有9个上插接座和9个下插接座的圆盘传送带2012的载片缓存装置2011。每个插接座能够接收并保持盒或其它类型的载片保持器装置(例如,支架,仓盒等)。圆盘传送带2012旋转以将盒定位在系统2000前面处以方便盒加载和卸载。
参照图41-43,载片可以被运动到具有返回2022和照相机2024的缓冲器2020。可以由载片操作器2028对采用XY台2026的形式的载片操作器给送载片。成像光学器件2030可以捕获在加载在台2026中的载片上的样品的图像。成像光学器件2030可以包括(非限制地)一个或多个透镜、照相机、镜子、过滤器或光源等。由臂2036携带的拾取装置或端部执行器2034可以在各个部件之间运送载片。
图44示出在不接触标签2051的外围并且不接触邻近标签2051的显微镜载片边缘的情况下运送载片2050,从而避免与被用于安装标签2051的被露出的残留胶(如果有的话)接触的拾取装置2034。载片2050可以可靠地并且高效地运送载片而不会有由于胶粘住拾取装置2034所引起的问题。如在此所使用的那样,术语“载片”包括被加盖的显微镜载片以及没有盖片的显微镜载片。所图解的载片2050包括盖片。如果拾取装置2034是载片安装设备的一部分,则拾取装置2034可以运送不具有盖片的显微镜载片。
拾取装置2034包括连接器单元2038和端部执行器2040。连接器单元2038流体地将头元件2044耦接至加压源(例如泵或能够抽吸真空的其它装置)。头元件2044能够维持与载片2050的真空。能够维持足够的真空以牢固地保持载片2050并在工作站之间运送载片2050。为了释放载片2050,可以减少或消除真空。
连接器单元2038包括安装本体2055和可耦接至臂2036(参见图42和43)的一对安装臂2056a,2056b。流控部件2060提供与端部执行器2040的液体连通。流体部件包括(非限制地)流体管路(例如,软管、管件、导管等),阀,耦接器(例如流体管路耦接器)以及用于控制或建立流体流动的其它部件。在图44和45中,流体部件2060包括被流体地耦接至端部执行器2040的给送管路2062。
连接器单元2038可以允许端部执行器2040和/或显微镜载片2050触碰对象并允许端部执行器2040偏转并返回其起初的位置以禁止、限制或实质上防止对端部执行器2040和/或载片2050的损坏。保护头2058可以用作为碰撞保护特征。头2058被可运动地耦接至安装本体2055。如果载片2050或端部执行器2040或这两者接触到对象,则头2058可以如图46的箭头2059a,2059b所指示的那样旋转以避免、限制或防止对端部载片2050和/或执行器2040的损坏。偏置构件2061能够促使头2058到达固定位置。当向端部执行器2040施加足够的力时,由偏置构件2061提供的偏置力被克服,并且头2058相对于安装本体2055运动。当所施加的力足够低或实质上被消除时,偏置构件2061将头2058拉回到固定位置。偏置构件2061可以包括(非限制地)一个或多个弹簧(包括螺旋状弹簧,线圈弹簧等)、气动偏置构件或能够提供偏置力的其它部件。
参照图44和45,端部执行器2040包括平台2070,流体管路2072和头元件2044。平台2070具有上表面2074和下表面2076(图46),并且可以被整体或部分地由刚性材料(例如,金属,刚性塑料等)制成。所图解的平台2070以悬臂方式安装到连接器单元2038并且可以由诸如不锈钢薄片的金属薄片制成。
参照图47,传感器2089可以包括具有相对地低轮廓的一个或多个电路(例如,挠性电路)以分析显微镜载片。为了检测是否存在载片,传感器2089可以是能够分析反射表面的光学传感器。以举例子的方式,传感器2089可以通过评估载片标签的反射(如果有的话)来检测是否存在载片。传感器2089可以发送指示是否存在载片的信号。基于该信号,控制器2004可以确定拾取装置2034是否保持有载片。替换地,传感器2089可以采用条形码读取器、扫描仪、接触传感器、接近传感器或它们的组合等的形式。可以使用任意数量的传感器以确定与显微镜载片2050关联的信息。
间隔物2090a-d被耦接至下表面2076并且物理地接触显微镜载片2050。如图42所示,间隔物2090a-d协作以把显微镜载片2050保持在基本上水平的取向并且基本上平行于平台2070。一般地将前间隔物2090c和后间隔物2090a沿着平台2070的纵向轴2118定位。将侧向补偿间隔物2090b,2090d紧靠平台2070的纵向侧2091,2093定位。可以基于所需的载片相互作用使用定义成不同类型的图案的任意数量的间隔物。
