JP2012182439A - Organic photoelectric conversion element - Google Patents

Organic photoelectric conversion element Download PDF

Info

Publication number
JP2012182439A
JP2012182439A JP2012002801A JP2012002801A JP2012182439A JP 2012182439 A JP2012182439 A JP 2012182439A JP 2012002801 A JP2012002801 A JP 2012002801A JP 2012002801 A JP2012002801 A JP 2012002801A JP 2012182439 A JP2012182439 A JP 2012182439A
Authority
JP
Japan
Prior art keywords
layer
transport layer
photoelectric conversion
conversion element
organic photoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012002801A
Other languages
Japanese (ja)
Inventor
Yasunori Kamiya
保則 上谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2012002801A priority Critical patent/JP2012182439A/en
Publication of JP2012182439A publication Critical patent/JP2012182439A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • H10K30/211Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions comprising multiple junctions, e.g. double heterojunctions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/79Post-treatment doping
    • C08G2261/794Post-treatment doping with polymeric dopants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • H10K30/57Photovoltaic [PV] devices comprising multiple junctions, e.g. tandem PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an organic photoelectric conversion element having two or more active layers and a conjugate, the open end voltage (Voc) of which is sufficiently high when compared with an organic photoelectric conversion element having one active layer.SOLUTION: The organic photoelectric conversion element is composed by laminating, between a pair of electrodes, a plurality of active layers and conjugates interposed between the active layers. The conjugate has a plurality of layers including an electron transport layer and a hole transport layer, and the electron transport layer is formed by applying a coating liquid containing an electron transport material and a solvent represented by formula (1a) or a solvent represented by formula (1b) onto a layer underlying the electron transport layer. (In the formulae, n represents an integer of 2-5, and R represents an alkyl group of 1-10C).

Description

本発明は、有機光電変換素子に関する。   The present invention relates to an organic photoelectric conversion element.

近年、光エネルギーを利用した有機光電変換素子(有機太陽電池及び光センサーなど)が注目されている。複数の活性層を積層すると高い起電力を得ることができるため、タンデム構造に代表される、2つ以上の活性層を積層したマルチ接合構造を有する素子が期待されている。マルチ接合構造を有する有機光電変換素子においては、活性層を単に積層した有機光電変換素子のみならず、活性層の間に接合体を設けた有機光電変換素子も検討されている。   In recent years, organic photoelectric conversion elements (such as organic solar cells and optical sensors) using light energy have attracted attention. Since a high electromotive force can be obtained by laminating a plurality of active layers, an element having a multi-junction structure in which two or more active layers are laminated, represented by a tandem structure, is expected. In an organic photoelectric conversion element having a multi-junction structure, not only an organic photoelectric conversion element in which active layers are simply stacked, but also an organic photoelectric conversion element in which a bonded body is provided between active layers has been studied.

接合体は、通常、電子輸送層、電荷再結合層及び正孔輸送層などの複数の層が積層されて構成される。マルチ接合構造を有する有機光電変換素子としては、2層の活性層と、該活性層の間に、酸化亜鉛ナノ粒子からなる電子輸送層と、中性化したPEDOT:PSS{ポリ(3,4−エチレンジオキシチオフェン)(PEDOT)とポリ(4−スチレンスルホン酸)(PSS)との混合物}からなる正孔輸送層とを含む接合体を有する有機光電変換素子が提案されている。該有機光電変換素子の接合体に含まれる電子輸送層は、酸化亜鉛ナノ粒子とアセトンとを含む液を活性層上に塗布することにより形成されている(非特許文献1)。   The joined body is usually formed by laminating a plurality of layers such as an electron transport layer, a charge recombination layer, and a hole transport layer. As an organic photoelectric conversion element having a multi-junction structure, there are two active layers, an electron transport layer made of zinc oxide nanoparticles between the active layers, and neutralized PEDOT: PSS {poly (3,4). An organic photoelectric conversion element having a joined body including a hole transport layer formed of a mixture of ethylenedioxythiophene (PEDOT) and poly (4-styrenesulfonic acid) (PSS) has been proposed. The electron transport layer contained in the joined body of the organic photoelectric conversion element is formed by applying a liquid containing zinc oxide nanoparticles and acetone on the active layer (Non-Patent Document 1).

アプライド フィジックス レターズ(Applied Physics Letters)、2007年、第90巻、p.143512Applied Physics Letters, 2007, Vol. 90, p. 143512

しかしながら、2層の活性層と接合体とを有する上述の有機光電変換素子は、1層の活性層を有する有機光電変換素子と比較して、開放端電圧(Voc)の向上が十分ではないという課題がある。   However, the above-described organic photoelectric conversion element having two active layers and a bonded body is not sufficiently improved in open-circuit voltage (Voc) compared to an organic photoelectric conversion element having one active layer. There are challenges.

本発明の目的は、1層の活性層を有する有機光電変換素子と比較して、開放端電圧(Voc)が十分に高い、2層以上の活性層と接合体とを有する有機光電変換素子を提供することである。   An object of the present invention is to provide an organic photoelectric conversion element having two or more active layers and a joined body, which has a sufficiently high open-circuit voltage (Voc) as compared with an organic photoelectric conversion element having one active layer. Is to provide.

即ち、本発明は第一に、複数の活性層と、該活性層間に位置する接合体とが、一対の電極間に積層されて構成される有機光電変換素子であって、
前記接合体が、電子輸送層及び正孔輸送層を含む複数の層を含有し、
前記電子輸送層が、電子輸送性材料と式(1a)で表される溶媒又は式(1b)で表される溶媒とを含む塗布液を、電子輸送層の下の層上に塗布することにより形成される有機光電変換素子を提供する。

Figure 2012182439
(1a) (1b)
〔式中、nは、2〜5の整数を表し、Rは、炭素数1〜10のアルキル基を表す。〕 That is, the first aspect of the present invention is an organic photoelectric conversion element constituted by laminating a plurality of active layers and a joined body positioned between the active layers between a pair of electrodes,
The joined body contains a plurality of layers including an electron transport layer and a hole transport layer,
By applying the coating liquid containing the electron transporting material and the solvent represented by the formula (1a) or the solvent represented by the formula (1b) on the layer below the electron transporting layer. An organic photoelectric conversion element to be formed is provided.
Figure 2012182439
(1a) (1b)
[Wherein, n represents an integer of 2 to 5, and R represents an alkyl group having 1 to 10 carbon atoms. ]

本発明は第二に、電子輸送性材料が酸化亜鉛からなる粒子を含む前記有機光電変換素子を提供する。   Secondly, the present invention provides the organic photoelectric conversion element, wherein the electron transporting material includes particles made of zinc oxide.

本発明は第三に、正孔輸送層が、正孔輸送性材料と溶媒とを含みpHが3〜9である塗布液を、正孔輸送層の下の層上に塗布することにより形成される前記有機光電変換素子を提供する。   In the present invention, thirdly, the hole transport layer is formed by coating a coating solution containing a hole transport material and a solvent and having a pH of 3 to 9 on a layer below the hole transport layer. The organic photoelectric conversion element is provided.

本発明は第四に、活性層が、共役高分子化合物とフラーレン誘導体とを含む前記有機光電変換素子を提供する。   Fourthly, the present invention provides the organic photoelectric conversion element, wherein the active layer contains a conjugated polymer compound and a fullerene derivative.

本発明は第五に、複数の活性層と、該活性層間に位置し電子輸送層及び正孔輸送層を含む複数の層を含有する接合体とが、一対の電極間に積層されて構成される有機光電変換素子の製造方法であって、
電子輸送層が、電子輸送性材料と式(1a)で表される溶媒又は式(1b)で表される溶媒とを含む塗布液を、電子輸送層の下の層上に塗布することにより形成する有機光電変換素子の製造方法を提供する。

Figure 2012182439
(1a) (1b)
〔式中、nは、2〜5の整数を表し、Rは、炭素数1〜10のアルキル基を表す。〕 Fifth, the present invention comprises a plurality of active layers and a joined body containing a plurality of layers located between the active layers and including an electron transport layer and a hole transport layer, laminated between a pair of electrodes. A method for producing an organic photoelectric conversion element comprising:
The electron transport layer is formed by applying a coating liquid containing an electron transport material and a solvent represented by the formula (1a) or a solvent represented by the formula (1b) on a layer below the electron transport layer. Provided is a method for producing an organic photoelectric conversion element.
Figure 2012182439
(1a) (1b)
[Wherein, n represents an integer of 2 to 5, and R represents an alkyl group having 1 to 10 carbon atoms. ]

本発明は第六に、正孔輸送層を、正孔輸送性材料と溶媒とを含みpHが3〜9である塗布液を、正孔輸送層の下の層上に塗布することにより形成する前記製造方法を提供する。   Sixthly, in the present invention, the hole transport layer is formed by applying a coating solution containing a hole transport material and a solvent and having a pH of 3 to 9 on a layer below the hole transport layer. The manufacturing method is provided.

本発明によれば、1層の活性層を有する有機光電変換素子と比較して、開放端電圧(Voc)が十分に高い、2層以上の活性層と接合体とを有する有機光電変換素子が得られるため、本発明は極めて有用である。   According to the present invention, an organic photoelectric conversion element having two or more active layers and a bonded body has a sufficiently high open-circuit voltage (Voc) as compared with an organic photoelectric conversion element having one active layer. The present invention is extremely useful because it is obtained.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

<有機光電変換素子>
本発明の有機光電変換素子は、一対の電極間において、複数の活性層と、該活性層間に位置する接合体とが積層されて構成され、前記接合体が、電子輸送層及び正孔輸送層を含有し、前記電子輸送層が、電子輸送性材料と式(1a)で表される溶媒又は式(1b)で表される溶媒とを含む塗布液を、電子輸送層の下の層上に塗布することにより形成されることを特徴とする。
<Organic photoelectric conversion element>
The organic photoelectric conversion element of the present invention is configured by laminating a plurality of active layers and a joined body positioned between the active layers between a pair of electrodes, and the joined body includes an electron transport layer and a hole transport layer. A coating solution containing the electron transporting material and the solvent represented by the formula (1a) or the solvent represented by the formula (1b) on the layer below the electron transporting layer. It is formed by coating.

