CN103746078A - Perovskite solar cell and preparation method thereof - Google Patents

Perovskite solar cell and preparation method thereof Download PDF

Info

Publication number
CN103746078A
CN103746078A CN 201410040145 CN201410040145A CN103746078A CN 103746078 A CN103746078 A CN 103746078A CN 201410040145 CN201410040145 CN 201410040145 CN 201410040145 A CN201410040145 A CN 201410040145A CN 103746078 A CN103746078 A CN 103746078A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
layer
material
perovskite
light
solar cell
Prior art date
Application number
CN 201410040145
Other languages
Chinese (zh)
Other versions
CN103746078B (en )
Inventor
肖立新
郑灵灵
马英壮
陈志坚
曲波
王树峰
龚旗煌
Original Assignee
北京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0001Processes specially adapted for the manufacture or treatment of devices or of parts thereof
    • H01L51/0014Processes specially adapted for the manufacture or treatment of devices or of parts thereof for changing the shape of the device layer, e.g. patterning
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/42Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for sensing infra-red radiation, light, electro-magnetic radiation of shorter wavelength or corpuscular radiation and adapted for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation using organic materials as the active part, or using a combination of organic materials with other material as the active part; Multistep processes for their manufacture
    • H01L51/4293Devices having a p-i-n structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/54Material technologies
    • Y02E10/549Material technologies organic PV cells

Abstract

The invention discloses a perovskite solar cell and a preparation method thereof. The perovskite solar cell comprises a substrate, a transparent electrode, an electron transport layer, an electron transport and light adsorption layer, a light adsorption layer, a hole transport and light adsorption layer, a hole transport layer and a top electrode which are sequentially laminated, wherein the light adsorption layer is a photovoltaic material light adsorption layer with a perovskite structure; the electron transport and light adsorption layer is a composite functional layer formed by embedding an electron transport material and a perovskite structure photovoltaic material; and the hole transport and light adsorption layer is a composite functional layer formed by embedding a hole transport material and a perovskite structure photovoltaic material. Both sides of the light adsorption layer of the perovskite solar cell are of a certain micro nano structure, so that the composite functional layers of which the materials are embedded can be formed by the light adsorption layer and the transport layers outside the light adsorption layer; contact areas of the light adsorption layer and the transport layers are greatly increased and the perovskite solar cell is beneficial for improving exciton separation and charge transfer efficiency, so that compounding of photo-generated electrons and a hole is inhibited and performance of a device is improved.

Description

一种钙钛矿太阳能电池及其制备方法 Perovskite solar cell and method of preparation

技术领域 FIELD

[0001] 本发明属于钙钛矿太阳能电池(PSC, PerovskiteSolar Cells)领域,特别涉及到一种具有复合异质结结构的钙钛矿太阳能电池及其制备方法。 [0001] The present invention belongs to the perovskite solar cell (PSC, PerovskiteSolar Cells), and in particular relates to a solar cell and preparing a perovskite composite having a heterojunction structure.

背景技术 Background technique

[0002] 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置,又称为光伏电池。 [0002] Solar cells are devices that directly convert light into electricity by photoelectric effect or photochemical effect, also known as photovoltaic cells. 钙钛矿太阳能电池是目前较为新颖的一类太阳能电池,主要是利用类似ABX3 (A=CH3NH3+等;B=Pb2+,Sn2+等;X=C1_,Br_,I_等)具有钙钛矿结构的光伏材料来实现光电转换,具有制作工艺简单、原材料来源广泛、造价低廉等优点。 Perovskite solar cell is relatively new one based solar cells, mainly using similar ABX3 (A = CH3NH3 + and the like; B = Pb2 +, Sn2 + and the like; X = C1_, Br_, I_, etc.) a photovoltaic perovskite structure materials to achieve photoelectric conversion, simple production process, wide range of sources of raw materials, low cost and so on. 钙钛矿太阳能电池的基本结构包括衬底、透明电极、电子传输材料、钙钛矿材料吸光层、空穴传输材料和金属电极。 The basic structure of the perovskite solar cell includes a substrate, a transparent electrode, an electron transport material, a light absorbing layer of perovskite material, hole transporting material and the metal electrode. 钙钛矿太阳能电池将光能转换成电能可以分为三个主要过程:(1)吸光层吸收一定能量的光子并产生电子空穴对(激子);(2)激子扩散至材料界面处时发生电荷分离;(3)电子沿电子传输材料经电极进入外电路,空穴沿空穴传输材料经电极进入外电路,通过负载完成光能向电能的转换。 Perovskite solar cells convert light energy into electrical energy can be divided into three main processes: photon (1) light-absorbing layer absorbs a certain energy and generate electron-hole pairs (excitons); (2) exciton diffusion into the material at the interface charge separation occurs; (3) along the electron into the electron transport material through an external circuit electrode, a hole transporting material is a hole in the electrode into the external circuit, through a load to complete the conversion of light energy into electrical energy.

[0003] 表征太阳能电池性能的参数主要有短路电流密度、开路电压、填充因子、光电转换效率。 [0003] parameters that characterize the performance of a solar cell main circuit current density, open circuit voltage, fill factor and photoelectric conversion efficiency. 太阳能电池在短路条件下的单位受光面积的工作电流称为短路电流密度(Js。),此时电池输出的电压为零;太阳能电池在开路条件下的输出电压称为开路电压(V。。),此时电池输出的电流为零;填充因子(FF)是单位受光面积的最大输出功率Pmax与JseV。 The operating current of the solar cell units under a short circuit condition of the light receiving area is referred to as short-circuit current density (Js.), When the battery output voltage is zero; the solar cell output voltage under open circuit conditions called open-circuit voltage (V ..) , the battery output current is zero at this time; fill factor (FF) is the unit subject to the maximum output power Pmax JseV light area. . 的比值,FF越大,太阳能电池的性能越好;光电转换效率是单位受光面积的最大输出功率Pmax与入射的太阳光能量密度Pin的百分比,它是太阳能电池的一个重要输出特性,主要与器件结构、异质结的特性、材料性质和环境等有关。 Ratio, the greater the FF, the better the performance of the solar cell; photoelectric conversion efficiency is the percentage of solar energy receiving unit Pin density maximum output power Pmax of the incident light area, which is an important output characteristics of the solar cell, and the main components structure, heterojunction characteristics, material properties and the environment and so on.