为了避免粘到过量的残留的标签胶,可以将间隔物2090定位在其中间隔物2090a-d不与这样的胶接触的位置处。间隔物2090a接触标签2051的顶部并且与标签边缘很好地分隔开以确保其不接触残留的被露出的胶。替换地,可以朝向拾取2044将间隔物2090a移出标签区域并仍向载片提供稳定性。可以将间隔物2090b,2090d定位成在与标签2051的边缘很好地分隔开的地方接触显微镜载片的上表面。
再次参考图44-46,流体管路2072被定位在上表面2074上并在连接器单元2038和头元件2044之间延伸。为了增强端部执行器2040的刚性,流体管路2072可以包括整体或部分地由钢(包括不锈钢)、镍合金或其它合适的刚性材料制成的皮下注射管。在一些实施例中,皮下注射管的外径可以小于约0.3英寸。皮下注射管号可以在基于Stubs 针号(Stubsneedle gauge)的从7号到32号的范围内并且可以基于所需的要被抽吸的真空以及所需的拾取装置2034的机械性质来选择。还可以使用其它大小的管。可以选择流体管路2072相对于平台2070的位置以实现所需的惯性矩和总体轮廓。可以将流体管路2072从平台2070移开以通过增加惯性矩来增强端部执行器2040的刚性。为了减少端部执行器2040的最大高度,可以紧靠平台2070或者与平台2070接触来使流体管路2072运动。
夹具组件2077具有用于保持流体管路2072的夹具本体2078和用于打开和关闭夹具组件2077的固定件2080a,2080b。为了减少拾取装置2034的零件数量,可以将流体管路2072直接耦接(例如,粘附、胶粘、焊接)至平台2070。
参照图48,头元件2044包括连接器2100和吸头2102。连接器2100被定位在平台2070的上侧上并且被耦接至流体管路2072。吸头2102被定位在平台2070的下侧上并且能够维持与被加盖的显微镜载片2050的真空。在一些实施例中,吸头2102可以由有足够柔性的材料(例如,橡胶、硅、聚合物等)制成以在头2102的外缘2103盖住盖片的边缘时维持气密密封。这允许即使吸头2102与盖片不对准也进行连贯和可靠的拾取。
将定位器2110键锁到平台2070并且定位器2110能够用作为防旋转特征以便即使在相对长的使用寿命之后也将头元件2044保持为与平台2070恰当地对准。所图解的定位器2110是被定位在互补的切口2112中的突出体。附加地或者替换地,可以使用一块或更多的胶或粘合剂将头元件2044可以耦接至平台2070。在又一实施例中,可以使用机械固定件(例如螺钉或销等)将吸头2102机械地耦接至平台2070。
端部执行器2040可以具有相对地低轮廓以便进入相对地狭窄的空间。图48示出端部执行器2040的最大高度H,其可以在大约0.15英寸到大约0.19英寸的范围内。这允许在被保持在宽范围的不同类型的载片保持器(包括具有垂直地分隔开的架子的载片保持器)中的显微镜载片之间插入端部执行器2040。这样的载片保持器可以采用存储支架、仓盒和便携盒等的形式。端部执行器2040可以具有不同的配置、大小和尺寸,以及基于所需的应用而选择的部件的布置。端部执行器2040的宽度W(参见图45)可以等于或小于载片2050的宽度。在一些实施例中(包括所图解的图45的实施例),端部执行器2040具有基本上小于载片2050的宽度的宽度W。这允许端部执行器2040相对于载片2050的从一侧至另一侧的改变。
图49示出采用盒2400的形式的显微镜载片保持器。盒2400包括主体2410和垂直地分隔开的架子2414。被加盖的载片2422(用虚线图解)由最上的架子2414a支撑。如果手动地在工作站之间运送盒2400,则用户能够以一般地垂直定向来保持盒2400,如所图解的那样。即使盒2400从垂直取向偏斜,载片可以被方便地保留在架子2414上。盒2400是便携的以方便在工作站之间运送。卡件帮助防止在运送载片时(例如,当在实验室器材之间运送盒2400时)载片滑出盒2400或者防止载片因为由例如载片保持器上的或紧靠载片保持器的电动机驱动器材引起的机械振动的原因而滑出盒。
参照图49和50,主体2410包括前开口2430、上壁2444、下壁2446、后壁2448和侧壁2452,2454。上壁1444在侧壁2452,2454之间延伸并且定义进入开口2460。下壁2446在侧壁2452,2454之间延伸。拾取装置可以穿过进入开口2460以加载和卸载载片。下壁2446可以放在支撑表面上以一般地直立定向来保持盒2400。可以夹持把手2447,2449以处置盒2400。
后壁2448包括通风开口2470,流体(例如,空气,安装液等)可以经通风开口2470通过。所图解的开口2470邻近于邻近的架子2414之间的空隙。如果载片时湿的,则空气可以穿过开口2470用于进行空气干化或疏通或者进行这两者。开口2470的长度可以小于载片的宽度以防止载片穿过后壁2448。附加地或者替换地,通风开口可以处于其它地方,诸如沿着侧壁2452,2454的一个或这两者。