本発明の有機光電変換素子の素子構造の一例を示す。
(a)陽極/活性層/接合体/活性層/陰極
(b)陽極/(繰り返し単位)m/活性層/陰極
(記号「/」は、該記号「/」を挟む層が隣接して積層されることを示す。以下同じ。) (b)において、「(繰り返し単位)」は、活性層と接合体との積層体(活性層/接合体)を表し、記号「m」は1以上の整数を表し、「(繰り返し単位)m」は、m個の積層体(活性層/接合体)が積層された積層体を表す。なお陰極と活性層との間には電子輸送層が設けられる場合があり、また活性層と陽極との間には、正孔輸送層が設けられる場合がある。
An example of the element structure of the organic photoelectric conversion element of this invention is shown.
(A) Anode / active layer / junction / active layer / cathode (b) anode / (repeating unit) m / active layer / cathode (the symbol “/” is laminated with adjacent layers sandwiching the symbol “/”) The same applies hereinafter.) In (b), “(repeat unit)” represents a laminate of the active layer and the bonded body (active layer / bonded body), and the symbol “m” represents one or more. An integer is represented, and “(repeat unit) m” represents a laminated body in which m laminated bodies (active layer / joined body) are laminated. An electron transport layer may be provided between the cathode and the active layer, and a hole transport layer may be provided between the active layer and the anode.

(a)の素子は、タンデム構造の素子であり、(b)の素子は、接合体を介して(m+1)個の活性層が積層されたマルチ接合構造の素子である。ここで、接合体を介して2個の活性層が積層されたマルチ接合構造をタンデム構造という。   The element (a) is an element having a tandem structure, and the element (b) is an element having a multi-junction structure in which (m + 1) active layers are stacked via a bonded body. Here, a multi-junction structure in which two active layers are laminated via a joined body is referred to as a tandem structure.

接合体は、複数の層が積層されて構成され、少なくとも電子輸送層と正孔輸送層とを含む。接合体は、例えば、電子輸送層と、電荷再結合層と、正孔輸送層とがこの順で積層されて構成される。
なお、接合体は、電子輸送層と正孔輸送層のみから構成される場合もあり、また前述の3層以外の層を備える場合もある。接合体において、電子輸送層と正孔輸送層とのうちで、電子輸送層が陽極側に配置され、正孔輸送層が陰極側に配置される。
The joined body is formed by stacking a plurality of layers, and includes at least an electron transport layer and a hole transport layer. The joined body is configured, for example, by laminating an electron transport layer, a charge recombination layer, and a hole transport layer in this order.
In addition, the joined body may be composed of only an electron transport layer and a hole transport layer, or may have a layer other than the three layers described above. In the joined body, of the electron transport layer and the hole transport layer, the electron transport layer is disposed on the anode side, and the hole transport layer is disposed on the cathode side.

有機光電変換素子は、通常、基板上に、一対の電極と、活性層と、接合体とを、以下に説明する順序で順次積層することで形成される。   The organic photoelectric conversion element is usually formed by sequentially laminating a pair of electrodes, an active layer, and a bonded body in the order described below on a substrate.

例えば、上記(a)の素子は、基板上に、陽極、活性層、接合体、活性層、陰極を、この順序で順次積層することで形成することができる。上記(b)の素子も、上記(a)の素子と同様に、基板上に、陽極、活性層、接合体、活性層、接合体、・・・(活性層、接合体の繰返し)・・・活性層、陰極、をこの順序で順次積層することで形成することができる。   For example, the element (a) can be formed by sequentially laminating an anode, an active layer, a bonded body, an active layer, and a cathode in this order on a substrate. Similarly to the element (a), the element (b) also has an anode, an active layer, a bonded body, an active layer, a bonded body, ... (repetition of the active layer and the bonded body) on the substrate. -It can form by laminating | stacking an active layer and a cathode sequentially in this order.

本発明の有機光電変換素子が有していてもよい基板は、電極を形成する際、及び有機物の層を形成する際に化学的に変化しないものであればよい。基板の材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコンが挙げられる。不透明な基板を用いる場合には、反対の電極(即ち、基板から遠い方の電極)が透明又は半透明であることが好ましい。以下、有機光電変換素子の各構成要素及びそれらの製法について説明する。   The substrate that the organic photoelectric conversion element of the present invention may have is not particularly limited as long as it does not chemically change when an electrode is formed and when an organic layer is formed. Examples of the material for the substrate include glass, plastic, polymer film, and silicon. When an opaque substrate is used, the opposite electrode (that is, the electrode far from the substrate) is preferably transparent or translucent. Hereafter, each component of an organic photoelectric conversion element and those manufacturing methods are demonstrated.

(電子輸送層)
電子輸送層は、電子輸送性材料と式(1a)で表される溶媒又は式(1b)で表される溶媒とを含む塗布液を、電子輸送層の下の層上に塗布することにより形成される。本発明において、塗布液は、溶液でなくてもよく、エマルション(乳濁液)、サスペンション(懸濁液)等の分散液であってもよい。

Figure 2012182439

(1a) (1b) (Electron transport layer)
The electron transport layer is formed by applying a coating liquid containing an electron transport material and a solvent represented by the formula (1a) or a solvent represented by the formula (1b) on a layer below the electron transport layer. Is done. In the present invention, the coating solution may not be a solution, but may be a dispersion such as an emulsion (emulsion) or a suspension (suspension).
Figure 2012182439

(1a) (1b)

式(1a)及び式(1b)中、nは、2〜5の整数を表し、Rは炭素数1〜10のアルキル基を表す。   In formula (1a) and formula (1b), n represents an integer of 2 to 5, and R represents an alkyl group having 1 to 10 carbon atoms.

式(1a)で表される溶媒としては、メタノール、エタノール、1−プロパノール、2−プロパノール、ブタノール等が挙げられる。
式(1b)で表される溶媒としては、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、メトキシブタノール等が挙げられる。
Examples of the solvent represented by the formula (1a) include methanol, ethanol, 1-propanol, 2-propanol, butanol and the like.
Examples of the solvent represented by the formula (1b) include ethylene glycol monobutyl ether, propylene glycol monomethyl ether, methoxybutanol and the like.

電子輸送性材料としては、例えば、酸化亜鉛、酸化チタン、酸化ジルコニウム、酸化スズ、酸化インジウム、ITO(インジウムスズ酸化物)、FTO(フッ素ドープ酸化スズ)、GZO(ガリウムドープ酸化亜鉛)、ATO(アンチモンドープ酸化スズ)、AZO(アルミニウムドープ酸化亜鉛)が挙げられる。電子輸送性材料の中でも、酸化亜鉛のナノ粒子を用いることが好ましい。電子輸送層は、酸化亜鉛のナノ粒子を含有する電子輸送性材料からなることが好ましく、酸化亜鉛のナノ粒子のみからなることがより好ましい。   Examples of the electron transporting material include zinc oxide, titanium oxide, zirconium oxide, tin oxide, indium oxide, ITO (indium tin oxide), FTO (fluorine-doped tin oxide), GZO (gallium-doped zinc oxide), and ATO ( Antimony-doped tin oxide) and AZO (aluminum-doped zinc oxide). Among the electron transporting materials, it is preferable to use zinc oxide nanoparticles. The electron transport layer is preferably made of an electron transporting material containing zinc oxide nanoparticles, and more preferably made of only zinc oxide nanoparticles.

電子輸送層の機能としては、電荷再結合層への電子の注入効率を高める機能、活性層からの正孔の注入を防ぐ機能、電子の輸送能を高める機能、活性層の劣化を抑制する機能等が挙げられる。   Functions of the electron transport layer include a function to increase the efficiency of electron injection into the charge recombination layer, a function to prevent the injection of holes from the active layer, a function to increase the electron transport capability, and a function to suppress deterioration of the active layer. Etc.

電子輸送性材料として酸化亜鉛を用いる場合は、酸化亜鉛を式(1a)で表される溶媒又は式(1b)で表される溶媒に分散させた分散液を塗布液として用い、該塗布液を電子輸送層の下の層上に塗布することにより電子輸送層が形成される。酸化亜鉛としては、微粒子の酸化亜鉛が好ましく、平均粒子径が10μm以下の酸化亜鉛がより好ましく、平均粒子径が1μm以下の酸化亜鉛がさらに好ましい。有機光電変換素子の光電変換効率を高める観点からは、酸化亜鉛の平均粒子径が100nm以下であることが好ましく、50nm以下であることが更に好ましい。酸化亜鉛の溶媒への分散性を高める観点からは、酸化亜鉛の平均粒子径が30nm以下であることが好ましい。   When zinc oxide is used as the electron transporting material, a dispersion liquid in which zinc oxide is dispersed in the solvent represented by the formula (1a) or the solvent represented by the formula (1b) is used as a coating liquid. The electron transport layer is formed by coating on the layer below the electron transport layer. As zinc oxide, fine zinc oxide is preferable, zinc oxide having an average particle size of 10 μm or less is more preferable, and zinc oxide having an average particle size of 1 μm or less is more preferable. From the viewpoint of increasing the photoelectric conversion efficiency of the organic photoelectric conversion element, the average particle diameter of zinc oxide is preferably 100 nm or less, and more preferably 50 nm or less. From the viewpoint of improving the dispersibility of zinc oxide in a solvent, the average particle diameter of zinc oxide is preferably 30 nm or less.

酸化亜鉛の電気伝導度は、0.01mS/cm以上であることが好ましく、1mS/cm以上であることがより好ましい。有機光電変換素子の光電変換効率を高める観点からは、酸化亜鉛の電気伝導度は、10mS/cm以上であることが好ましい。   The electrical conductivity of zinc oxide is preferably 0.01 mS / cm or more, and more preferably 1 mS / cm or more. From the viewpoint of increasing the photoelectric conversion efficiency of the organic photoelectric conversion element, the electric conductivity of zinc oxide is preferably 10 mS / cm or more.

接合体が、電子輸送層と電荷再結合層と正孔輸送層からなり、電荷再結合層上に電子輸送層を有する場合、電子輸送層は、前述した塗布液を電荷再結合層上に塗布し、さらに、式(1a)で表される溶媒又は式(1b)で表される溶媒を除去することによって形成される。接合体が、電子輸送層と正孔輸送層からなり、電子輸送層を活性層上に形成する場合には、電子輸送層は、前述した塗布液を活性層上に塗布し、さらに、式(1a)で表される溶媒又は式(1b)で表される溶媒を除去することによって形成される。式(1a)で表される溶媒又は式(1b)で表される溶媒の除去は、例えば、大気中や減圧下などにおいて所定の時間放置することによって行われ、必要に応じて加熱処理が施される。   When the joined body is composed of an electron transport layer, a charge recombination layer, and a hole transport layer and has an electron transport layer on the charge recombination layer, the electron transport layer is coated with the coating liquid described above on the charge recombination layer Furthermore, it is formed by removing the solvent represented by the formula (1a) or the solvent represented by the formula (1b). When the joined body is composed of an electron transport layer and a hole transport layer, and the electron transport layer is formed on the active layer, the electron transport layer is coated with the above-described coating solution on the active layer, and the formula ( It is formed by removing the solvent represented by 1a) or the solvent represented by formula (1b). Removal of the solvent represented by the formula (1a) or the solvent represented by the formula (1b) is performed, for example, by leaving it for a predetermined time in the air or under reduced pressure, and heat treatment is performed as necessary. Is done.