[0004] 自从2009 年,文献“A.Kojima, K.Teshima, Y.Shirai, T.Miyasaka, J.Am.Chem.Soc.2009, 131,6050.”首先采用了钙钛矿材料作为太阳能电池的吸光材料,随着研究的深入,钙钛矿太阳能电池的效率不断提高。 [0004] Since 2009, Document "A.Kojima, K.Teshima, Y.Shirai, T.Miyasaka, J.Am.Chem.Soc.2009, 131,6050." Perovskite material is first used as a solar cell the light-absorbing material, with further research, the solar cell efficiency of the perovskite continues to increase. 2012年,文献“Μ.M.Lee, J.Teuscher, T.Miyasak, TNMurakami, HJSnaith, Science2012, 338,643.,,与文献“HSKim, CRLee, JH1m, KBLee, T.Moehlj A.Marchioroj SJMoon, RHBaker, JHYumj JEMoser, M.Gr?tzel, NGPark, Sc1.Rep.2012,2,591.”分别报道了高效的固态钙钛矿太阳能电池,大大的提高了钙钛矿太阳能电池的光电转换效率。这些钙钛矿太阳能电池采用的都是基于p-1-n结构的异质结结构。 In 2012, the literature "Μ.M.Lee, J.Teuscher, T.Miyasak, TNMurakami, HJSnaith, Science2012, 338,643. ,, and literature" HSKim, CRLee, JH1m, KBLee, T.Moehlj A.Marchioroj SJMoon, RHBaker, JHYumj JEMoser, M.Gr?tzel, NGPark, Sc1.Rep.2012,2,591. "reported the perovskite-efficient solid-state solar cells, greatly improve the photoelectric conversion efficiency of solar cells perovskite. these perovskites are used in solar cells based on p-1-n heterojunction structure structure.

发明内容 SUMMARY

[0005] 钙钛矿不仅能够广泛吸收太阳光谱,而且具有极佳的电荷传输性能。 [0005] Perovskite widely not only absorb the solar spectrum, and has excellent charge transport properties. 为了充分利用这些性质,本发明提供了一种钙钛矿太阳能电池及其制备方法,采用本发明方法制备出的钙钛矿太阳能电池,其吸光层的两侧都具有一定的微纳结构,从而与其外侧的传输层之间能够形成材料相互嵌合的复合功能层,大幅提高吸光层与传输层的接触面积,有利于提高激子分离及电荷传输效率,从而抑制光生电子与空穴的复合,改善器件性能。 To take advantage of these properties, the present invention provides a perovskite solar cell and its preparation method, the solar cell prepared using a perovskite of the process of the present invention, both sides of the light-absorbing layer has a certain micro-nano structure, thereby can be formed between the outer layer and its composite transport functional layer material engage with each other, a substantial increase in the contact area of ​​the light absorbing layer and the transport layer, exciton dissociation will help improve the efficiency and charge transport, so as to suppress recombination of photogenerated electrons and holes, improve device performance. [0006] 本发明的技术方案如下: [0006] aspect of the present invention is as follows:

[0007] —种钙钛矿太阳能电池,包括依次层叠的衬底、透明电极、电子传输层、电子传输-吸光层、吸光层、空穴传输-吸光层、空穴传输层和顶电极,其中:所述吸光层为具有钙钛矿结构的光伏材料吸光层;所述电子传输-吸光层是电子传输材料和钙钛矿结构光伏材料嵌合形成的复合功能层;所述空穴传输-吸光层是空穴传输材料和韩钛矿结构光伏材料嵌合形成的复合功能层。 [0007] - species perovskite solar cell, comprising sequentially laminating a substrate, a transparent electrode, an electron transport layer, an electron transport - the light-absorbing layer, the light absorption layer, a hole transport - the light-absorbing layer, a hole transport layer, and a top electrode, wherein : the light absorbing layer is a photovoltaic material having a perovskite structure of the light absorption layer; the electron transport - the light absorbing layer is a composite layer of electron transporting material and functional perovskite structure formed of photovoltaic material fitted; the hole transport - absorbance functional layer is a composite layer of a hole transporting material and photovoltaic material fitted Han perovskite structure is formed.

[0008] 适用于本发明钙钛矿太阳能电池的衬底材料有玻璃、柔性塑料等透明材料。 [0008] applicable to a solar cell substrate material having a perovskite of the present invention, glass, transparent flexible plastic material. 另外,也可以在衬底的照光一侧(外侧)表面添加减反膜,提高入射光的透过率。 It is also possible (outer) surface of the antireflection film is added illuminated side of the substrate, increasing the transmittance of the incident light.

[0009] 透明电极位于衬底的内侧表面上,透明电极的材料可以是铟锡氧化物(ΙΤ0, Indium Tin Oxides)、氟锡氧化物(FTO, fluorine doped tin oxide)、招锋氧化物(ΑΖ0, aluminium-doped zinc oxide)等常用的透明电极材料。 [0009] The transparent electrode on the inside surface of the substrate, the transparent electrode material may be indium tin oxide (ΙΤ0, Indium Tin Oxides), fluorine tin oxide (FTO, fluorine doped tin oxide), strokes Feng oxide (ΑΖ0 , aluminium-doped zinc oxide) and other commonly used transparent electrode material. 常采用ITO导电玻璃或FTO导电玻璃作为衬底和透明电极。 Often used FTO or ITO glass substrate and the conductive glass as the transparent electrode.

[0010] 电子传输层和电子传输-吸光层中所用电子传输材料常见的为金属氧化物,如氧化钛(Ti02)、氧化锌(ZnO)、氧化锆(ZrO2)等。 [0010] The electron transport layer and electron transport - light absorbing layer used in the electron transport material is commonly a metal oxide such as titanium oxide (Titania and), zinc oxide (ZnO), zirconium oxide (ZrO2) and the like. 其中TiO2是目前钙钛矿太阳能电池器件中最常用的电子传输材料。 TiO2 which is a perovskite solar cell device most commonly used electron transport materials. 电子传输层是金属氧化物聚集在透明电极上形成的薄膜,一般为厚度在IOnm~IOOnm之间的致密层,起到传输电子的作用,同时防止电极与吸光层直接接触。 Electron transport layer is a metal oxide aggregates formed on the transparent electrode film, a dense layer generally having a thickness between IOnm ~ IOOnm, play a role of transporting electrons, while preventing direct contact with the electrode of the light absorbing layer.

[0011] 吸光层采用钙钛矿晶体制备,其作用是吸收入射光。 [0011] Prepared using the light absorption layer perovskite crystal, whose role is to absorb incident light. 本发明器件的单纯的吸光层由钙钛矿材料的致密晶粒构成,厚度通常在100~200nm。 Simple light absorbing layer according to the present invention, the device consists of a dense perovskite crystal material, the thickness is generally 100 ~ 200nm. 此外,如果在吸光层上引入粒径在200nm~400nm左右的钙钦矿晶体形成的微纳结构,不仅能够吸收入射光,还有利于提闻光在整个器件内的散射, 从而进一步提高对入射光的吸收。 Further, if the particle size is introduced in the light-absorbing layer of about 200nm 400nm micro- and nanostructures calcium mineral crystal formation - Chin, not only to absorb incident light, light scattering is also beneficial to provide audible throughout the device, thereby further improving the incident light absorption. 常见的钙钛矿材料主要有类似ABX3 (A=CH3NH3+等;B=Pb2+, Sn2+等;X=C1_,Br_,I等)型晶体结构的有机无机杂化钙钛矿,其能隙在1.0-2.0eV。 Common perovskite materials are similar ABX3 (A = CH3NH3 + and the like; B = Pb2 +, Sn2 + and the like; X = C1_, Br_, I, etc.) an organic-inorganic type crystal structure of the hybrid perovskites, which is the energy gap 1.0 2.0eV.