主体2410可以整体或部分地由塑料、聚合物、金属或其组合制成并且可以具有一片或多片构造。非限制性的示例塑料包括(非限制地)丙烯睛-丁二烯-苯乙烯(ABS)、聚亚安酯、聚酯、聚丙烯或它们的组合等。还可以利用填充物以增强性能。在一些实施例中,主体2410由被玻璃填充的(例如,按体积或重量填充的30%的玻璃)ABS塑料制成。架子1412的表面可以具有相对低的摩擦系数以允许方便载片放置。在浇铸的实施例中,两个浇铸的架子可以被焊接、键合或以别的方式耦接在一起以形成盒2400。可以将任意数量的浇铸的部分组装并耦接在一起。替换地,可以将加工的部件组装在一起以形成盒2400。可以使用机械固定件,胶水或焊接法等。
图50的耦接器2474被定位在盒2400的后面。如果工作站具有磁体(例如,永磁体或电磁体),则耦接器2474可以整体或部分地由铁磁材料或被吸引到磁体的其它材料制成以帮助将盒2400留在工作站中。替换地,耦接器2474可以包括用于耦接至工作站的铁磁部件的磁体。
图50还示出一对突出的键控特征件2482,2484。当使盒2400运动到插接站中时,键控特征件2482,2484可以被插入到插接站的相对应的收纳器(例如,槽、开口等)中。如果盒2400被倒转地插入,则键控特征件2482,2484将不会被收纳器接收,从而防止插接。所图解的键控特征件2482,2484一般为U型的平行构件。可以基于盒大小、所需的盒取向和插接座的设计等选择键控特征件的位置、配置和取向。图49的柄脚2485能够对发送指示盒2400被恰当地安装的信号的机械装置(例如,机械联锁)或传感器进行触发。附加地或者替换地,可以在各种位置(例如,在圆盘传送带2012内)处放置接触传感器、接近传感器或其它类型的传感器以确定盒2400是否被适当地加载。
图51和52示出用于模拟20个载片的20个垂直地分隔开的架子2414。每个架子2414被定位在侧壁2452,2454之间并且在盒2400在直立取向中时被取向成以基本上水平的取向支撑显微镜载片。架子2414可以被均匀或非均匀地彼此分隔开。在均匀地分开的实施例中,邻近的架子2414之间的平均距离可以在大约0.25英寸到大约0.38英寸的范围内。可以选择平均距离以实现所需的用于拾取头的间隙。可以选择架子的大小、节距以及其它尺寸以便利在载片保持装置之间进行传送。以举例子的方式,架子2414的节距可以一般地类似于浸蘸类型(dip and dunk type)篮笼的槽或架子的节距,从而可以将载片方便地从篮笼插入到盒中。如果将载片从载片支架传送到盒2400,则架子2414可以具有一般地与支架的架子的节距相对应的节距。因此,可以基于不同的处理参数和标准选择架子2414的空间布置。
参照图51,对开口加标签以方便定位载片。用字母“A”对最上的开口2490a加标签,并且用字母“T”对最下的开口2490t加标签。替换地,可以用数字或其它“记号”对开口加标签。
图51和52示出在架子2414a上的承载样本的被加盖载片2422(用虚线图解)。一对支撑构件2500a,2500b支撑载片2422的标签端部2504。支撑构件2500a,2500b中的每一个远离架子2414a延伸。在一体式的实施中,支撑构件2500a,2500b与架子2414a一体地形成。在非一体式的实施例中,使用粘合剂、固定件或公/母连接件等将支撑构件2500a,2500b耦接至架子2414a。
支撑构件2500a,2500b可以一般地彼此类似,并且因此除非以另外的方式指示,对其中一个的描述同样应用于另一个。图53和54示出包括伸长的本体2508a和卡件2510a的支撑构件2500a。伸长的本体2508a包括耦接至架子2414的安装端部2516a,携带卡件2510a的相对的自由端2518a,以及中央部分2519a。
卡件2510a的肩部2522a从伸长本体2508a向上突出并且能够限制显微镜载片2422相对于支撑构件2500a的移动。肩部2522a能够阻碍载片2422的滑动。肩部2522a的高度Hs可以小于由载片2422的安装表面和底部表面定义的厚度Ts。在一些实施例中,高度Hs等于或小于厚度Ts的大约60%、50%或40%。在一个实施例中,肩部高度Hs等于厚度Ts的大约一半。如果需要或者所需,还可以是其它的肩部高度Hs。卡件2510a和背壁2532之间的距离可以一般地等于或略微大于载片2422的纵向长度。这可以帮助在运送期间使载片2422的移动最小化。
邻接表面2528a可以一般地垂直于伸长本体2508a的支撑表面。在其它实施例中,卡件2518可以是倒钩,突出体(例如,部分地球形的突出体、柄脚等)或者用于限制(例如,禁止或防止)载片2504的移动的其它特征。