塗布液を活性層上又は電荷再結合層上に塗布する方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法が挙げられる。塗布法の中でも、スピンコート法、フレキソ印刷法、インクジェット印刷法、ディスペンサー印刷法が好ましい。電子輸送層は、膜厚が、1nm〜100μmであることが好ましく、2nm〜1000nmであることがより好ましく、5nm〜500nmであることがさらに好ましく、20nm〜200nmであることが特に好ましい。   As a method of applying the coating solution on the active layer or the charge recombination layer, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating Examples thereof include coating methods such as a coating method, a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, an inkjet printing method, a dispenser printing method, a nozzle coating method, and a capillary coating method. Among the coating methods, spin coating, flexographic printing, ink jet printing, and dispenser printing are preferable. The thickness of the electron transport layer is preferably 1 nm to 100 μm, more preferably 2 nm to 1000 nm, still more preferably 5 nm to 500 nm, and particularly preferably 20 nm to 200 nm.

(正孔輸送層)
本発明の接合体が、電子輸送層、電荷再結合層及び正孔輸送層をこの順に含む場合、正孔輸送層は、電子輸送層、電荷再結合層を成膜した後に形成されるため、正孔輸送層を成膜する際に、先に成膜された電子輸送層及び電荷再結合層に損傷を与えないことが望ましい。また、本発明の接合体が、電子輸送層及び正孔輸送層をこの順に含む場合、正孔輸送層は、電子輸送層を成膜した後に形成されるため、正孔輸送層を成膜する際に、先に成膜された電子輸送層に損傷を与えないことが望ましい。正孔輸送性材料と溶媒とを含む塗布液のpHを3〜9とし、該塗布液を電子輸送層上又は電荷再結合層上に塗布して正孔輸送層を形成することで、正孔輸送層を除く接合体の各層に損傷を与えることがなくなるため、接合体の損傷が低減された有機光電変換素子を製造することができ、ひいては光電変換効率の高い有機光電変換素子を製造することができる。
(Hole transport layer)
When the joined body of the present invention includes an electron transport layer, a charge recombination layer, and a hole transport layer in this order, the hole transport layer is formed after forming the electron transport layer and the charge recombination layer, When forming the hole transport layer, it is desirable not to damage the electron transport layer and the charge recombination layer previously formed. In addition, when the joined body of the present invention includes the electron transport layer and the hole transport layer in this order, the hole transport layer is formed after the electron transport layer is formed, so that the hole transport layer is formed. At this time, it is desirable not to damage the previously formed electron transport layer. By setting the pH of the coating liquid containing the hole transporting material and the solvent to 3 to 9, and applying the coating liquid on the electron transport layer or the charge recombination layer to form the hole transport layer, Since no damage is caused to each layer of the joined body excluding the transport layer, it is possible to produce an organic photoelectric conversion element with reduced damage to the joined body, and thus to produce an organic photoelectric conversion element with high photoelectric conversion efficiency. Can do.

正孔輸送層の機能としては、電荷再結合層への正孔の注入効率を高める機能、活性層からの電子の注入を防ぐ機能、正孔の輸送能を高める機能、電荷再結合層を蒸着法で作製する場合に電荷再結合層の平坦性を高める機能、電荷再結合層を塗布法で作製する場合に、電荷再結合層を成膜するための塗布液による侵食から活性層を保護する機能、活性層の劣化を抑制する機能等が挙げられる。   The function of the hole transport layer is to increase the efficiency of hole injection into the charge recombination layer, to prevent the injection of electrons from the active layer, to increase the hole transport capability, and to deposit the charge recombination layer. The function of improving the flatness of the charge recombination layer when the charge recombination layer is produced by the method, and when the charge recombination layer is produced by the coating method, the active layer is protected from erosion by the coating liquid for forming the charge recombination layer The function, the function which suppresses degradation of an active layer, etc. are mentioned.

正孔輸送性材料としては、例えば、正孔を輸送する機能を示す高分子化合物が挙げられる。正孔を輸送する機能を示す高分子化合物の例としては、チオフェンジイル基を含む高分子化合物、アニリンジイル基を含む高分子化合物、ピロールジイル基を含む高分子化合物が挙げられる。正孔を輸送する機能を示す高分子化合物の中でも、導電性の高い高分子化合物が好ましい。導電性が高い高分子化合物の導電率は、通常、10-5〜10S/cmであり、好ましくは10-3〜10S/cmである。 As the hole transport material, for example, a polymer compound having a function of transporting holes can be given. Examples of the polymer compound having a function of transporting holes include a polymer compound containing a thiophene diyl group, a polymer compound containing an aniline diyl group, and a polymer compound containing a pyrrole diyl group. Among polymer compounds that exhibit a function of transporting holes, a polymer compound having high conductivity is preferable. The conductivity of the polymer compound having high conductivity is usually 10 −5 to 10 5 S / cm, preferably 10 −3 to 10 4 S / cm.

正孔を輸送する機能を示す高分子化合物としては、塩基を添加するなどして中性化したPEDOT/PSS{ポリ(3,4−エチレンジオキシチオフェン)(PEDOT)とポリ(4−スチレンスルホン酸)(PSS)との混合物}が好ましい。   Examples of the polymer compound having a function of transporting holes include PEDOT / PSS {poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (4-styrenesulfone) neutralized by adding a base or the like. Acid) (mixture with (PSS)) is preferred.

正孔を輸送する機能を示す高分子化合物は、スルホン酸基等の酸基を有していてもよい。酸基を有する高分子化合物の例としては、酸基を有するポリ(チオフェン)、酸基を有するポリ(アニリン)が挙げられる。該酸基を有するポリ(チオフェン)及び酸基を有するポリ(アニリン)は、さらに、酸基以外の置換基を有していてもよい。   The polymer compound showing the function of transporting holes may have an acid group such as a sulfonic acid group. Examples of the polymer compound having an acid group include poly (thiophene) having an acid group and poly (aniline) having an acid group. The poly (thiophene) having an acid group and the poly (aniline) having an acid group may further have a substituent other than the acid group.

正孔輸送層には、上記正孔を輸送する機能を示す高分子化合物に加えて、バインダーとして他の高分子化合物を含んでいてもよい。バインダーとしては、例えば、ポリスチレンスルホン酸、ポリビニルフェノール、ノボラック樹脂、ポリビニルアルコールが挙げられる。   The hole transport layer may contain another polymer compound as a binder in addition to the polymer compound having a function of transporting holes. Examples of the binder include polystyrene sulfonic acid, polyvinyl phenol, novolac resin, and polyvinyl alcohol.

正孔輸送層を塗布法で成膜する際に用いられる塗布液は、正孔輸送層となる材料と、溶媒とを含む。電子輸送性材料として酸化亜鉛を用いる場合、該塗布液は、酸化亜鉛に損傷を与えない観点からは、pHが3〜9であることが好ましく、pHが6〜8であることがさらに好ましい。塗布液に含まれる溶媒としては、水、アルコール等が挙げられる。アルコールの具体例としては、メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール、ブトキシエタノール、メトキシブタノールが挙げられる。また、前記した溶媒を2種類以上含む混合液を塗布液の溶媒として用いてもよい。   The coating liquid used when forming the hole transport layer by a coating method includes a material to be the hole transport layer and a solvent. When zinc oxide is used as the electron transporting material, the coating solution preferably has a pH of 3 to 9, more preferably 6 to 8, from the viewpoint of not damaging the zinc oxide. Examples of the solvent contained in the coating solution include water and alcohol. Specific examples of the alcohol include methanol, ethanol, isopropanol, butanol, ethylene glycol, propylene glycol, butoxyethanol, and methoxybutanol. Moreover, you may use the liquid mixture containing 2 or more types of above-mentioned solvent as a solvent of a coating liquid.

塗布液の成膜には、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を用いることができる。塗布法の中でも、スピンコート法、フレキソ印刷法、インクジェット印刷法、ディスペンサー印刷法を用いることが好ましい。   For coating film formation, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic method Coating methods such as a printing method, an offset printing method, an ink jet printing method, a dispenser printing method, a nozzle coating method, and a capillary coating method can be used. Among the coating methods, it is preferable to use a spin coating method, a flexographic printing method, an ink jet printing method, or a dispenser printing method.

(電荷再結合層)
電荷再結合層は、接合体中に必ずしも設ける必要はないが、電子輸送層と正孔輸送層とのオーミックな接合の為に、電子輸送層と正孔輸送層との間に設けることが好ましい。電荷再結合層は、複数の微粒子が凝集した状態、又は薄膜状に形成されることが好ましい。
(Charge recombination layer)
The charge recombination layer is not necessarily provided in the joined body, but is preferably provided between the electron transport layer and the hole transport layer for ohmic junction between the electron transport layer and the hole transport layer. . The charge recombination layer is preferably formed in a state where a plurality of fine particles are aggregated or in a thin film shape.

電荷再結合層は、通常、金属を含む。電荷再結合層は、金属の酸化物、金属のハロゲン化物を含んでいてもよいが、金属の重量を100とした場合に、金属の酸化物の重量と金属のハロゲン化物の重量の合計が10以下であることが好ましく、実質的に金属のみからなることがより好ましい。金属としては、リチウム、ベリリウム、ナトリウム、マグネシウム、アルミニウム、カリウム、カルシウム、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ゲルマニウム、ルビジウム、ストロンチウム、イットリウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、カドニウム、インジウム、スズ、アンチモン、セシウム、バリウム、ランタン、ハフニウム、タンタル、タングステン、レニウム、オスミウム、イリジウム、白金、金、水銀、タリウム、鉛、ビスマス、ランタニド等が挙げられる。また、これら金属の合金や、グラファイト又はこれらの金属とグラファイトとの層間化合物等を電荷再結合層に用いることもできる。金属の中では、アルミニルム、マグネシウム、チタン、クロム、鉄、ニッケル、銅、亜鉛、ガリウム、ジルコニウム、モリブデン、銀、インジウム、スズ、金が好ましい。   The charge recombination layer typically includes a metal. The charge recombination layer may contain a metal oxide or a metal halide. However, when the weight of the metal is 100, the total of the weight of the metal oxide and the weight of the metal halide is 10. It is preferable that it is as follows, and it is more preferable that it consists essentially of a metal. The metals include lithium, beryllium, sodium, magnesium, aluminum, potassium, calcium, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, germanium, rubidium, strontium, yttrium, zirconium, Niobium, molybdenum, ruthenium, rhodium, palladium, silver, cadmium, indium, tin, antimony, cesium, barium, lanthanum, hafnium, tantalum, tungsten, rhenium, osmium, iridium, platinum, gold, mercury, thallium, lead, bismuth, A lanthanide etc. are mentioned. Further, an alloy of these metals, graphite, or an intercalation compound between these metals and graphite can be used for the charge recombination layer. Among metals, aluminium, magnesium, titanium, chromium, iron, nickel, copper, zinc, gallium, zirconium, molybdenum, silver, indium, tin, and gold are preferable.