[0012] 空穴传输层主要是将空穴传输至金属电极,厚度通常为50~300nm。 [0012] The hole transport layer transports holes to the main metal electrode, the thickness is generally 50 ~ 300nm. 空穴传输层和空穴传输-吸光层中的空穴传输材料一般为具有较高空穴迁移率的材料,可以是有机材料和/或无机材料,有机材料如Spiro-MeOTAD、P3HT、PTAA, TAPC, NPB, TPD等,无机材料如Cu1、CuSCN, Cu2O、CuO、Ni O、MoOx 等。 A hole transport layer and a hole transport - a light absorbing layer of a hole transporting material is generally a material having high hole mobility, it can be an organic material and / or an inorganic material, an organic material such as Spiro-MeOTAD, P3HT, PTAA, TAPC , NPB, TPD, etc., inorganic materials such as Cu1, CuSCN, Cu2O, CuO, Ni O, MoOx like.

[0013] 电子传输-吸光层位于电子传输层与吸光层之间,是多孔金属氧化物与钙钛矿材料形成的微纳互穿结构,起到吸光及电子传输作用,通常厚度约400nm~600nm。 [0013] electron transport - the light-absorbing layer is located between the electron transport layer and the light absorption layer, a micro-nano interpenetrating porous metal oxide with a perovskite material, play a role in electron transport and light absorption, typically a thickness of about 400nm ~ 600nm . 多孔金属氧化物和钙钛矿材料形成相互交错的具有较高比表面积的纳米级微观结构(IOnm~IOOnm)薄膜,例如纳米孔、纳米线、纳米柱、纳米管、纳米花、纳米树等多种微观形貌结构。 And a porous metal oxide perovskite materials interdigitated nanoscale microstructures (IOnm ~ IOOnm) films, such as nano-pores, nanowires, nanorods nanotubes, flowers, trees, and other nano having a high specific surface area microscopic topography. 高比表面积的形貌结构有利于提闻材料的接触面积,有助于提闻电子传输性能。 High specific surface area topography conducive material contact area mentioned smell, the smell will help provide electronic transport properties.

[0014] 空穴传输-吸光层位于空穴传输层与吸光层之间,由钙钛矿材料与空穴传输材料相互嵌合形成的复合薄膜,厚度通常在IOOnm~200nm之间,起到吸光及空穴传输作用。 [0014] The hole transport - the light-absorbing layer is located between the hole transport layer and the light absorption layer, a composite film of a perovskite material and each fitting hole transporting material is formed, the thickness is generally between IOOnm ~ 200nm, the light-absorbing functions and the hole transport role. 通过控制钙钛矿材料的生长条件,调节钙钛矿材料的表面形貌,可以形成锯齿状的材料界面,从而扩大空穴传输层与吸光层的接触面积,从而提高空穴传输能力,降低空穴电子的复合,提高电池效率。 By controlling the growth conditions of perovskite materials, adjusting the surface topography of the perovskite material, may be formed of material interfaces serrated, thereby expanding the contact area between the hole transport layer and light absorption layer, thereby improving the hole transport ability, reduced air hole recombination of electrons and improve cell efficiency.

[0015] 顶电极一般采用具有较高功函数的材料,如金、银、铜、铝等金属以及导电碳材料,可以采用真空镀膜、以及溶液成膜等制作方法。 [0015] Usually a top electrode using a material having a high work function, such as gold, silver, copper, aluminum and other metals and conductive carbon material, vacuum coating, and solution deposition and other production methods may be employed.

[0016] 本发明的钙钛矿太阳能电池具有类似于p-(pi)-1_(in)-n的多层结构,在器件中引入了电子传输-吸光层和空穴传输-吸光层两个复合层(Pi和in),其制备方法包括以下步骤: [0016] The solar cell of the present invention is a perovskite having similar p- (pi) -1_ (in) -n multilayer structure, the introduction of electron transport in the device - light-absorbing layer and the hole transport - two light absorbing layer composite layer (Pi and in), preparation method comprising the steps of:

[0017] I)在衬底和透明电极上采用电子传输材料制备致密膜,形成电子传输层; [0017] I) preparing a dense film using an electron transport material and a transparent electrode on a substrate, forming an electron transporting layer;

[0018] 2)在电子传输层上利用电子传输材料形成微纳多孔薄膜,然后生长钙钛矿材料,形成电子传输-吸光层及其上的吸光层,同时控制吸光层的表面形貌呈连续致密的锯齿状; [0018] 2) Formation of micro-nano porous film using on the electron transport layer, electron transport material, then grown perovskite material forming the electron transport - the light-absorbing layer the light absorption layer and on, while controlling the surface morphology of the light-absorbing layer in a continuous dense serrated;

[0019] 3)在吸光层的表面旋涂或者蒸镀空穴传输材料,形成空穴传输-吸光层及其上的空穴传输层; [0019] 3) spin-coating or vapor deposition on the surface of a hole transporting material of the light-absorbing layer, a hole transport - and the light absorption layer on the hole transport layer;

[0020] 4)在空穴传输层上制备顶电极。 [0020] 4) Preparation of the top electrode on the hole transport layer.

[0021 ] 上述步骤I)电子传输层可以通过涂布电子传输材料的前驱体溶液,然后高温烧结制备。 [0021] The step I) may be an electron transport layer, and then high temperature sintered prepared by applying a precursor solution of the electron transport material.

[0022] 上述步骤2)中利用电子传输材料制备的多孔薄膜的厚度在400_600nm。 In [0022] Step 2 above) was prepared using a porous film of a thickness of the electron transporting material 400_600nm. 钙钛矿材料生长于该多孔薄膜的孔隙中,形成电子传输-吸光层,而在多孔薄膜之上生长的钙钛矿材料形成致密的晶粒,厚度100-200nm,为吸光层,其上表面的形貌通过控制生长钙钛矿的反应溶液的浓度(例如5mg/mL〜50mg/mL)等条件进行调控,从而保证最终具有连续致密的锯齿状形貌。 Perovskite material grown in the pores of the porous film to form the electron transport - the light-absorbing layer, a perovskite material over the porous membrane to form a dense growth of crystal grains, the thickness of 100 to 200 nm, of the light absorption layer, on the surface the morphology of the reaction solution was regulated by controlling the concentration of the growth of the perovskite (e.g. 5mg / mL~50mg / mL) conditions, in order to ensure a final morphology having a zigzag continuous dense.

[0023] 上述步骤4)可以采用真空镀膜或溶液成膜的方法在空穴传输层上制备顶电极。 [0023] Step 4 above) can be used vacuum deposition method or a solution film forming a top electrode on the hole transport layer was prepared.