参考图55,架子2414具有一般的H型板。该板一般地可以具有平坦的上表面,并且在一些实施例中被纹理化或抛光等以便增强显微镜载片的加载和卸载。所图解的架子2414被连接到并横跨在侧壁2452和2454之间。在其它实施例中,架子2414被以悬臂方式安装到侧壁中的一个。
伸长本体2508a具有基本上与支撑构件2520b的伸长本体2508b的纵向轴2540b平行的纵向轴2540a。纵向轴2540a,2450b可以处在面内并且可以定义小于大约5度的角(如果有的话)。所图解的实施例具有两个支撑构件,但是可以使用附加的支撑构件以及任意数量的架子。
图56A和56B示出被放置在上架子2414上的显微镜载片2422(用虚线图解)。引导部2560a,2560b可以帮助容纳从一侧至另一侧的载片放置改变。如图56A中所示,载片2422被定位到开口2490a的左侧。由于重力的原因,载片2422的边缘2561a能够沿表面2562a滑动以允许载片2422落在所需的位置。倾斜表面2562a,2562b被倾斜以允许显微镜载片平缓地向下滑并放到架子2414a上。在一些实施例中,表面2562a,2562b的倾角可以一般地彼此相等。
再次参照图40,为了操作成像系统2000,用户可以打开进入门2002以将盒插入到圆盘传送带2012的18个插接座(例如,槽)中的一个。圆盘传送带2012可以顺序地旋转以便进行加载和卸载。有利地,圆盘传送带2012可以具有相对紧凑的设计以减少系统2000的总的占位面积。
一旦盒被加载到插接座,则可以逆时针旋转(例如,逆时针旋转大约90度)旋钮2602(参见图41)以将盒锁定在适当位置。附加地,旋钮2602的旋转可以引起由传感器2606分析的相对应的标识(参见标识2607)的旋转。标识的位置对应于旋钮2602的位置。因此,传感器2606可以确定旋钮是否处于打开或闭合位置。
传感器2606可以是能够分析三个上盒以及三个对准的下盒的位置的光学传感器。
在所图解的实施例中,传感器2606基于连接到旋钮2602a-c的标识的位置确定盒2400a-c的存在。由另一传感器分析下盒2400d-f。有利地,光学传感器/标识组合允许在圆盘传送带的中心内的固定杆分析是否存在盒,因此排除对于跨旋转边界的布线的需要并且消除复杂线缆保持器的使用。这可以有助于增加圆盘传送带2012的可靠性。在一些实施例中,柄脚2485(参见图50)被用于触发允许旋钮2602旋转的机械联锁,而空插接座的旋钮不能被旋转。
再次参照图42,载片操作器2028使拾取装置2034运动以在成像系统2000的各个部件之间运送载片。图52示出被定位成要被插入到开口2490a中(如由箭头2616指示的那样)的低轮廓端部执行器2034。一旦将端部执行器2034定位在显微镜载片2422上面,则可以将端部执行器2034放置在显微镜载片2422上。可以在吸头2102和显微镜载片之间抽吸真空。端部执行器2034可以使载片2422垂直地运动通过卡件2510a。被升高的载片2422可以被移出开口2490a。端部执行器2034可以在不接触胶(例如,在加标签的显微镜载片的外围或邻近的边缘处的胶)的情况下将载片2422运送到所需的地方,拾取装置可以使载片移动到任意数目的处理站,包括(非限制地)圆盘传送带、缓冲器、XY台、载片操作器、载片缓存装置、支架、成像器材或插接座等。在对载片成像后,可以使载片从载片缓存装置2020a运动到盒的空架子。一旦用被成像的载片填充了盒,则盒可以被旋转到进入区以方便使用进入门2002进行移除。
可以与在此描述的系统相关地以适当的组合将在此所讨论的各种实施例相互组合。另外,在一些实例中,在适当的情况下,可以修改流程图、程序图和/或所描述流程处理中的步骤顺序。进一步地,可以使用软件、硬件、软件和硬件的组合和/或具有所描述特征并执行所描述功能的其它计算机实现模块或装置来实现在此描述的系统的各种方面。在此描述的系统的软件实现可以包括存储在计算机可读存储介质中并由一个或多个处理器来执行的可执行代码。计算机可读存储介质可以包括计算机硬盘驱动器、ROM、RAM、闪速存储器、便携式计算机存储介质,诸如CD-ROM、DVD-ROM、闪速驱动器和/或具有例如通用串行总线(USB)接口的其它驱动器和/或可以在其上面存储并由处理器来执行可执行代码的任何其它适当有形存储介质或计算机存储器。可以与任何适当的操作系统相关地使用在此描述的系统。
根据在此公开的本发明的说明书或实践的考虑,本发明的其它实施例对于本领域的技术人员来说将是显而易见的。应注意本说明书和例子仅仅被视为示例性的,并且由后面的权利要求来指示本发明的真实范围和精神。