電荷再結合層の成膜法としては特に制限はないが、粉末からの真空蒸着法が挙げられる。   The method for forming the charge recombination layer is not particularly limited, and examples thereof include a vacuum deposition method from powder.

(活性層)
活性層は、例えば、電子受容性化合物を含有する第一の層と、電子供与性化合物を含有する第二の層とが接して積層された積層体であってもよく、電子受容性化合物と電子供与性化合物とを含有する単一の層であってもよい。
(Active layer)
The active layer may be, for example, a laminate in which a first layer containing an electron-accepting compound and a second layer containing an electron-donating compound are in contact with each other. A single layer containing an electron donating compound may be used.

電子供与性化合物と電子受容性化合物の一方は、高分子化合物であることが好ましく、電子供与性化合物又は電子受容性化合物として、一種類の高分子化合物を単独で含んでいても、二種類以上の高分子化合物を含んでいてもよい。ヘテロ接合界面を多く含むという観点からは、電子受容性化合物がフラーレン誘導体であることが好ましい。中でも、活性層中に共役高分子化合物とフラーレン誘導体とを含むことが好ましい。
活性層としては、例えば、共役高分子化合物とフラーレン誘導体とを含有する有機薄膜を用いることができる。
活性層がフラーレン誘導体及び電子供与性化合物を含有する場合、活性層に含まれるフラーレン誘導体の重量は、電子供与性化合物100重量部に対して、10〜1000重量部であることが好ましく、50〜500重量部であることがより好ましい。
One of the electron-donating compound and the electron-accepting compound is preferably a polymer compound, and as an electron-donating compound or an electron-accepting compound, one kind of polymer compound may be contained alone, or two or more kinds The high molecular compound may be included. From the viewpoint of including many heterojunction interfaces, the electron-accepting compound is preferably a fullerene derivative. Among these, it is preferable that the active layer contains a conjugated polymer compound and a fullerene derivative.
As the active layer, for example, an organic thin film containing a conjugated polymer compound and a fullerene derivative can be used.
When the active layer contains a fullerene derivative and an electron donating compound, the weight of the fullerene derivative contained in the active layer is preferably 10 to 1000 parts by weight with respect to 100 parts by weight of the electron donating compound, More preferably, it is 500 parts by weight.

有機光電変換素子に好適に用いられる電子受容性化合物は、電子受容性化合物のHOMOエネルギーが電子供与性化合物のHOMOエネルギーよりも高く、かつ、電子受容性化合物のLUMOエネルギーが電子供与性化合物のLUMOエネルギーよりも高くなる。   The electron-accepting compound suitably used for the organic photoelectric conversion element is such that the HOMO energy of the electron-accepting compound is higher than the HOMO energy of the electron-donating compound, and the LUMO energy of the electron-accepting compound is LUMO of the electron-donating compound. Higher than energy.

活性層に含まれる電子供与性化合物は、低分子化合物であっても高分子化合物であってもよい。低分子化合物としては、フタロシアニン、金属フタロシアニン、ポルフィリン、金属ポルフィリン、オリゴチオフェン、テトラセン、ペンタセン、ルブレン等が挙げられる。高分子化合物としては、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミン残基を有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリフルオレン及びその誘導体等が挙げられる。   The electron donating compound contained in the active layer may be a low molecular compound or a high molecular compound. Examples of the low molecular weight compound include phthalocyanine, metal phthalocyanine, porphyrin, metal porphyrin, oligothiophene, tetracene, pentacene, and rubrene. Examples of the polymer compound include polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having an aromatic amine residue in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene Examples include vinylene and its derivatives, polythienylene vinylene and its derivatives, polyfluorene and its derivatives, and the like.

活性層に含まれる電子受容性化合物は、低分子化合物であっても高分子化合物であってもよい。低分子化合物としては、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8−ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、C60等のフラーレン及びその誘導体、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(バソクプロイン)等のフェナントロリン誘導体等が挙げられる。高分子化合物としては、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミン残基を有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリフルオレン及びその誘導体等が挙げられる。これらの中でもフラーレン及びその誘導体が好ましい。 The electron-accepting compound contained in the active layer may be a low molecular compound or a high molecular compound. Low molecular weight compounds include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, diphenyldicyanoethylene and its derivatives, diphenoquinone derivatives, 8-hydroxyquinoline and metal complexes of derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and its derivatives, polyfluorene and its derivatives, fullerene and derivatives thereof such as C 60, 2,9-dimethyl - Examples thereof include phenanthroline derivatives such as 4,7-diphenyl-1,10-phenanthroline (basocuproin). Examples of the polymer compound include polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having an aromatic amine residue in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene Examples include vinylene and its derivatives, polythienylene vinylene and its derivatives, polyfluorene and its derivatives, and the like. Among these, fullerene and its derivatives are preferable.

フラーレン及びその誘導体としては、C60、C70、C84及びその誘導体が挙げられる。フラーレン誘導体とは、フラーレンの少なくとも一部が修飾された化合物を表す。 Fullerenes and derivatives thereof include C 60 , C 70 , C 84 and derivatives thereof. A fullerene derivative represents a compound in which at least a part of fullerene is modified.

フラーレン誘導体としては、例えば、式(I)で表される化合物、式(II)で表される化合物、式(III)で表される化合物、式(IV)で表される化合物が挙げられる。

Figure 2012182439
(I) (II) (III) (IV)

(式(I)〜(IV)中、Rは、アルキル基、アリール基、ヘテロアリール基又はエステル構造を有する基である。複数個あるRは、同一であっても相異なってもよい。Rはアルキル基又はアリール基を表す。複数個あるRは、同一であっても相異なってもよい。) Examples of the fullerene derivative include a compound represented by the formula (I), a compound represented by the formula (II), a compound represented by the formula (III), and a compound represented by the formula (IV).
Figure 2012182439
(I) (II) (III) (IV)

(In formulas (I) to (IV), R a is an alkyl group, aryl group, heteroaryl group or group having an ester structure. A plurality of R a may be the same or different. R b represents an alkyl group or an aryl group, and a plurality of R b may be the same or different.)

及びRで表されるアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ヘキシル基、オクチル基等が挙げられる。R及びRで表されるアリール基としては、フェニル基、ナフチル基、アントリル基、フルオレニル基等が挙げられる。R及びRで表されるヘテロアリール基としては、チェニル基、ピロリル基、フリル基、ピリジル基、ピペリジル基、キノリル基、イソキノリル基等が挙げられる。 Examples of the alkyl group represented by R a and R b include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a hexyl group, and an octyl group. It is done. Examples of the aryl group represented by R a and R b include a phenyl group, a naphthyl group, an anthryl group, and a fluorenyl group. Examples of the heteroaryl group represented by R a and R b include a chenyl group, a pyrrolyl group, a furyl group, a pyridyl group, a piperidyl group, a quinolyl group, and an isoquinolyl group.

で表されるエステル構造を有する基は、例えば、式(V)で表される基が挙げられる。

Figure 2012182439
(V)
〔式中、u1は、1〜6の整数を表し、u2は、0〜6の整数を表し、u3は0又は1の整数を表し、u4は、0又は1の整数を表す。ただし、u3とu4の和は1である。Rは、アルキル基、アリール基又はヘテロアリール基を表す。〕 Examples of the group having an ester structure represented by Ra include a group represented by the formula (V).
Figure 2012182439
(V)
[Wherein u1 represents an integer of 1 to 6, u2 represents an integer of 0 to 6, u3 represents an integer of 0 or 1, and u4 represents an integer of 0 or 1. However, the sum of u3 and u4 is 1. R c represents an alkyl group, an aryl group, or a heteroaryl group. ]

で表されるアルキル基、アリール基及びヘテロアリール基の定義及び具体例は、Rで表されるアルキル基、アリール基及びヘテロアリール基の定義及び具体例と同じである。 The definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R c are the same as the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R a .

60の誘導体の具体例としては、以下のようなものが挙げられる。

Figure 2012182439
Specific examples of the C 60 derivative include the following.
Figure 2012182439

Figure 2012182439
Figure 2012182439

Figure 2012182439
Figure 2012182439

70の誘導体の具体例としては、以下のようなものが挙げられる。

Figure 2012182439
Specific examples of the C 70 derivative include the following.
Figure 2012182439

活性層の膜厚は、通常、1nm〜100μmであり、好ましくは2nm〜1000nmであり、より好ましくは5nm〜500nmであり、さらに好ましくは20nm〜200nmである。   The thickness of the active layer is usually 1 nm to 100 μm, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm, and further preferably 20 nm to 200 nm.

活性層の形成方法としては、例えば、溶媒と共役高分子化合物とフラーレン誘導体とを含む組成物からの成膜による方法が挙げられる。溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、ブチルベンゼン、sec−ブチルベゼン、tert−ブチルベンゼン等の不飽和炭化水素溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素溶媒、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素溶媒、テトラヒドロフラン、テトラヒドロピラン等のエーテル類溶媒が挙げられる。成膜には、正孔輸送層を成膜する方法で説明した方法と同様の方法を用いることができる。   Examples of the method for forming the active layer include a method of forming a film from a composition containing a solvent, a conjugated polymer compound, and a fullerene derivative. Examples of the solvent include unsaturated hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, butylbenzene, sec-butylbesen, and tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane, dichloroethane, chlorobutane, Halogenated saturated hydrocarbon solvents such as bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, halogenated unsaturated hydrocarbon solvents such as chlorobenzene, dichlorobenzene, trichlorobenzene, tetrahydrofuran, tetrahydropyran, etc. And ether solvents. For the film formation, a method similar to the method described in the method for forming the hole transport layer can be used.