[0024]目前钙钛矿电池的结构基本是p-1-n结构,而本发明提出的“基于双复合异质结的钙钛矿太阳能电池”,利用的是类似于p-(pi)-1-(in)-n的多层结构,引入两个复合层(pi)及(in)在器件结构中,增大光吸光层与电荷传输层的接触面积,有利于电荷的传输,从而抑制光生电子与空穴的复合,最终改善器件性能。 [0024] The current structure of the perovskite cell substantially p-1-n structure, proposed by the present invention is "based on the double heterojunction composite perovskite solar cell", it is similar to the use of p- (pi) - 1- (in) -n multilayer structure, the introduction of two composite layers (pi) and (in) in the device structure, the contact area between light absorbing layer and a charge transport layer, the light is conducive to charge transport, thereby inhibiting composite photogenerated electrons and holes, and ultimately improve device performance.

附图说明 BRIEF DESCRIPTION

[0025] 图1是钙钛矿太阳能电池器件结构图,其中:1-FT0导电玻璃;2_电子传输层;3-电子传输-吸光层;4_吸光层;5_空穴传输-吸光层;6_空穴传输层;7_金属电极。 [0025] FIG. 1 is a perovskite solar cell device structure of Figure, in which: 1-FT0 conductive glass; 2_ electron transporting layer; 3- transmission electron - light absorption layer; 4_ light absorption layer; 5_ hole transport - a light absorbing layer ; 6_ hole transport layer; 7_ metal electrode.

[0026] 图2是实施例1制备的钙钛矿太阳能电池结构的电子显微镜图,其中,上图是钙钛矿吸光层的上表面形貌图;下图是器件结构图,由下至上依次是1-FT0导电玻璃、2-电子传输层、3-电子传输-吸光层、4-吸光层、5-空穴传输-吸光层和6-空穴传输层。 [0026] FIG. 2 is an electron micrograph showing a perovskite structure of a solar cell prepared according to Example 1, which is the upper surface topography FIG perovskite light absorption layer; figure is a configuration diagram of the device, sequentially from the bottom conductive glass is 1-FT0, 2-electron transport layer, an electron transport 3- - light-absorbing layer, the light absorption layer 4-, 5- hole transport - the light absorption layer and 6 a hole transport layer.

[0027] 图3是实施例1和对比例I制备的器件中钙钛矿材料的吸收光谱。 [0027] FIG. 3 is an absorption spectrum of Example 1 and Comparative Example I devices prepared in the perovskite material embodiment.

[0028] 图4是在AM1.5G光照下,实施例1和对比例I的钙钛矿太阳能电池的伏安特性曲线。 [0028] FIG. 4 is at AM1.5G illumination, the voltage characteristic in Example 1 and Comparative perovskite solar cell I of the curve.

具体实施方式 detailed description

[0029] 下面通过实施例详细描述本发明的器件及其制备方法,但不构成对本发明的限制。 [0029] The device and method of the present invention will be described in detail by way of examples, but not limit the present invention.

[0030] 实施例1:复合异质结结构(P-(pi)-1_ (in)-η)的器件的制备 Preparation of composite heterostructure device (P- (pi) -1_ (in) -η) is: [0030] Example 1

[0031] 1、配制PbI2溶液=PbI2的浓度为1.0Μ,溶剂为二甲基甲酰胺。 [0031] 1, PbI2 solution prepared PbI2 = concentration of 1.0 [mu], the solvent is dimethylformamide.

[0032] 2、配制CH3NH3I溶液:浓度10mg/mL,溶于异丙醇中。 [0032] 2, prepared CH3NH3I solution: concentration of 10mg / mL, dissolved in isopropanol.

[0033] 3、器件功能层的制备,参见图1,主要包括层叠于衬底及透明电极I上的各功能层:电子传输层2、电子传输-吸光层3、吸光层4、空穴传输-吸光层4、空穴传输层6,以及金属电极7。 [0033] 3. Preparation of a device function layer, see FIG. 1, including laminated on a substrate and the transparent electrodes I are each of the functional layers: electron transport layer 2, the electron transport - the light-absorbing layer 3, the light absorption layer 4, a hole transport - light-absorbing layer 4, a hole transport layer 6, and a metal electrode 7. 制备过程如下: Prepared as follows:

[0034] I)采用FTO导电玻璃作为衬底及透明电极I,厚度2_5mm,面电阻50欧姆以下; [0034] I) using FTO glass as a substrate and a transparent conductive electrode I, thickness 2_5mm, surface resistance of 50 ohms or less;

[0035] 2)采用旋涂法在衬底上涂布0.15M的双(乙酰丙酮基)二异丙基钛酸酯(titanium diisopropoxidebis (acetylacetonate))前驱体溶液,在马弗炉中350 °C 〜500°C高温烧结30min〜90min,得到厚度约IO-1OOnm的TiO2致密膜作为电子传输层2 ; [0035] 2) using a spin coating method 0.15M bis (acetylacetonate) diisopropyl titanate (titanium diisopropoxidebis (acetylacetonate)) precursor solution on a substrate, in a muffle furnace 350 ° C ~500 ° C temperature sintering 30min~90min, a thickness of from about IO-1OOnm dense TiO2 film as the electron transport layer 2;

[0036] 3)电子传输-吸光层3、吸光层4和空穴传输-吸光层5是连续制备的。 [0036] 3) an electron transport - the light-absorbing layer 3, the light absorption layer 4 and the hole transport - continuous light absorption layer 5 is prepared.

[0037] 首先制备400_600nm的TiO2多孔膜:采用旋涂法在电子传输层上涂布纳米TiO2颗粒胶体的前驱体溶液(DHS-TPP3,大连七色光太阳能科技开发有限公司),放入马弗炉350°C〜500°C高温烧结30min〜90min,形成纳米级的多孔薄膜,该多孔薄膜能够与后续制备的I丐钛矿材料实现嵌合结构,形成电子传输-吸光层3。 TiO2 porous film [0037] First 400_600nm prepared: The precursor solution using a spin coating method on the electron transport layer coating of TiO2 nanoparticles colloids (DHS-TPP3, Dalian Rainbow Light Solar Technology Development Co., Ltd.), placed in a muffle furnace 350 ° C~500 ° C high temperature sintering 30min~90min, forming nanoscale porous film, the porous film can be realized with a fitting structure I hack subsequent preparation of titanium materials, to form an electron transport - the light-absorbing layer 3.