Claims (11)

1.一种显微镜载片保持盒,包括:
主体,其用于围绕并保护显微镜载片,所述主体包括第一侧壁和第二侧壁;
多个架子,其能够支撑显微镜载片,所述多个架子被定位在所述第一侧壁和所述第二侧壁之间并且在所述显微镜载片保持盒在直立取向中时被垂直地彼此分隔开;以及
多个支撑构件,其远离相应的架子延伸,支撑构件中的至少一个包括:
伸长本体,其被耦接至架子中的一个,以及
卡件,其从所述伸长本体向上突出并且能够限制被定位在所述伸长本体上的显微镜载片的移动,
所述显微镜载片保持盒进一步包括:
接近架子中的一个的一对引导部,并且显微镜载片能够由于重力的原因沿着所述引导部滑动直到该显微镜载片放到架子中的一个上。
2.根据权利要求1所述的显微镜载片保持盒,其中成对的所述支撑构件被彼此分隔开并被耦接至相应的架子。
3.根据权利要求2所述的显微镜载片保持盒,其中所述伸长本体中的两个被耦接至相应的架子并具有彼此平行的纵向轴。
4.根据权利要求1所述的显微镜载片保持盒,其中所述第一侧壁和所述第二侧壁限定开口,能够通过所述开口插入显微镜载片以将显微镜载片放置在架子上,并且能够通过所述开口将显微镜载片从架子移除。
5.根据权利要求1所述的显微镜载片保持盒,其中所述伸长本体包括耦接至架子的安装端部、运送所述卡件的相对的自由端部以及在所述安装端部和所述自由端部之间延伸的悬臂本体。
6.根据权利要求1所述的显微镜载片保持盒,其中所述卡件是当显微镜载片在所述伸长本体和架子上时具有等于或小于显微镜载片的厚度的大约一半的高度的突出体。
7.根据权利要求1所述的显微镜载片保持盒,其中所述第一侧壁、所述第二侧壁以及后壁中的至少一个包括邻近于邻近的架子之间的空隙的一个或多个通风开口。
8.根据权利要求1所述的显微镜载片保持盒,进一步包括:
从所述主体突出的至少一个键控特征件,并且当盒以直立取向时所述至少一个键控特征件可由工作站收纳。
9.根据权利要求1所述的显微镜载片保持盒,进一步包括:
第一倾斜架子侧壁和第二倾斜架子侧壁,其中架子中的一个在所述第一倾斜架子侧壁的基座和所述第二倾斜架子侧壁的基座之间延伸。
10.根据权利要求9所述的显微镜载片保持盒,其中所述第一倾斜架子侧壁和所述第二倾斜架子侧壁被配置成允许显微镜载片沿着所述第一倾斜架子侧壁或所述第二倾斜架子侧壁或者这两者滑动。
11.根据权利要求1所述的显微镜载片保持盒,其中所述引导部中的每一个包括斜向远离架子中的一个的倾斜表面。
CN201280043583.5A 2011-09-09 2012-08-21 成像系统、盒和使用其的方法 Expired - Fee Related CN103765291B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510705163.4A CN105204152B (zh) 2011-09-09 2012-08-21 成像系统、盒和使用其的方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161533114P 2011-09-09 2011-09-09
US61/533114 2011-09-09
PCT/EP2012/066266 WO2013034430A1 (en) 2011-09-09 2012-08-21 Imaging systems, cassettes, and methods of using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201510705163.4A Division CN105204152B (zh) 2011-09-09 2012-08-21 成像系统、盒和使用其的方法