前記共役高分子化合物としては、例えば、非置換又は置換のフルオレンジイル基、非置換又は置換のベンゾフルオレンジイル基、非置換又は置換のジベンゾフランジイル基、非置換又は置換のジベンゾチオフェンジイル基、非置換又は置換のカルバゾールジイル基、非置換又は置換のチオフェンジイル基、非置換又は置換のフランジイル基、非置換又は置換のピロールジイル基、非置換又は置換のベンゾチアジアゾールジイル基、非置換又は置換のビニレン基、及び非置換又は置換のトリフェニルアミンジイル基からなる群から選ばれる一種以上の基を繰り返し単位として含み、該繰り返し単位同士が直接又は連結基を介して結合した高分子化合物が挙げられる。   Examples of the conjugated polymer compound include an unsubstituted or substituted fluorenediyl group, an unsubstituted or substituted benzofluorenediyl group, an unsubstituted or substituted dibenzofurandiyl group, an unsubstituted or substituted dibenzothiophenediyl group, Unsubstituted or substituted carbazolediyl group, unsubstituted or substituted thiophenediyl group, unsubstituted or substituted furandyl group, unsubstituted or substituted pyrroldiyl group, unsubstituted or substituted benzothiadiazolediyl group, unsubstituted or substituted Examples of the polymer compound include a vinylene group and one or more groups selected from the group consisting of an unsubstituted or substituted triphenylaminediyl group as a repeating unit, and the repeating units are bonded directly or via a linking group. .

前記共役高分子化合物において、前記繰り返し単位同士が連結基を介して結合している場合、該連結基としては、例えば、フェニレン基、ビフェニリレン基、ナフタレンジイル基、アントラセンジイル基が挙げられる。   In the conjugated polymer compound, when the repeating units are bonded to each other via a linking group, examples of the linking group include a phenylene group, a biphenylylene group, a naphthalenediyl group, and an anthracenediyl group.

共役高分子化合物の好ましい例としては、フルオレンジイル基及びチオフェンジイル基からなる群から選ばれる一種以上の基を繰り返し単位として含み、該繰り返し単位同士が直接又は連結基を介して結合した高分子化合物が挙げられる。   Preferable examples of the conjugated polymer compound include a polymer in which one or more groups selected from the group consisting of a fluorenediyl group and a thiophenediyl group are included as a repeating unit, and the repeating units are bonded directly or via a linking group. Compounds.

(電極)
本発明の有機光電変換素子は一対の電極を有する。該一対の電極の一方の電極は陽極であり、他方の電極は陰極である。該一対の電極のうち少なくとも一方の電極は、透明又は半透明であることが好ましい。透明又は半透明の電極の材料としては、導電性を有する金属酸化物膜、半透明の金属薄膜等が挙げられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、インジウムスズ酸化物(Indium Tin Oxide:略称ITO)、インジウム亜鉛酸化物(Indium Zinc Oxide:略称IZO)、金、白金、銀、銅が挙げられ、ITO、IZO、酸化スズが好ましい。また、電極として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。
(electrode)
The organic photoelectric conversion element of the present invention has a pair of electrodes. One electrode of the pair of electrodes is an anode, and the other electrode is a cathode. At least one of the pair of electrodes is preferably transparent or translucent. Examples of the material for the transparent or translucent electrode include a conductive metal oxide film and a translucent metal thin film. Specifically, indium oxide, zinc oxide, tin oxide, indium tin oxide (abbreviated as ITO), indium zinc oxide (abbreviated as IZO), gold, platinum, silver, and copper can be given. ITO, IZO and tin oxide are preferred. Moreover, you may use organic transparent conductive films, such as polyaniline and its derivative (s), polythiophene, and its derivative (s) as an electrode.

本発明の有機光電変換素子が有する一対の電極の一方の電極は、不透明であってもよい。不透明の電極として、例えば、光を透過しない程度の膜厚の金属薄膜を用いることができる。不透明な電極の材料としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫等の金属、及びそれらのうち2つ以上の合金、グラファイト又はグラファイト層間化合物が挙げられる。   One electrode of the pair of electrodes included in the organic photoelectric conversion element of the present invention may be opaque. As the opaque electrode, for example, a metal thin film having a thickness that does not transmit light can be used. Examples of opaque electrode materials include lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, Examples include metals such as gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, and tin, and alloys of two or more thereof, graphite, or graphite intercalation compounds.

電極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。その他、金属インクや金属ペースト、低融点金属等を用いて、塗布法で金属電極を作製することもできる。   Examples of the method for producing the electrode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like. In addition, a metal electrode can be produced by a coating method using a metal ink, a metal paste, a low melting point metal, or the like.

前述した(a)の素子及び(b)の素子において、陽極と活性層の間、活性層と陰極との間、又は、活性層と接合体との間に、さらに付加的な層を設けてもよい。付加的な層としては、電子輸送層、正孔輸送層などの電荷輸送層が挙げられる。付加的な層に含まれる材料としては、前述の電子供与性化合物、電子受容性化合物、フッ化リチウム等のアルカリ金属又はアルカリ土類金属のハロゲン化物、アルカリ金属又はアルカリ土類金属の酸化物、酸化チタン等の無機半導体の微粒子が挙げられる。   In the element (a) and the element (b) described above, an additional layer is further provided between the anode and the active layer, between the active layer and the cathode, or between the active layer and the joined body. Also good. Examples of the additional layer include charge transport layers such as an electron transport layer and a hole transport layer. Examples of the material included in the additional layer include the above-described electron donating compounds, electron accepting compounds, alkali metal or alkaline earth metal halides such as lithium fluoride, alkali metal or alkaline earth metal oxides, Fine particles of inorganic semiconductor such as titanium oxide can be mentioned.

本実施の形態の有機光電変換素子は、透明又は半透明の電極から太陽光等の光を照射することにより、電極間に光起電力が発生し、有機薄膜太陽電池として動作させることができる。複数の有機薄膜太陽電池を集積することにより、有機薄膜太陽電池モジュールとして用いることもできる。また電極間に電圧を印加した状態で、透明又は半透明の電極から光を照射することにより、光電流が流れ、有機光センサーとして動作させることができる。複数の有機光センサーを集積することにより有機イメージセンサーとして用いることもできる。   The organic photoelectric conversion element of this embodiment can be operated as an organic thin-film solar cell by generating photovoltaic power between electrodes by irradiating light such as sunlight from a transparent or translucent electrode. By integrating a plurality of organic thin film solar cells, it can also be used as an organic thin film solar cell module. In addition, by applying light from a transparent or translucent electrode while a voltage is applied between the electrodes, a photocurrent flows and it can be operated as an organic photosensor. It can also be used as an organic image sensor by integrating a plurality of organic photosensors.

以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。   Examples will be shown below for illustrating the present invention in more detail, but the present invention is not limited to these examples.

高分子化合物のポリスチレン換算の重量平均分子量はサイズエクスクルージョンクロマトグラフィー(SEC)により求めた。
カラム: TOSOH TSKgel SuperHM-H(2本)+ TSKgel SuperH2000(4.6mm I.d. × 15cm);検出器:RI (SHIMADZU RID-10A);移動相:テトラヒドロフラン(THF)
The polystyrene equivalent weight average molecular weight of the polymer compound was determined by size exclusion chromatography (SEC).
Column: TOSOH TSKgel SuperHM-H (2) + TSKgel SuperH2000 (4.6 mm Id x 15 cm); Detector: RI (SHIMADZU RID-10A); Mobile phase: Tetrahydrofuran (THF)

参考例1
(化合物1の合成)

Figure 2012182439
フラスコ内の気体をアルゴンで置換した1000mLの4つ口フラスコに、3−ブロモチオフェンを13.0g(80.0mmol)、ジエチルエーテルを80mL入れて均一な溶液とした。該溶液を−78℃に保ったまま、2.6Mのブチルリチウム(n−BuLi)のヘキサン溶液を31mL(80.6mmol)滴下した。−78℃で2時間反応させた後、8.96gの3−チオフェンアルデヒド(80.0mmol)を20mLのジエチルエーテルに溶解させた溶液を反応液に滴下した。滴下後、反応液を−78℃で30分攪拌し、さらに室温(25℃)で30分攪拌した。反応液を再度−78℃に冷却し、2.6Mのn−BuLiのヘキサン溶液62mL(161mmol)を15分かけて滴下した。滴下後、反応液を−25℃で2時間攪拌し、さらに室温(25℃)で1時間攪拌した。その後、反応液を−25℃に冷却し、60gのヨウ素(236mmol)を1000mLのジエチルエーテルに溶解させた溶液を30分かけて滴下した。滴下後、反応液を室温(25℃)で2時間攪拌し、1規定のチオ硫酸ナトリウム水溶液50mLを加えて反応を停止させた。反応液にジエチルエーテルを加え、反応生成物を含む有機層を抽出した後、硫酸マグネシウムで反応生成物を含む有機層を乾燥し、有機層を濾過後、濾液を濃縮して35gの粗生成物を得た。クロロホルムを用いて粗生成物を再結晶することにより精製し、化合物1を28g得た。 Reference example 1
(Synthesis of Compound 1)
Figure 2012182439
A 1000 mL four-necked flask in which the gas in the flask was replaced with argon was charged with 13.0 g (80.0 mmol) of 3-bromothiophene and 80 mL of diethyl ether to obtain a uniform solution. While maintaining the solution at −78 ° C., 31 mL (80.6 mmol) of 2.6M butyllithium (n-BuLi) in hexane was added dropwise. After reacting at −78 ° C. for 2 hours, a solution prepared by dissolving 8.96 g of 3-thiophenaldehyde (80.0 mmol) in 20 mL of diethyl ether was added dropwise to the reaction solution. After dropping, the reaction solution was stirred at -78 ° C for 30 minutes, and further stirred at room temperature (25 ° C) for 30 minutes. The reaction solution was cooled again to −78 ° C., and 62 mL (161 mmol) of 2.6 M n-BuLi in hexane was added dropwise over 15 minutes. After dropping, the reaction solution was stirred at −25 ° C. for 2 hours, and further stirred at room temperature (25 ° C.) for 1 hour. Thereafter, the reaction solution was cooled to −25 ° C., and a solution obtained by dissolving 60 g of iodine (236 mmol) in 1000 mL of diethyl ether was added dropwise over 30 minutes. After the dropwise addition, the reaction solution was stirred at room temperature (25 ° C.) for 2 hours, and 50 mL of 1N aqueous sodium thiosulfate solution was added to stop the reaction. Diethyl ether was added to the reaction solution, and the organic layer containing the reaction product was extracted, then the organic layer containing the reaction product was dried over magnesium sulfate, the organic layer was filtered, and the filtrate was concentrated to give 35 g of crude product. Got. The crude product was purified by recrystallization using chloroform to obtain 28 g of Compound 1.