[0038] 钙钛矿材料采用溶液法原位合成:先在TiO2多孔膜上旋涂PbI2溶液,烘干后放入CH3NH3I溶液中浸泡生长钙钛矿材料,在此过程中,钙钛矿材料生长在TiO2多孔膜的孔隙中,形成电子传输-吸光层,而且在电子传输-吸光层上表面能形成致密的晶粒,厚度约100-200nm,此为钙钛矿吸光层4。 [0038] In situ perovskite material was synthesized: First solution was spin coated PbI2 TiO2 porous film, dried and immersed into a solution CH3NH3I grown perovskite materials, in this process, the growth of the perovskite material TiO2 in the pores of the porous film, an electron transport - light absorption layer, and the electron transport - layer on the light absorbing surface capable of forming a dense grain thickness of about 100 to 200 nm, this light-absorbing layer 4 is a perovskite. 通过控制溶液生长的浓度能够调节吸光层的上表面形貌,从而改善后续形成的空穴传输-吸光层的界面结构。 By controlling the concentration of the solution can be adjusted on the growth surface morphology of the light absorption layer, thereby improving the subsequent formation of the hole transport - a light absorbing layer interface structure. 吸光层的上表面形貌主要通过以下两个方面来控制:一是控制PbI2的浓度,二是控制CH3NH3I反应溶液的浓度。 First, the control concentration of PbI2, and second, the concentration of the solution to control the reaction CH3NH3I: the light absorption layer on the surface morphology is controlled mainly by the following two aspects. 通过控制反应浓度,能够得到较好的钙钛矿形貌,既能形成致密的吸光层,又具有较高的表面积。 By controlling the reaction concentration, can be obtained perovskite better morphology, both of the light absorption layer to form a dense, but also has a higher surface area. 在钙钛矿层的表面旋涂空穴传输材料spiro-MeOTAD (浓度为0.17M,溶剂采用氯苯),与吸光层4表面的粗糙颗粒形成空穴传输-吸光层5,厚度约100-200nm,同时在空穴传输-吸光层5上还有约50-300nm厚的空穴传输层6,见图1和图2。 The surface of the spin-coated layer perovskite hole transporting material spiro-MeOTAD (0.17M concentration, solvent chlorobenzene), and the coarse particles to form a hole transport layer 4, light-absorbing surface - light absorption layer 5, a thickness of about 100 to 200 nm, while the hole transport - on the light absorbing layer 5 there are about 50-300nm thick hole transport layer 6, see Figures 1 and 2.

[0039] 4、金属电极米用银,真空热蒸镀80_150nm在器件上表面。 [0039] 4, m silver metal electrode, vacuum thermal evaporation 80_150nm on the device surface.

[0040] 对比例1:无复合异质结结构(p-1-n)的器件的制备 [0040] ratio of 1: Preparation of compound no heterostructure (p-1-n) of the device

[0041] 1、配制钙钛矿溶液,采用1.0M的PbI2,1.0M的CH3NH3I,溶剂为二甲基甲酰胺。 [0041] 1, the perovskite was prepared, using 1.0M CH3NH3I PbI2,1.0M of the solvent is dimethylformamide.

[0042] 2、器件功能层的制备,主要包括层叠于衬底及透明电极上的各功能层:电子传输层、吸光层、空穴传输层,以及金属电极。 [0042] 2. Preparation of functional device layers, including the respective functional layers stacked on the substrate and the transparent electrode: electron transport layer, a light absorption layer, a hole transport layer, and a metal electrode. 制备过程如下: Prepared as follows:

[0043] I)采用FTO导电玻璃作为衬底及透明电极,厚度2_5mm,面电阻50欧姆以下; [0043] I) using FTO as a conductive glass substrate and a transparent electrode, a thickness 2_5mm, surface resistance of 50 ohms or less;

[0044] 2)采用旋涂法在衬底上涂布0.15M 的titanium diisopropoxidebis (acetylacetonate)前驱体溶液,在马弗炉中350°C〜500°C高温烧结30min〜90min,得到厚度约IO-1OOnm的TiO2致密膜作为电子传输层; [0044] 2) using a spin coating method 0.15M titanium diisopropoxidebis (acetylacetonate) precursor solution on a substrate, in a muffle furnace 350 ° C~500 ° C high temperature sintering 30min~90min, a thickness of about IO- TiO2 1OOnm dense film as an electron-transporting layer;

[0045] 3)将钙钛矿溶液旋涂到电子传输层上,通过真空下90°C退火,形成吸光层。 [0045] 3) The perovskite solution was spin coated onto the electron transport layer, annealed by 90 ° C under vacuum to form a light absorbing layer.

[0046] 4)在吸光层上旋涂空穴传输材料spiro-MeOTAD (浓度为0.17M,溶剂采用氯苯),得到厚度约50-300nm的空穴传输层。 [0046] 4) on the light absorbing layer of spin hole transporting material spiro-MeOTAD (0.17M concentration, solvent chlorobenzene), to obtain a hole transporting layer of a thickness of about 50-300nm.

[0047] 3、金属电极米用银,真空热蒸镀80_150nm在器件上表面。 [0047] 3 meters silver metal electrode, vacuum thermal evaporation 80_150nm on the device surface.

[0048] 器件性能测试 [0048] Performance Test Device

[0049] 将实施例1制备的含复合异质结的器件和对比例I制备的无复合异质结的器件置于标准太阳光模拟器下,将透明电极与金属电极连接测试仪,进行测试。 Heterojunction composite containing [0049] The embodiment of the device prepared in Example 1 and without a heterojunction composite prepared in Comparative Example I a standard device in a solar simulator, the transparent electrode and a metal electrode connected to the tester, the test .

[0050] 图3给出的是器件中钙钛矿材料的吸收光谱,可以看出含复合异质结的吸收高于无复合异质结,从而达到高效的光俘获。 [0050] Figure 3 shows the absorption spectrum of the device is a perovskite material, comprising the absorbent composite can be seen above the heterojunction composite without a heterojunction, so as to achieve efficient light trapping. [0051] 实验过程中采用在100mW/cm2太阳能模拟器(Newport)AMl.5G光照下的电流_电压由电流-电压仪(Keithley2611)在室温空气中测量。 [0051] The experimental procedure used in the current _ AMl.5G voltage by the current in the light 100mW / cm2 solar simulator (Newport) - voltage measured at room temperature in air meter (Keithley2611). 测量结果如图4所示,由图4读出Voc> Jsc,并计算出FF和η ,如表1所示。 The measurement results shown in FIG. 4, FIG. 4 is read from the Voc> Jsc, and FF and [eta] is calculated, as shown in Table 1.

[0052] 表1钙钛矿电池的伏安性能参数 [0052] Table 1 voltammetry perovskite cell parameters

[0053] [0053]

Figure CN103746078AD00071

[0054] 以上通过实施例详细描述了本发明所提供的基于多层复合异质结的钙钛矿太阳能电池。 [0054] Based on the above described multilayer composite perovskite heterojunction solar cell according to the present invention is provided by way of example in detail. 多层复合异质结在一般的P-1-n结构基础上,引入了两层混合材料过渡层,形成了p- (pi)-1- (in)-n的异质结结构。 The multilayer composite structure based heterojunction general P-1-n, the two layers of mixed material introduced into the buffer layer, forming a p- (pi) -1- (in) -n heterojunction structure. 这样的过渡层结构能够增大吸光层与电子传输层及空穴传输层的接触面积,从而有利于电池内的电荷分离与电荷传输,有效降低电子与空穴在电池内部复合,从而提高器件的性能。 Such a transition layer structure can be increased contact area with the light absorption layer and a hole transport layer, the electron transport layer to facilitate charge separation and charge transfer in the battery, the battery inside reduce recombination of electrons and holes, thereby improving the device performance.

[0055] 本领域的技术人员应当理解,在不脱离本发明实质的范围内,可以对本发明的器件结构做一定的变形或修改,其制备方法也不限于实施例中所公开的内容。 [0055] Those skilled in the art will appreciate that, in the present invention without departing from the spirit scope, can make certain changes and modifications are to the device structure of the present invention, a preparation method is not limited to the contents disclosed in the examples.