Publications (2)

Publication Number Publication Date
CN103765291A CN103765291A (zh) 2014-04-30
CN103765291B true CN103765291B (zh) 2016-11-02

Family

ID=46763064

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201280043583.5A Expired - Fee Related CN103765291B (zh) 2011-09-09 2012-08-21 成像系统、盒和使用其的方法
CN201510705163.4A Expired - Fee Related CN105204152B (zh) 2011-09-09 2012-08-21 成像系统、盒和使用其的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201510705163.4A Expired - Fee Related CN105204152B (zh) 2011-09-09 2012-08-21 成像系统、盒和使用其的方法

Country Status (12)

Country Link
US (1) US20140178169A1 (zh)
EP (1) EP2753968B1 (zh)
JP (2) JP5898318B2 (zh)
KR (2) KR101774092B1 (zh)
CN (2) CN103765291B (zh)
AU (1) AU2012306572B2 (zh)
BR (1) BR112014005007B8 (zh)
CA (2) CA2844994C (zh)
HK (1) HK1219542A1 (zh)
IL (2) IL230590A0 (zh)
SG (2) SG10201600153YA (zh)
WO (1) WO2013034430A1 (zh)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5963631B2 (ja) * 2012-09-28 2016-08-03 シスメックス株式会社 標本収納装置、標本収納方法、及び、収納具
JP6016560B2 (ja) 2012-09-28 2016-10-26 シスメックス株式会社 標本搬送装置及び標本撮像システム
MY168113A (en) * 2013-01-25 2018-10-11 Exis Tech Sdn Bhd An apparatus for picking, placing and pressing semiconductor components
WO2014194411A1 (en) * 2013-06-07 2014-12-11 Clemex Technologies Inc. Automatic slide loading system and method
JP6173154B2 (ja) * 2013-10-01 2017-08-02 オリンパス株式会社 顕微鏡システム
US10007102B2 (en) * 2013-12-23 2018-06-26 Sakura Finetek U.S.A., Inc. Microscope with slide clamping assembly
US20150286887A1 (en) 2014-04-07 2015-10-08 Massachusetts Institute Of Technology Use of Microparticle Additives to Simultaneously Enable Artifact-Free Image Registration, Auto-Focusing, and Chromatic Aberration Correction in Microscopy
CA2947926C (en) * 2014-06-27 2020-03-10 Ventana Medical Systems, Inc. Automated specimen processing systems and methods of detecting specimen-bearing microscope slides
EP3167331B1 (en) * 2014-07-09 2018-05-09 Ventana Medical Systems, Inc. Automated coverslipper and methods of use
CN104090358A (zh) * 2014-07-21 2014-10-08 张波 全自动智能诊断显微镜系统
WO2016120440A1 (en) 2015-01-29 2016-08-04 Ventana Medical Systems, Inc. Dot detection, color classification of dots and counting of color classified dots
WO2016120441A2 (en) 2015-01-30 2016-08-04 Ventana Medical Systems, Inc. Quality metrics for automatic evaluation of dual ish images
WO2016120442A1 (en) 2015-01-30 2016-08-04 Ventana Medical Systems, Inc. Foreground segmentation and nucleus ranking for scoring dual ish images
US10282647B2 (en) 2015-05-05 2019-05-07 Massachusetts Institute Of Technology Substrate pre-scanning for high throughput microscopy
CA2984701C (en) 2015-05-10 2023-09-26 Ventana Medical Systems, Inc. Compositions and methods for simultaneous inactivation of alkaline phosphatase and peroxidase enzymes during automated multiplex tissue staining assays
CN107923915B (zh) 2015-08-28 2021-05-04 文塔纳医疗系统公司 使用经掩蔽的半抗原在福尔马林固定石蜡包埋的组织中的蛋白质邻近测定
CN105486341B (zh) * 2015-11-25 2017-12-08 长春乙天科技有限公司 一种大幅面高速高精度自动光学检测设备
FR3048510B1 (fr) * 2016-03-01 2020-01-31 Arteion Systeme d’analyse automatique pour diagnostic in vitro
CN105911666B (zh) * 2016-06-15 2019-01-29 宁波江丰生物信息技术有限公司 一种基于切片数字化自动扫描仪的光学部件切换装置
CN109641922A (zh) 2016-06-28 2019-04-16 文塔纳医疗系统公司 点击化学用于ihc和ish测定中的信号扩增的应用
CN109642898B (zh) 2016-06-28 2023-07-07 文塔纳医疗系统公司 用多染料醌甲基化物和酪酰胺缀合物的显色ihc和ish染色的新颜色