参考例2
(化合物2の合成)

Figure 2012182439
300mLの4つ口フラスコに、ビスヨードチエニルメタノール(化合物1)を10g(22.3mmol)、塩化メチレンを150mL加えて均一な溶液とした。該溶液にクロロクロム酸ピリジニウムを7.50g(34.8mmol)加え、室温(25℃)で10時間攪拌した。反応液を濾過して不溶物を除去後、濾液を濃縮し、化合物2を10.0g(22.4mmol)得た。 Reference example 2
(Synthesis of Compound 2)
Figure 2012182439
To a 300 mL four-necked flask, 10 g (22.3 mmol) of bisiodothienylmethanol (Compound 1) and 150 mL of methylene chloride were added to obtain a uniform solution. To the solution, 7.50 g (34.8 mmol) of pyridinium chlorochromate was added and stirred at room temperature (25 ° C.) for 10 hours. The reaction solution was filtered to remove insoluble matters, and then the filtrate was concentrated to obtain 10.0 g (22.4 mmol) of Compound 2.

参考例3
(化合物3の合成)

Figure 2012182439
フラスコ内の気体をアルゴンで置換した300mLフラスコに、化合物2を10.0g(22.3mmol)、銅粉末を6.0g(94.5mmol)、脱水N,N−ジメチルホルムアミド(以下、DMFと呼称することもある)を120mL加えて、120℃で4時間攪拌した。反応後、フラスコを室温(25℃)まで冷却し、反応液をシリカゲルカラムに通して不溶成分を除去した。その後、反応液に水500mLを加え、さらにクロロホルムを加え、反応生成物を含む有機層を抽出した。クロロホルム溶液である有機層を硫酸マグネシウムで乾燥し、有機層を濾過し、濾液を濃縮して粗生成物を得た。粗生成物を、展開液がクロロホルムであるシリカゲルカラムで精製し、化合物3を3.26g得た。 Reference example 3
(Synthesis of Compound 3)
Figure 2012182439
In a 300 mL flask in which the gas in the flask was replaced with argon, 10.0 g (22.3 mmol) of Compound 2 and 6.0 g (94.5 mmol) of copper powder, dehydrated N, N-dimethylformamide (hereinafter referred to as DMF). 120 mL) was added and stirred at 120 ° C. for 4 hours. After the reaction, the flask was cooled to room temperature (25 ° C.), and the reaction solution was passed through a silica gel column to remove insoluble components. Thereafter, 500 mL of water was added to the reaction solution, and chloroform was further added to extract an organic layer containing the reaction product. The organic layer as a chloroform solution was dried over magnesium sulfate, the organic layer was filtered, and the filtrate was concentrated to obtain a crude product. The crude product was purified with a silica gel column whose developing solution was chloroform, and 3.26 g of compound 3 was obtained.

参考例4
(化合物4の合成)

Figure 2012182439
メカニカルスターラーを備え、フラスコ内の気体をアルゴンで置換した300mL4つ口フラスコに、化合物3を3.85g(20.0mmol)、クロロホルムを50mL、トリフルオロ酢酸を50mL入れて均一な溶液とした。該溶液に過ホウ酸ナトリウム1水和物を5.99g(60mmol)加え、室温(25℃)で45分間攪拌した。その後、反応液に水200mLを加え、さらにクロロホルムを加え、反応生成物を含む有機層を抽出した。クロロホルム溶液である有機層をシリカゲルカラムに通し、エバポレーターで濾液の溶媒を留去した。メタノールを用いて残渣を再結晶し、化合物4を534mg得た。 Reference example 4
(Synthesis of Compound 4)
Figure 2012182439
A uniform solution was prepared by adding 3.85 g (20.0 mmol) of Compound 3, 50 mL of chloroform, and 50 mL of trifluoroacetic acid to a 300 mL four-necked flask equipped with a mechanical stirrer and replacing the gas in the flask with argon. To the solution, 5.99 g (60 mmol) of sodium perborate monohydrate was added and stirred at room temperature (25 ° C.) for 45 minutes. Thereafter, 200 mL of water was added to the reaction solution, chloroform was further added, and the organic layer containing the reaction product was extracted. The organic layer, which is a chloroform solution, was passed through a silica gel column, and the solvent of the filtrate was distilled off with an evaporator. The residue was recrystallized using methanol to obtain 534 mg of compound 4.

H NMR in CDCl(ppm):7.64(d、1H)、7.43(d、1H)、7.27(d、1H)、7.10(d、1H) 1 H NMR in CDCl 3 (ppm): 7.64 (d, 1H), 7.43 (d, 1H), 7.27 (d, 1H), 7.10 (d, 1H)

参考例5
(化合物5の合成)

Figure 2012182439
フラスコ内の気体をアルゴンで置換した100mL四つ口フラスコに、化合物4を1.00g(4.80mmol)と脱水THFを30ml入れて均一な溶液とした。フラスコを−20℃に保ちながら、反応液に1Mの3,7−ジメチルオクチルマグネシウムブロミドのジエチルエーテル溶液を12.7mL加えた。その後、30分かけて温度を−5℃まで上げ、そのままの温度で反応液を30分攪拌した。その後、10分かけて温度を0℃に上げ、そのままの温度で反応液を1.5時間攪拌した。その後、反応液に水を加えて反応を停止し、さらに酢酸エチルを加え、反応生成物を含む有機層を抽出した。酢酸エチル溶液である有機層を硫酸ナトリウムで乾燥し、有機層を濾過後、酢酸エチル溶液をシリカゲルカラムに通し、濾液の溶媒を留去し、化合物5を1.50g得た。 Reference Example 5
(Synthesis of Compound 5)
Figure 2012182439
A 100 mL four-necked flask in which the gas in the flask was replaced with argon was charged with 1.00 g (4.80 mmol) of Compound 4 and 30 ml of dehydrated THF to obtain a uniform solution. While maintaining the flask at −20 ° C., 12.7 mL of a 1M 3,7-dimethyloctylmagnesium bromide diethyl ether solution was added to the reaction solution. Thereafter, the temperature was raised to −5 ° C. over 30 minutes, and the reaction solution was stirred at the same temperature for 30 minutes. Thereafter, the temperature was raised to 0 ° C. over 10 minutes, and the reaction solution was stirred at the same temperature for 1.5 hours. Thereafter, water was added to the reaction solution to stop the reaction, and ethyl acetate was further added to extract an organic layer containing the reaction product. The organic layer, which is an ethyl acetate solution, was dried over sodium sulfate, the organic layer was filtered, the ethyl acetate solution was passed through a silica gel column, and the solvent of the filtrate was distilled off to obtain 1.50 g of compound 5.

H NMR in CDCl(ppm):8.42(b、1H)、7.25(d、1H)、7.20(d、1H)、6.99(d、1H)、6.76(d、1H)、2.73(b、1H)、1.90(m、4H)、1.58‐1.02(b、20H)、0.92(s、6H)、0.88(s、12H) 1 H NMR in CDCl 3 (ppm): 8.42 (b, 1H), 7.25 (d, 1H), 7.20 (d, 1H), 6.99 (d, 1H), 6.76 ( d, 1H), 2.73 (b, 1H), 1.90 (m, 4H), 1.58-1.02 (b, 20H), 0.92 (s, 6H), 0.88 (s) , 12H)

参考例6
(化合物6の合成)

Figure 2012182439
フラスコ内の気体をアルゴンで置換した200mLフラスコに、化合物5を1.50g、トルエンを30mL入れて均一な溶液とした。該溶液にp−トルエンスルホン酸ナトリウム1水和物を100mg入れ、100℃で1.5時間攪拌を行った。反応液を室温(25℃)まで冷却後、水50mLを加え、さらにトルエンを加えて反応生成物を含む有機層を抽出した。トルエン溶液である有機層を硫酸ナトリウムで乾燥し、有機層を濾過後、溶媒を留去した。得られた粗生成物を、展開溶媒がヘキサンであるシリカゲルカラムで生成し、化合物6を1.33g得た。ここまでの操作を複数回行った。 Reference Example 6
(Synthesis of Compound 6)
Figure 2012182439
In a 200 mL flask in which the gas in the flask was replaced with argon, 1.50 g of Compound 5 and 30 mL of toluene were added to obtain a uniform solution. 100 mg of sodium p-toluenesulfonate monohydrate was added to the solution, and the mixture was stirred at 100 ° C. for 1.5 hours. After cooling the reaction solution to room temperature (25 ° C.), 50 mL of water was added, and toluene was further added to extract the organic layer containing the reaction product. The organic layer which is a toluene solution was dried with sodium sulfate, the organic layer was filtered, and then the solvent was distilled off. The obtained crude product was produced on a silica gel column whose developing solvent was hexane, and 1.33 g of compound 6 was obtained. The operation so far was performed several times.

H NMR in CDCl(ppm):6.98(d、1H)、6.93(d、1H)、6.68(d、1H)、6.59(d、1H)、1.89(m、4H)、1.58‐1.00(b、20H)、0.87(s、6H)、0.86(s、12H) 1 H NMR in CDCl 3 (ppm): 6.98 (d, 1H), 6.93 (d, 1H), 6.68 (d, 1H), 6.59 (d, 1H), 1.89 ( m, 4H), 1.58-1.00 (b, 20H), 0.87 (s, 6H), 0.86 (s, 12H)

参考例7
(化合物7の合成)

Figure 2012182439
フラスコ内の気体をアルゴンで置換した200mLフラスコに、化合物6を2.16g(4.55mmol)、脱水THFを100mL入れて均一な溶液とした。該溶液を−78℃に保ち、該溶液に2.6Mのブチルリチウム(n−BuLi)のヘキサン溶液4.37mL(11.4mmol)を10分かけて滴下した。滴下後、反応液を−78℃で30分攪拌し、次いで、室温(25℃)で2時間攪拌した。その後、フラスコを−78℃に冷却し、反応液にトリブチルスズクロリドを4.07g(12.5mmol)加えた。添加後、反応液を−78℃で30分攪拌し、次いで、室温(25℃)で3時間攪拌した。その後、反応液に水200mlを加えて反応を停止し、酢酸エチルを加えて反応生成物を含む有機層を抽出した。酢酸エチル溶液である有機層を硫酸ナトリウムで乾燥し、有機層を濾過後、濾液をエバポレーターで濃縮し、溶媒を留去した。得られたオイル状の物質を展開溶媒がヘキサンであるシリカゲルカラムで精製した。シリカゲルカラムのシリカゲルには、あらかじめ5重量(wt)%のトリエチルアミンを含むヘキサンに5分間浸し、その後、ヘキサンで濯いだシリカゲルを用いた。精製後、化合物7を3.52g(3.34mmol)得た。 Reference Example 7
(Synthesis of Compound 7)
Figure 2012182439
Into a 200 mL flask in which the gas in the flask was replaced with argon, 2.16 g (4.55 mmol) of Compound 6 and 100 mL of dehydrated THF were added to obtain a uniform solution. The solution was kept at −78 ° C., and 4.37 mL (11.4 mmol) of 2.6M butyllithium (n-BuLi) in hexane was added dropwise to the solution over 10 minutes. After the addition, the reaction solution was stirred at -78 ° C for 30 minutes, and then stirred at room temperature (25 ° C) for 2 hours. Thereafter, the flask was cooled to −78 ° C., and 4.07 g (12.5 mmol) of tributyltin chloride was added to the reaction solution. After the addition, the reaction solution was stirred at −78 ° C. for 30 minutes, and then stirred at room temperature (25 ° C.) for 3 hours. Thereafter, 200 ml of water was added to the reaction solution to stop the reaction, and ethyl acetate was added to extract an organic layer containing the reaction product. The organic layer as an ethyl acetate solution was dried over sodium sulfate, the organic layer was filtered, the filtrate was concentrated with an evaporator, and the solvent was distilled off. The obtained oily substance was purified by a silica gel column whose developing solvent was hexane. As the silica gel of the silica gel column, silica gel previously immersed in hexane containing 5% by weight of triethylamine for 5 minutes and then rinsed with hexane was used. After purification, 3.52 g (3.34 mmol) of compound 7 was obtained.