Claims (10)

  1. 1.一种I丐钛矿太阳能电池,包括依次层叠的衬底、透明电极、电子传输层、电子传输-吸光层、吸光层、空穴传输-吸光层、空穴传输层和顶电极,其中:所述吸光层为具有隹丐钛矿结构的光伏材料吸光层;所述电子传输-吸光层是电子传输材料和I丐钛矿结构光伏材料嵌合形成的复合功能层;所述空穴传输-吸光层是空穴传输材料和韩钛矿结构光伏材料嵌合形成的复合功能层。 A hack I perovskite solar cell comprising a substrate sequentially stacked, a transparent electrode, an electron transport layer, an electron transport - the light-absorbing layer, the light absorption layer, a hole transport - the light-absorbing layer, a hole transport layer, and a top electrode, wherein : the light absorbing layer is a photovoltaic material having a perovskite structure of the short-tailed hack light absorption layer; the electron transport - the light absorption layer is a composite layer of electron transporting material and the function I hack perovskite structure formed fitting photovoltaic material; the hole transport - light-absorbing layer is a complex function and a hole transport material layer perovskite structure Han fitted photovoltaic material formed.
  2. 2.如权利要求1所述的钙钛矿太阳能电池,其特征在于,所述衬底材料为玻璃或柔性塑料;所述透明电极的材料是铟锡氧化物、氟锡氧化物或铝锌氧化物。 Fluorine tin oxide, or zinc aluminum oxide of the material of the transparent electrode is indium tin oxide; 2. The solar cell as claimed perovskite claim 1, wherein the substrate is a glass or a flexible plastic material thereof.
  3. 3.如权利要求1所述的钙钛矿太阳能电池,其特征在于,所述电子传输层和电子传输-吸光层中的电子传输材料为金属氧化物。 3. The solar cell of the perovskite as claimed in claim 1, wherein the electron transport layer and the electron transport - electron transporting material of the light absorbing layer is a metal oxide.
  4. 4.如权利要求1所述的钙钛矿太阳能电池,其特征在于,所述电子传输-吸光层是多孔金属氧化物与钙钛矿结构光伏材料形成的微纳米互穿结构。 4. The solar cell of the perovskite as claimed in claim 1, wherein the electron transport - the light absorption layer is a micro-nano-porous metal oxide and a perovskite structure formed of photovoltaic material interpenetrating structure.
  5. 5.如权利要求1所述的钙钛矿太阳能电池,其特征在于,所述钙钛矿结构光伏材料为ABX3型晶体结构的有机无机杂化钙钛矿。 5. The solar cell of the perovskite as claimed in claim 1, wherein said perovskite material is an organic photovoltaic crystal structure ABX3 inorganic hybrid perovskites.
  6. 6.如权利要求1所述的钙钛矿太阳能电池,其特征在于,所述空穴传输-吸光层中,钙钛矿结构光伏材料与空穴传输材料的嵌合界面呈锯齿状。 The solar cell of the perovskite as claimed in claim 1, wherein the hole transport - the light-absorbing layer, the perovskite structure of the photovoltaic material and hole transport material chimeric interface serrated.
  7. 7.如权利要求1所述的钙钛矿太阳能电池,其特征在于,所述空穴传输-吸光层和空穴传输层中的空穴传输材料为有机材料和/或无机材料,所述有机材料选自Spiro-MeOTAD、P3HT、PTAA, TAPC, NPB和TH)中的一种或多种;所述无机材料选自Cul、CuSCN, Cu2O, CuO、NiO和MoOx中的一种或多种。 7. The solar cell of the perovskite as claimed in claim 1, wherein the hole transport - a light absorbing layer, a hole transporting material and the hole transport layer material, an organic and / or inorganic materials, the organic a material selected from one or more of Spiro-MeOTAD, P3HT, PTAA, TAPC, NPB, and TH) in; is selected from one or more of Cul, CuSCN, Cu2O, CuO, NiO and MoOx of the inorganic material.
  8. 8.如权利要求1所述的钙钛矿太阳能电池,其特征在于,所述顶电极为金属电极或导电碳材料电极。 8. The solar cell of the perovskite as claimed in claim 1, wherein the top electrode is a metal electrode or a conductive carbon material of the electrode.
  9. 9.权利要求1〜8任一所述钙钛矿太阳能电池的制备方法,包括以下步骤: 1)在衬底和透明电极上采用电子传输材料制备致密膜,形成电子传输层; 2)在电子传输层上利用电子传输材料形成微纳米级的多孔薄膜,然后生长钙钛矿结构光伏材料,形成电子传输-吸光层及其上的吸光层,同时控制吸光层的表面形貌呈连续致密的锯齿状; 3)在吸光层的表面旋涂或者蒸镀空穴传输材料,形成空穴传输-吸光层及其上的空穴传输层; 4)在空穴传输层上制备顶电极。 9. A method for preparing the perovskite solar cell according to any one of claims 1~8, comprising the following steps: 1) preparation of the compact membrane electron transport material and a transparent electrode on a substrate, forming an electron transport layer; 2) in the electronic forming a micro nanoscale porous film on a transmission layer, electron transport material, and then growing a perovskite structure photovoltaic material, to form an electron transport - the light-absorbing layer the light absorption layer and on, while controlling the surface morphology of the light-absorbing layer is a continuous dense serrated shape; 3) on the surface of the light-absorbing layer, spin coating or vapor deposition of a hole transporting material, a hole transport - and the light absorption layer on the hole transport layer; 4) on the hole transport layer, the top electrode was prepared.
  10. 10.如权利要求9所述的制备方法,其特征在于,在步骤2)钙钛矿结构光伏材料生长于所述多孔薄膜的孔隙中,形成电子传输-吸光层,而在所述多孔薄膜之上生长的钙钛矿结构光伏材料形成吸光层,通过控制生长钙钛矿结构光伏材料的反应溶液的浓度调控吸光层的上表面形貌,形成连续致密的锯齿状形貌。 10. The method as recited in claim 9, wherein, in the pore Step 2) the perovskite structure of the photovoltaic material grown in the porous film, to form an electron transport - the light-absorbing layer and the porous film of photovoltaic material of perovskite structure formed on the light absorption layer is grown by controlling growth of a perovskite structure light absorbing layer of the reaction solution was regulated concentration photovoltaic material on the surface topography, morphology continuous zigzag form dense.
CN 201410040145 2014-01-27 2014-01-27 Perovskite solar cell and method of preparation CN103746078B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201410040145 CN103746078B (en) 2014-01-27 2014-01-27 Perovskite solar cell and method of preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201410040145 CN103746078B (en) 2014-01-27 2014-01-27 Perovskite solar cell and method of preparation

Publications (2)

Publication Number Publication Date
CN103746078A true true CN103746078A (en) 2014-04-23
CN103746078B CN103746078B (en) 2017-02-15

Family

ID=50503084

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201410040145 CN103746078B (en) 2014-01-27 2014-01-27 Perovskite solar cell and method of preparation