US10338365B2 (en) * 2016-08-24 2019-07-02 Optrascan, Inc. Slide storage, retrieval, transfer, and scanning system for a slide scanner
EP3516397A1 (en) 2016-09-23 2019-07-31 Ventana Medical Systems, Inc. Methods and systems for scoring extracellular matrix biomarkers in tumor samples
EP3554556B1 (en) 2016-12-19 2022-03-09 Ventana Medical Systems, Inc. Peptide nucleic acid conjugates
JP7032053B2 (ja) * 2017-04-13 2022-03-08 浜松ホトニクス株式会社 画像取得装置及び画像取得方法
JP6889009B2 (ja) * 2017-04-13 2021-06-18 浜松ホトニクス株式会社 画像取得システム及び画像取得方法
JP7126809B2 (ja) * 2017-04-13 2022-08-29 浜松ホトニクス株式会社 画像取得装置及び画像取得方法
WO2018215844A2 (en) 2017-05-26 2018-11-29 Ventana Medical Systems, Inc. Non-contact, on-slide fluid mixing
EP3646006A1 (en) 2017-06-28 2020-05-06 Ventana Medical Systems, Inc. System level calibration
EP3625516B1 (en) * 2017-10-04 2022-10-26 Leica Biosystems Imaging, Inc. Stuck slide determination system
JP2020536279A (ja) 2017-10-04 2020-12-10 ライカ バイオシステムズ イメージング インコーポレイテッドLeica Biosystems Imaging, Inc. スライド在庫調べおよび再挿入システム
CN117030421A (zh) 2017-11-21 2023-11-10 文塔纳医疗系统公司 使用调制气体射流的非接触式混合
WO2019104342A1 (en) * 2017-11-27 2019-05-31 Leica Biosystems Imaging, Inc. Slide rack determination system
JP7119084B2 (ja) * 2017-11-30 2022-08-16 ライカ バイオシステムズ イメージング インコーポレイテッド スライドラックグリッパ装置
JP6869434B2 (ja) * 2017-11-30 2021-05-12 ライカ バイオシステムズ イメージング インコーポレイテッドLeica Biosystems Imaging, Inc. スライドラッククランプ装置
CN111279199B (zh) * 2017-11-30 2023-12-12 徕卡生物系统成像股份有限公司 用于禁用转盘旋转的安全光幕
JP6869435B2 (ja) * 2017-12-01 2021-05-12 ライカ バイオシステムズ イメージング インコーポレイテッドLeica Biosystems Imaging, Inc. スライドラックカルーセル
WO2019120635A1 (en) 2017-12-18 2019-06-27 Ventana Medical Systems, Inc. Peptide nucleic acid conjugates
EP3794548A1 (en) 2018-05-15 2021-03-24 Ventana Medical Systems, Inc. Quantitation of signal in stain aggregates
JP2021531790A (ja) 2018-07-27 2021-11-25 ベンタナ メディカル システムズ, インコーポレイテッド 自動化された原位置ハイブリッド形成分析のためのシステム
JP7455816B2 (ja) 2018-09-20 2024-03-26 ヴェンタナ メディカル システムズ, インク. クマリン系架橋試薬
JP7180242B2 (ja) * 2018-09-26 2022-11-30 株式会社島津製作所 試料搬送装置
EP3881080A1 (en) * 2018-11-16 2021-09-22 Aixinno Limited A process module for an automated biology system
WO2020104538A1 (en) 2018-11-20 2020-05-28 Ventana Medical Systems, Inc. Methods and systems for preparing and analyzing cellular samples for morphological characteristics and biomarker expression
JP7397069B2 (ja) * 2018-12-20 2023-12-12 ライカ・バイオシステムズ・メルボルン・プロプライエタリー・リミテッド スライドトレイアセンブリ
IT201900018425A1 (it) * 2019-10-10 2021-04-10 Logibiotech Srl Caricatore per l’archiviazione di vetrini cito-istologici e biocassette istologiche
CN113032696A (zh) * 2019-12-05 2021-06-25 北京沃东天骏信息技术有限公司 一种页面图片的显示方法和显示装置
WO2022122628A2 (en) * 2020-12-07 2022-06-16 (Inserm) Institut National De La Santé Et De La Recherche Médicale Device for optical imaging of arthropods
WO2022138254A1 (ja) * 2020-12-24 2022-06-30 ソニーグループ株式会社 スライドガラス格納ラック、スライドストレージ及びスライドガラス撮影システム
US11717832B2 (en) 2021-01-05 2023-08-08 Mun Shun CHEONG Automated slide preparing system and method thereof
JP2024504944A (ja) 2021-01-15 2024-02-02 ヴェンタナ メディカル システムズ, インク. 保存安定なケージドハプテン
CN117177985A (zh) 2021-04-18 2023-12-05 文塔纳医疗系统公司 形态学标志物染色
EP4166947A1 (en) * 2021-10-15 2023-04-19 PreciPoint GmbH Distributed slide scanning system and method of operating a distributed slide scanning system
CN114965463B (zh) * 2022-04-22 2024-02-02 上海英医达医疗器械用品有限公司 显微镜自动检测系统及方法
WO2023239529A2 (en) 2022-06-09 2023-12-14 Ventana Medical Systems, Inc. On-slide synthesis of a schiff reagent