参考例8
(高分子化合物1の合成)

Figure 2012182439
フラスコ内の気体をアルゴンで置換した200mLフラスコに、化合物7を200mg(0.190mmol)、化合物8(Luminescence Technology Corporation社製)を115mg(0.184mmol)、トルエンを16ml入れて均一溶液とした。得られたトルエン溶液を、アルゴンで30分バブリングした。その後、トルエン溶液に、トリス(ジベンジリデンアセトン)ジパラジウムを2.61mg(0.00285mmol)、トリス(2−トルイル)ホスフィンを5.2mg(0.0171mmol)加え、100℃で5時間攪拌した。その後、反応液にフェニルブロミドを100mg加え、さらに5時間攪拌した。その後、フラスコを25℃に冷却し、反応液をメタノール300mLに注いだ。析出したポリマーを濾過して回収し、得られたポリマーを円筒濾紙に入れ、ソックスレー抽出器を用いて、メタノール、アセトン及びヘキサンでそれぞれ5時間抽出した。円筒濾紙内に残ったポリマーを、トルエン100mLに溶解させ、ジエチルジチオカルバミン酸ナトリウム3gと水100mLを加え、8時間還流下で攪拌を行った。水層を除去後、有機層を水50mlで2回洗浄し、次いで、3重量%(wt%)の酢酸水溶液50mLで2回洗浄し、次いで、水50mLで2回洗浄し、次いで、5重量%のフッ化カリウム水溶液50mLで2回洗浄し、次いで、水50mLで2回洗浄し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーを濾過後、乾燥し、得られたポリマーをo−ジクロロベンゼン50mLに再度溶解し、アルミナ/シリカゲルカラムを通した。得られた溶液をメタノールに注いでポリマーを析出させ、ポリマーを濾過後、乾燥し、精製された高分子化合物を83mg得た。以下、該高分子化合物を高分子化合物1と呼称する。 Reference Example 8
(Synthesis of polymer compound 1)
Figure 2012182439
A 200 mL flask in which the gas in the flask was replaced with argon was charged with 200 mg (0.190 mmol) of Compound 7, 115 mg (0.184 mmol) of Compound 8 (manufactured by Luminescence Technology Corporation), and 16 ml of toluene to obtain a uniform solution. The resulting toluene solution was bubbled with argon for 30 minutes. Thereafter, 2.61 mg (0.00285 mmol) of tris (dibenzylideneacetone) dipalladium and 5.2 mg (0.0171 mmol) of tris (2-toluyl) phosphine were added to the toluene solution, and the mixture was stirred at 100 ° C. for 5 hours. Thereafter, 100 mg of phenyl bromide was added to the reaction solution, and the mixture was further stirred for 5 hours. Thereafter, the flask was cooled to 25 ° C., and the reaction solution was poured into 300 mL of methanol. The precipitated polymer was collected by filtration, and the obtained polymer was placed in a cylindrical filter paper and extracted with methanol, acetone and hexane for 5 hours using a Soxhlet extractor. The polymer remaining in the cylindrical filter paper was dissolved in 100 mL of toluene, 3 g of sodium diethyldithiocarbamate and 100 mL of water were added, and the mixture was stirred under reflux for 8 hours. After removal of the aqueous layer, the organic layer is washed twice with 50 ml of water, then twice with 50 mL of 3 wt% (wt%) aqueous acetic acid, then twice with 50 mL of water and then 5 wt. The solution was washed twice with 50 mL of an aqueous potassium fluoride solution and then twice with 50 mL of water, and the resulting solution was poured into methanol to precipitate a polymer. The polymer was filtered and dried, and the obtained polymer was redissolved in 50 mL of o-dichlorobenzene and passed through an alumina / silica gel column. The obtained solution was poured into methanol to precipitate a polymer, and the polymer was filtered and dried to obtain 83 mg of a purified polymer compound. Hereinafter, the polymer compound is referred to as polymer compound 1.

参考例9
(高分子化合物2の合成)

Figure 2012182439
フラスコ内の気体をアルゴンで置換した2L四つ口フラスコに、化合物(E)を7.928g(16.72mmol)、化合物(F)を13.00g(17.60mmol)、トリオクチルメチルアンモニウムクロリド(商品名Aliquat336(登録商標)、アルドリッチ社製、CH3N[(CH2)7CH3]3Cl、density 0.884g/ml、25℃)を4.979g、及びトルエンを405ml入れ、撹拌しながら反応系内を30分間アルゴンバブリングした。フラスコ内にジクロロビス(トリフェニルホスフィン)パラジウム(II)を0.02g加え、105℃に昇温し、撹拌しながら2mol/Lの炭酸ナトリウム水溶液42.2mlを滴下した。滴下終了後5時間反応させ、その後、フェニルボロン酸2.6gとトルエン1.8mlとを加え、105℃で16時間撹拌した。その後、反応液にトルエン700ml及び7.5wt%のジエチルジチオカルバミン酸ナトリウム三水和物水溶液200mlを加え、85℃で3時間撹拌した。反応液の水層を除去後、有機層を60℃のイオン交換水300mlで2回、60℃の3wt%酢酸300mlで1回、さらに60℃のイオン交換水300mlで3回洗浄した。有機層をセライト、アルミナ及びシリカを充填したカラムに通し、濾液を回収した。その後、熱トルエン800mlでカラムを洗浄し、洗浄後のトルエン溶液を濾液に加えた。得られた溶液を700mlまで濃縮した後、濃縮した溶液を2Lのメタノールに加え、高分子化合物を再沈殿させた。高分子化合物を濾過して回収し、500mlのメタノール、500mlのアセトン、500mlのメタノールで高分子化合物を洗浄した。高分子化合物を50℃で一晩真空乾燥することにより、ペンタチエニル−フルオレンコポリマー(高分子化合物2)12.21gを得た。高分子化合物2のポリスチレン換算の重量平均分子量は1.1×105であった。 Reference Example 9
(Synthesis of polymer compound 2)
Figure 2012182439
Into a 2 L four-necked flask in which the gas in the flask was replaced with argon, 7.928 g (16.72 mmol) of compound (E), 13.00 g (17.60 mmol) of compound (F), trioctylmethylammonium chloride ( 4.979 g of trade name Aliquat 336 (registered trademark), manufactured by Aldrich, CH 3 N [(CH 2 ) 7 CH 3 ] 3 Cl, density 0.884 g / ml, 25 ° C.) and 405 ml of toluene are added and stirred. The reaction system was bubbled with argon for 30 minutes. 0.02 g of dichlorobis (triphenylphosphine) palladium (II) was added to the flask, the temperature was raised to 105 ° C., and 42.2 ml of a 2 mol / L sodium carbonate aqueous solution was added dropwise with stirring. After completion of the dropwise addition, the reaction was allowed to proceed for 5 hours, and then 2.6 g of phenylboronic acid and 1.8 ml of toluene were added, followed by stirring at 105 ° C. for 16 hours. Thereafter, 700 ml of toluene and 200 ml of a 7.5 wt% sodium diethyldithiocarbamate trihydrate aqueous solution were added to the reaction solution, followed by stirring at 85 ° C. for 3 hours. After removing the aqueous layer of the reaction solution, the organic layer was washed twice with 300 ml of ion exchange water at 60 ° C., once with 300 ml of 3 wt% acetic acid at 60 ° C., and further three times with 300 ml of ion exchange water at 60 ° C. The organic layer was passed through a column packed with celite, alumina and silica, and the filtrate was collected. Thereafter, the column was washed with 800 ml of hot toluene, and the washed toluene solution was added to the filtrate. After the obtained solution was concentrated to 700 ml, the concentrated solution was added to 2 L of methanol to reprecipitate the polymer compound. The polymer compound was recovered by filtration, and the polymer compound was washed with 500 ml of methanol, 500 ml of acetone, and 500 ml of methanol. The polymer compound was vacuum-dried at 50 ° C. overnight to obtain 12.21 g of a pentathienyl-fluorene copolymer (polymer compound 2). The weight average molecular weight in terms of polystyrene of the polymer compound 2 was 1.1 × 10 5 .

参考例10
(高分子化合物3の合成)

Figure 2012182439
200mlのセパラブルフラスコに、メチルトリオクチルアンモニウムクロライド(商品名:aliquat336(登録商標)、Aldrich製、CH3N[(CH2)7CH3]3Cl、density 0.884g/ml、25℃)を0.65g、化合物(G)を1.5779g、化合物(I)を1.1454g入れ、フラスコ内の気体を窒素で置換した。フラスコに、アルゴンバブリングしたトルエンを35ml加え、撹拌溶解後、さらに40分アルゴンバブリングした。フラスコを加熱するバスの温度を85℃まで昇温後、反応液に、酢酸パラジウム1.6mg、トリスo−メトキシフェニルフォスフィンを6.7mg加え、つづいてバスの温度を105℃まで昇温しながら、17.5重量%の炭酸ナトリウム水溶液9.5mlを6分かけて滴下した。滴下後、バスの温度を105℃に保った状態で1.7時間攪拌し、その後、反応液を室温まで冷却した。 Reference Example 10
(Synthesis of polymer compound 3)
Figure 2012182439
In a 200 ml separable flask, methyl trioctyl ammonium chloride (trade name: aliquat336 (registered trademark), manufactured by Aldrich, CH 3 N [(CH 2 ) 7 CH 3 ] 3 Cl, density 0.884 g / ml, 25 ° C.) 0.65 g, compound (G) 1.5779 g and compound (I) 1.1454 g, and the gas in the flask was replaced with nitrogen. 35 ml of toluene bubbled with argon was added to the flask, stirred and dissolved, and then bubbled with argon for 40 minutes. After raising the temperature of the bath for heating the flask to 85 ° C., 1.6 mg of palladium acetate and 6.7 mg of tris o-methoxyphenylphosphine were added to the reaction solution, and then the temperature of the bath was raised to 105 ° C. However, 9.5 ml of a 17.5% by weight aqueous sodium carbonate solution was added dropwise over 6 minutes. After dropping, the mixture was stirred for 1.7 hours while maintaining the bath temperature at 105 ° C., and then the reaction solution was cooled to room temperature.