Country Status (1)

Country Link
CN (1) CN103746078B (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104022226A (en) * 2014-05-14 2014-09-03 中国科学院物理研究所 Perovskite-based film solar cell and preparation method
CN104022222A (en) * 2014-05-14 2014-09-03 中国科学院物理研究所 Perovskite-based film solar cell and preparation method
CN104091889A (en) * 2014-07-24 2014-10-08 华中科技大学 Semi-conductor perovskite solar cell and preparing method thereof
CN104124291A (en) * 2014-07-24 2014-10-29 华中科技大学 Perovskite solar battery and preparation method thereof
CN104409641A (en) * 2014-11-07 2015-03-11 中国科学院青岛生物能源与过程研究所 Novel method for improving uniformity and crystallinity of organic-inorganic perovskite thin film
CN104485423A (en) * 2014-11-28 2015-04-01 武汉工程大学 Planar structure perovskite photovoltaic cell with CrOx thin film prepared by solution method as anode interface layer and preparation method of planar structure perovskite photovoltaic cell
CN104795500A (en) * 2015-04-10 2015-07-22 电子科技大学 Organic thin-film solar cell using bulk heterojunctions as linking layers and production method of solar cell
CN104810479A (en) * 2014-12-27 2015-07-29 镇江市双利光电科技有限公司 Flexible solar cell with tin perovskite structure and manufacturing method
CN104966783A (en) * 2015-07-13 2015-10-07 电子科技大学 Organic thin-film solar cell based on gradient mixed active layer acting as cohesive layer
CN105140401A (en) * 2015-07-24 2015-12-09 北京大学 Preparation method of organic or organic-inorganic hybrid framework-based perovskite solar cell
CN105161625A (en) * 2015-09-23 2015-12-16 北京大学深圳研究生院 Method for manufacturing cuprous oxide heterojunction solar cell
CN105200522A (en) * 2015-08-13 2015-12-30 陕西师范大学 Large-area perovskite thin sheet and preparation and application thereof
CN105336862A (en) * 2015-09-28 2016-02-17 湘潭大学 Integrated stack double-junction perovskite solar cell and preparation method thereof
CN105449106A (en) * 2015-12-28 2016-03-30 中国科学院重庆绿色智能技术研究院 Transparent electrode based on ultrathin metal and preparation method thereof
CN105514277A (en) * 2015-12-21 2016-04-20 成都新柯力化工科技有限公司 Wide-range spectral absorption perovskite photovoltaic material and preparation method thereof
CN105514284A (en) * 2015-12-21 2016-04-20 成都新柯力化工科技有限公司 Modified perovskite-structure photoelectric conversion material and preparation method thereof
CN105789449A (en) * 2016-05-12 2016-07-20 东莞市联洲知识产权运营管理有限公司 Novel high-efficiency perovskite solar cell and preparation method thereof
CN105826476A (en) * 2016-03-17 2016-08-03 华北电力大学 Method of manufacturing perovskite solar cell based on composite hole transporting layer
CN104091888B (en) * 2014-07-17 2016-08-17 湖北大学 Perovskite type solar cell and its preparation method
CN105870340A (en) * 2016-04-19 2016-08-17 苏州黎元新能源科技有限公司 Preparation method and application of perovskite thin film
US9431613B2 (en) 2014-08-13 2016-08-30 National Tsing Hua University Method of fabricating perovskite solar cell
WO2016144883A1 (en) * 2015-03-06 2016-09-15 The Regents Of The University Of California Efficient and stable of perovskite solar cells with all solution processed metal oxide transporting layers
CN106058051A (en) * 2016-07-05 2016-10-26 苏州大学 Preparation method of perovskite type solar cell modified by organic/inorganic hybrid hole transport layer
CN106328813A (en) * 2015-06-29 2017-01-11 清华大学 High-stability cesium-doped perovskite solar cell and preparation method therefor
CN104091887B (en) * 2014-04-30 2017-02-15 上海北京大学微电子研究院 Perovskite solar cell and a method for preparing sol-gel process based on the whole
CN106449988A (en) * 2016-11-29 2017-02-22 宁波大学 Perovskite solar cell with ultrathin electron transport layer structure
CN104009159B (en) * 2014-05-14 2017-11-10 中国科学院物理研究所 Perovskite-based thin film solar cell and its preparation method
CN106067515B (en) * 2016-08-11 2018-09-07 重庆科技学院 Ferroelectric - perovskite composite solar cell and its preparation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182439A (en) * 2011-01-14 2012-09-20 Sumitomo Chemical Co Ltd Organic photoelectric conversion element
CN102891259A (en) * 2012-09-28 2013-01-23 北京大学 Organic solar cell with vertical separation between donor and receptor and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182439A (en) * 2011-01-14 2012-09-20 Sumitomo Chemical Co Ltd Organic photoelectric conversion element
CN102891259A (en) * 2012-09-28 2013-01-23 北京大学 Organic solar cell with vertical separation between donor and receptor and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIN HYUCK HEO, ET AL.: "Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors", 《NATURE PHOTONICS》 *