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2741064Y (zh) * 2004-10-15 2005-11-16 汪家道 显微镜的三维驱动装置
CN102272652A (zh) * 2008-12-30 2011-12-07 细胞视觉公司 用于生物标本的光学分析的分析器

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55140812A (en) * 1979-04-23 1980-11-04 Agency Of Ind Science & Technol Automatic feeding and containing device of slide glass
JPS5971018A (ja) * 1982-10-15 1984-04-21 Ikegami Tsushinki Co Ltd 自動顕微鏡装置
JPS59157535A (ja) * 1983-02-28 1984-09-06 Sankyo Co Ltd 自動標本封入装置
JPS60172701U (ja) * 1984-04-20 1985-11-15 三共株式会社 自動標本封入装置
JPH08160310A (ja) * 1994-12-07 1996-06-21 Muto Kagaku Yakuhin Kk プレパラート自動封入機に用いるカバーガラスの収納器具
JP3570817B2 (ja) * 1996-06-04 2004-09-29 株式会社千代田製作所 顕微鏡標本のカバーガラス取出し及び取付け方法
US6665008B1 (en) 1997-07-15 2003-12-16 Silverbrook Research Pty Ltd Artcard for the control of the operation of a camera device
US6133548A (en) * 1999-05-26 2000-10-17 Grover; Marilyn L. Apparatus and method for heating microscope slides
US20070021929A1 (en) * 2000-01-07 2007-01-25 Transform Pharmaceuticals, Inc. Computing methods for control of high-throughput experimental processing, digital analysis, and re-arraying comparative samples in computer-designed arrays
US6864097B1 (en) * 2000-09-27 2005-03-08 Agilent Technologies, Inc. Arrays and their reading
US6847481B1 (en) 2001-10-26 2005-01-25 Ludl Electronics Products, Ltd. Automated slide loader cassette for microscope
US7753457B2 (en) * 2003-06-12 2010-07-13 Cytyc Corporation Apparatus for removably retaining a slide within a cassette
JP4279188B2 (ja) * 2004-04-05 2009-06-17 株式会社クラーロ プレパラート自動交換装置
JP4850825B2 (ja) * 2005-03-17 2012-01-11 浜松ホトニクス株式会社 スライドガラスカセット及びカセットホルダ
JP2006292999A (ja) * 2005-04-11 2006-10-26 Direct Communications:Kk スライド画像データ作成装置およびスライド画像データ
AU2007226647A1 (en) * 2006-03-13 2007-09-20 Ikonisys, Inc. Automated microscope slide read system
US8098956B2 (en) 2007-03-23 2012-01-17 Vantana Medical Systems, Inc. Digital microscope slide scanning system and methods
US7576307B2 (en) 2007-04-30 2009-08-18 General Electric Company Microscope with dual image sensors for rapid autofocusing
EP2362228B1 (en) * 2007-07-10 2013-09-18 Ventana Medical Systems, Inc. Apparatus and method for biological sample processing
CN101205518B (zh) * 2007-11-07 2011-05-25 汤建新 一种用于原位合成基因芯片的机械装置及系统设备
US20110090563A1 (en) * 2008-04-11 2011-04-21 Molecular Devices, Inc. Uniformity in slide scanning
CN101280270B (zh) * 2008-04-23 2012-02-08 汤建新 一种中高密度生物芯片原位合成仪
KR101064966B1 (ko) * 2009-04-07 2011-09-16 김정우 현미경용 슬라이드를 자동 공급하는 슬라이드 로더를 구비한 자동화 현미경
JP2012013954A (ja) * 2010-06-30 2012-01-19 Sony Corp 搬送装置及び搬送方法並びに顕微鏡システム
US20120075695A1 (en) * 2010-09-23 2012-03-29 Deblasis Christopher A Holder for carrying and facilitating auto-loading of microscope specimen slides
KR101718474B1 (ko) * 2015-04-27 2017-03-21 주식회사 아세테크 검체슬라이드 버킷 관리 및 보관 시스템

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2741064Y (zh) * 2004-10-15 2005-11-16 汪家道 显微镜的三维驱动装置
CN102272652A (zh) * 2008-12-30 2011-12-07 细胞视觉公司 用于生物标本的光学分析的分析器

Also Published As

Publication number Publication date
EP2753968B1 (en) 2019-01-16
CN105204152B (zh) 2018-10-26
BR112014005007B1 (pt) 2020-12-15
IL255558A (en) 2018-01-31
BR112014005007B8 (pt) 2021-01-12
SG10201600153YA (en) 2016-02-26
SG2014011084A (en) 2014-04-28
CN103765291A (zh) 2014-04-30
HK1219542A1 (zh) 2017-04-07
CA2844994A1 (en) 2013-03-14
KR101774092B1 (ko) 2017-09-01
CA2844994C (en) 2016-10-11
KR20170026662A (ko) 2017-03-08
CA2928374A1 (en) 2013-03-14
US20140178169A1 (en) 2014-06-26
JP2014526712A (ja) 2014-10-06
AU2012306572B2 (en) 2015-04-23
JP5898318B2 (ja) 2016-04-06
KR20140063671A (ko) 2014-05-27
AU2012306572A1 (en) 2014-01-30
EP2753968A1 (en) 2014-07-16
IL230590A0 (en) 2014-03-31
KR101869664B1 (ko) 2018-06-20
CA2928374C (en) 2018-09-25
JP2016006534A (ja) 2016-01-14
WO2013034430A1 (en) 2013-03-14
CN105204152A (zh) 2015-12-30
JP6165811B2 (ja) 2017-07-19
BR112014005007A2 (pt) 2017-04-04

Similar Documents

Publication Publication Date Title
CN103765291B (zh) 成像系统、盒和使用其的方法
CN104020556B (zh) 成像系统和技术
CN114184802A (zh) 切片扫描装置
AU2015201450B2 (en) Imaging systems, cassettes, and methods of using the same
AU2013205438B2 (en) Imaging system and techniques

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1197456

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1197456

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161102

Termination date: 20210821

CF01 Termination of patent right due to non-payment of annual fee