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9231136B2 (en) 2014-04-29 2016-01-05 National Central University Method for preparing perovskite film and solar cell thereof
CN104091887B (en) * 2014-04-30 2017-02-15 上海北京大学微电子研究院 Perovskite solar cell and a method for preparing sol-gel process based on the whole
CN104009159B (en) * 2014-05-14 2017-11-10 中国科学院物理研究所 Perovskite-based thin film solar cell and its preparation method
CN104022222A (en) * 2014-05-14 2014-09-03 中国科学院物理研究所 Perovskite-based film solar cell and preparation method
CN104022222B (en) * 2014-05-14 2017-12-29 中国科学院物理研究所 Perovskite-based thin film solar cell and its preparation method
CN104022226A (en) * 2014-05-14 2014-09-03 中国科学院物理研究所 Perovskite-based film solar cell and preparation method
CN104091888B (en) * 2014-07-17 2016-08-17 湖北大学 Perovskite type solar cell and its preparation method
CN104124291B (en) * 2014-07-24 2016-08-31 华中科技大学 Perovskite solar cell and its preparation method
CN104091889B (en) * 2014-07-24 2015-08-05 华中科技大学 Perovskite semiconductor solar cell and method of preparation
CN104091889A (en) * 2014-07-24 2014-10-08 华中科技大学 Semi-conductor perovskite solar cell and preparing method thereof
CN104124291A (en) * 2014-07-24 2014-10-29 华中科技大学 Perovskite solar battery and preparation method thereof
US9431613B2 (en) 2014-08-13 2016-08-30 National Tsing Hua University Method of fabricating perovskite solar cell
CN104409641A (en) * 2014-11-07 2015-03-11 中国科学院青岛生物能源与过程研究所 Novel method for improving uniformity and crystallinity of organic-inorganic perovskite thin film
CN104485423B (en) * 2014-11-28 2018-06-08 武汉工程大学 In species CrO film was prepared by Method planar anode interfacial layer perovskite structure of a photovoltaic cell and preparation method
CN104485423A (en) * 2014-11-28 2015-04-01 武汉工程大学 Planar structure perovskite photovoltaic cell with CrOx thin film prepared by solution method as anode interface layer and preparation method of planar structure perovskite photovoltaic cell
CN104810479A (en) * 2014-12-27 2015-07-29 镇江市双利光电科技有限公司 Flexible solar cell with tin perovskite structure and manufacturing method
WO2016144883A1 (en) * 2015-03-06 2016-09-15 The Regents Of The University Of California Efficient and stable of perovskite solar cells with all solution processed metal oxide transporting layers
CN104795500A (en) * 2015-04-10 2015-07-22 电子科技大学 Organic thin-film solar cell using bulk heterojunctions as linking layers and production method of solar cell
CN106328813B (en) * 2015-06-29 2018-08-28 清华大学 Species high stability cesium-doped perovskite-type solar cell and its preparation method
CN106328813A (en) * 2015-06-29 2017-01-11 清华大学 High-stability cesium-doped perovskite solar cell and preparation method therefor
CN104966783A (en) * 2015-07-13 2015-10-07 电子科技大学 Organic thin-film solar cell based on gradient mixed active layer acting as cohesive layer
CN104966783B (en) * 2015-07-13 2017-08-25 电子科技大学 Mixing the active layer is a gradient based convergence layer of the organic thin film solar cell
CN105140401A (en) * 2015-07-24 2015-12-09 北京大学 Preparation method of organic or organic-inorganic hybrid framework-based perovskite solar cell
CN105200522A (en) * 2015-08-13 2015-12-30 陕西师范大学 Large-area perovskite thin sheet and preparation and application thereof
CN105161625B (en) * 2015-09-23 2017-11-24 北京大学深圳研究生院 An oxidized cuprous heterojunction solar cell production method
CN105161625A (en) * 2015-09-23 2015-12-16 北京大学深圳研究生院 Method for manufacturing cuprous oxide heterojunction solar cell
CN105336862A (en) * 2015-09-28 2016-02-17 湘潭大学 Integrated stack double-junction perovskite solar cell and preparation method thereof
CN105336862B (en) * 2015-09-28 2017-11-03 湘潭大学 A unitary stack perovskite double junction solar cell and method of preparation
CN105514284B (en) * 2015-12-21 2017-11-10 曹胜伟 A photoelectric conversion material and a preparation method of a modified perovskite structure of
CN105514284A (en) * 2015-12-21 2016-04-20 成都新柯力化工科技有限公司 Modified perovskite-structure photoelectric conversion material and preparation method thereof
CN105514277A (en) * 2015-12-21 2016-04-20 成都新柯力化工科技有限公司 Wide-range spectral absorption perovskite photovoltaic material and preparation method thereof
CN105514277B (en) * 2015-12-21 2017-10-20 成都新柯力化工科技有限公司 Perovskite photovoltaic material that a wide range of spectral absorption and preparation method
CN105449106B (en) * 2015-12-28 2018-10-23 中国科学院重庆绿色智能技术研究院 A transparent electrode and method for preparing ultra-thin metal-based
CN105449106A (en) * 2015-12-28 2016-03-30 中国科学院重庆绿色智能技术研究院 Transparent electrode based on ultrathin metal and preparation method thereof
CN105826476B (en) * 2016-03-17 2018-07-31 华北电力大学 The method of producing a composite based on the hole transport layer perovskite solar cell
CN105826476A (en) * 2016-03-17 2016-08-03 华北电力大学 Method of manufacturing perovskite solar cell based on composite hole transporting layer
CN105870340A (en) * 2016-04-19 2016-08-17 苏州黎元新能源科技有限公司 Preparation method and application of perovskite thin film
CN105870340B (en) * 2016-04-19 2017-04-12 苏州黎元新能源科技有限公司 A method for preparing a thin film of perovskite and Applications
CN105789449A (en) * 2016-05-12 2016-07-20 东莞市联洲知识产权运营管理有限公司 Novel high-efficiency perovskite solar cell and preparation method thereof
CN106058051A (en) * 2016-07-05 2016-10-26 苏州大学 Preparation method of perovskite type solar cell modified by organic/inorganic hybrid hole transport layer
CN106067515B (en) * 2016-08-11 2018-09-07 重庆科技学院 Ferroelectric - perovskite composite solar cell and its preparation method
CN106449988A (en) * 2016-11-29 2017-02-22 宁波大学 Perovskite solar cell with ultrathin electron transport layer structure

Also Published As

Publication number Publication date Type
CN103746078B (en) 2017-02-15 grant

Similar Documents

Publication Publication Date Title
Gong et al. Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel materials
Zhou et al. Interface engineering of highly efficient perovskite solar cells
Zhu et al. Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron‐transporting layer
Huang et al. Solution-processed vanadium oxide as an anode interlayer for inverted polymer solar cells hybridized with ZnO nanorods
Zhu et al. High‐performance hole‐extraction layer of sol–gel‐processed NiO nanocrystals for inverted planar perovskite solar cells
Musselman et al. Strong efficiency improvements in ultra‐low‐cost inorganic nanowire solar cells
He et al. High efficiency perovskite solar cells: from complex nanostructure to planar heterojunction
Upadhyaya et al. Recent progress and the status of dye-sensitised solar cell (DSSC) technology with state-of-the-art conversion efficiencies
Wu et al. Ultra-long anatase TiO 2 nanowire arrays with multi-layered configuration on FTO glass for high-efficiency dye-sensitized solar cells
Heo et al. Highly efficient low temperature solution processable planar type CH 3 NH 3 PbI 3 perovskite flexible solar cells
Lancelle‐Beltran et al. All‐solid‐state dye‐sensitized nanoporous TiO2 hybrid solar cells with high energy‐conversion efficiency
Bai et al. High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering
Qian et al. Hybrid polymer-CdSe solar cells with a ZnO nanoparticle buffer layer for improved efficiency and lifetime
Ahmad et al. Materials and methods for encapsulation of OPV: A review
Ding et al. Deposition of hole-transport materials in solid-state dye-sensitized solar cells by doctor-blading
Tétreault et al. Novel nanostructures for next generation dye-sensitized solar cells
Li et al. Inorganic p-type contact materials for perovskite-based solar cells
Chou et al. Preparation of TiO2 particles and their applications in the light scattering layer of a dye-sensitized solar cell
Wang et al. Perovskite photovoltaics: a high-efficiency newcomer to the solar cell family
Yan et al. Hole‐Transporting Materials in Inverted Planar Perovskite Solar Cells
Ke et al. Efficient fully-vacuum-processed perovskite solar cells using copper phthalocyanine as hole selective layers
CN1996620A (en) Carbon nano tube film-based solar energy battery and its preparing method
Wei et al. Free-standing flexible carbon electrode for highly efficient hole-conductor-free perovskite solar cells
Ali et al. Advances in nanostructured thin film materials for solar cell applications
Sima et al. Comparison of the dye-sensitized solar cells performances based on transparent conductive ITO and FTO

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model