次に、当該反応液に、化合物(G)を1.0877g、化合物(H)を0.9399g加え、さらに、アルゴンバブリングしたトルエンを15ml加え、撹拌溶解後、さらに30分アルゴンバブリングした。反応液に、酢酸パラジウムを1.3mg、トリスo−メトキシフェニルフォスフィンを4.7mg加え、つづいてバスの温度を105℃まで昇温しながら、17.5重量%の炭酸ナトリウム水溶液6.8mlを5分かけて滴下した。滴下後、バスの温度を105℃に保った状態で3時間攪拌した。撹拌後、反応液に、アルゴンバブリングしたトルエンを50ml、酢酸パラジウムを2.3mg、トリスo−メトキシフェニルフォスフィンを8.8mg、フェニルホウ酸を0.305g加え、バスの温度を105℃に保った状態で8時間攪拌した。次に、反応液の水層を除去した後、ナトリウムN,N−ジエチルジチオカルバメート3.1gを30mlの水に溶解した水溶液を加え、バスの温度を85℃に保った状態で2時間攪拌した。続いて、反応液にトルエン250mlを加えて反応液を分液し、有機層を65mlの水で2回、65mlの3重量%酢酸水で2回、65mlの水で2回洗浄した。洗浄後の有機層にトルエン150mlを加えて希釈し、2500mlのメタノールに滴下し、高分子化合物を再沈殿させた。高分子化合物を濾過し、減圧乾燥後、500mlのトルエンに溶解させた。得られたトルエン溶液を、シリカゲル−アルミナカラムに通し、得られたトルエン溶液を3000mlのメタノールに滴下し、高分子化合物を再沈殿させた。高分子化合物を濾過し、減圧乾燥後、3.00gの高分子化合物3を得た。得られた高分子化合物3のポリスチレン換算の重量平均分子量は、257,000であり、数平均分子量は87,000であった。   Next, 1.0877 g of compound (G) and 0.9399 g of compound (H) were added to the reaction solution, and 15 ml of toluene bubbled with argon was further added. After stirring and dissolving, argon was bubbled for another 30 minutes. To the reaction solution, 1.3 mg of palladium acetate and 4.7 mg of tris o-methoxyphenylphosphine were added, and then the temperature of the bath was raised to 105 ° C., and 6.8 ml of a 17.5 wt% sodium carbonate aqueous solution. Was added dropwise over 5 minutes. After the dropwise addition, the mixture was stirred for 3 hours while maintaining the bath temperature at 105 ° C. After stirring, 50 ml of argon bubbled toluene, 2.3 mg of palladium acetate, 8.8 mg of tris o-methoxyphenylphosphine, and 0.305 g of phenylboric acid were added to the reaction solution, and the bath temperature was maintained at 105 ° C. The mixture was stirred for 8 hours. Next, after removing the aqueous layer of the reaction solution, an aqueous solution in which 3.1 g of sodium N, N-diethyldithiocarbamate was dissolved in 30 ml of water was added, and the mixture was stirred for 2 hours while maintaining the bath temperature at 85 ° C. . Subsequently, 250 ml of toluene was added to the reaction solution to separate the reaction solution, and the organic layer was washed twice with 65 ml of water, twice with 65 ml of 3% by weight acetic acid and twice with 65 ml of water. The washed organic layer was diluted by adding 150 ml of toluene, and dropped into 2500 ml of methanol to reprecipitate the polymer compound. The polymer compound was filtered, dried under reduced pressure, and dissolved in 500 ml of toluene. The obtained toluene solution was passed through a silica gel-alumina column, and the obtained toluene solution was added dropwise to 3000 ml of methanol to reprecipitate the polymer compound. The polymer compound was filtered and dried under reduced pressure to obtain 3.00 g of polymer compound 3. The obtained polymer compound 3 had a polystyrene equivalent weight average molecular weight of 257,000 and a number average molecular weight of 87,000.

高分子化合物3は、
下記式で表されるブロック共重合体である。

Figure 2012182439
Polymer compound 3 is
It is a block copolymer represented by the following formula.
Figure 2012182439

参考例11
(化合物9の合成)

Figure 2012182439
500mlフラスコに、4,5−ジフルオロ−1,2−ジアミノベンゼン(東京化成工業製)を10.2g(70.8mmol)、ピリジンを150mL入れて均一溶液とした。フラスコを0℃に保ったまま、フラスコ内に塩化チオニル16.0g(134mmol)を滴下した。滴下後、フラスコを25℃に温めて、6時間反応を行った。その後、水250mlを加え、クロロホルムで反応生成物を抽出した。クロロホルム溶液である有機層を硫酸ナトリウムで乾燥し、濾過した。濾液をエバポレーターで濃縮して析出した固体を再結晶で精製した。再結晶の溶媒には、メタノールを用いた。精製後、化合物9を10.5g(61.0mmol)得た。 Reference Example 11
(Synthesis of Compound 9)
Figure 2012182439
In a 500 ml flask, 10.5 g (70.8 mmol) of 4,5-difluoro-1,2-diaminobenzene (manufactured by Tokyo Chemical Industry Co., Ltd.) and 150 mL of pyridine were added to obtain a homogeneous solution. While maintaining the flask at 0 ° C., 16.0 g (134 mmol) of thionyl chloride was dropped into the flask. After dropping, the flask was warmed to 25 ° C. and reacted for 6 hours. Thereafter, 250 ml of water was added, and the reaction product was extracted with chloroform. The organic layer, which is a chloroform solution, was dried over sodium sulfate and filtered. The filtrate was concentrated with an evaporator and the precipitated solid was purified by recrystallization. Methanol was used as the solvent for recrystallization. After purification, 10.5 g (61.0 mmol) of Compound 9 was obtained.

参考例12
(化合物10の合成)

Figure 2012182439
100mLフラスコに、化合物9を2.00g(11.6mmol)、鉄粉0.20g(3.58mmol)をいれ、フラスコを90℃に加熱した。このフラスコに臭素31g(194mmol)を1時間かけて滴下した。滴下後、90℃で38時間攪拌した。その後、フラスコを室温(25℃)まで冷却し、クロロホルム100mLを入れて希釈した。得られた溶液を、5wt%の亜硫酸ナトリウム水溶液300mLに注ぎ込み、1時間攪拌した。得られた混合液の有機層を分液ロートで分離し、水層をクロロホルムで3回抽出した。得られた抽出液を先ほど分離した有機層と合わせて硫酸ナトリウムで乾燥した。濾過後、濾液をエバポレーターで濃縮し、溶媒を留去した。得られた黄色の固体を、55℃に熱したメタノール90mLに溶解させ、その後、25℃まで冷却した。析出した結晶を濾過回収し、その後、室温(25℃)で減圧乾燥して化合物10を1.50g得た。 Reference Example 12
(Synthesis of Compound 10)
Figure 2012182439
In a 100 mL flask, 2.00 g (11.6 mmol) of Compound 9 and 0.20 g (3.58 mmol) of iron powder were added, and the flask was heated to 90 ° C. To this flask, 31 g (194 mmol) of bromine was added dropwise over 1 hour. After dropping, the mixture was stirred at 90 ° C. for 38 hours. Thereafter, the flask was cooled to room temperature (25 ° C.) and diluted with 100 mL of chloroform. The obtained solution was poured into 300 mL of 5 wt% aqueous sodium sulfite solution and stirred for 1 hour. The organic layer of the obtained mixture was separated with a separatory funnel, and the aqueous layer was extracted with chloroform three times. The obtained extract was combined with the organic layer separated earlier and dried over sodium sulfate. After filtration, the filtrate was concentrated with an evaporator and the solvent was distilled off. The obtained yellow solid was dissolved in 90 mL of methanol heated to 55 ° C., and then cooled to 25 ° C. The precipitated crystals were collected by filtration and then dried under reduced pressure at room temperature (25 ° C.) to obtain 1.50 g of compound 10.

19F NMR(CDCl、ppm):−118.9(s、2F) 19 F NMR (CDCl 3 , ppm): -118.9 (s, 2F)

参考例13
(高分子化合物4の合成)

Figure 2012182439
フラスコ内の気体をアルゴンで置換した200mLフラスコに、化合物7を500mg(0.475mmol)、化合物10を141mg(0.427mmol)、トルエンを32ml入れて均一溶液とした。得られたトルエン溶液を、アルゴンで30分バブリングした。その後、トルエン溶液に、トリス(ジベンジリデンアセトン)ジパラジウムを6.52mg(0.007mmol)、トリス(2−トルイル)ホスフィンを13.0mg加え、100℃で6時間攪拌した。その後、反応液にフェニルブロミドを500mg加え、さらに5時間攪拌した。その後、フラスコを25℃に冷却し、反応液をメタノール300mLに注いだ。析出したポリマーを濾過して回収し、得られたポリマーを、円筒濾紙に入れ、ソックスレー抽出器を用いて、メタノール、アセトン及びヘキサンでそれぞれ5時間抽出した。円筒濾紙内に残ったポリマーを、トルエン100mLに溶解させ、ジエチルジチオカルバミン酸ナトリウム2gと水40mLを加え、8時間還流下で攪拌を行った。水層を除去後、有機層を水50mlで2回洗浄し、次いで、3wt%の酢酸水溶液50mLで2回洗浄し、次いで、水50mLで2回洗浄し、次いで、5%フッ化カリウム水溶液50mLで2回洗浄し、次いで、水50mLで2回洗浄し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーを濾過後、乾燥し、得られたポリマーをo−ジクロロベンゼン50mLに再度溶解し、アルミナ/シリカゲルカラムを通した。得られた溶液をメタノールに注いでポリマーを析出させ、ポリマーを濾過後、乾燥し、精製された重合体185mgを得た。以下、この重合体を高分子化合物4と呼称する。 Reference Example 13
(Synthesis of polymer compound 4)
Figure 2012182439
A 200 mL flask in which the gas in the flask was replaced with argon was charged with 500 mg (0.475 mmol) of Compound 7, 141 mg (0.427 mmol) of Compound 10, and 32 ml of toluene to obtain a uniform solution. The resulting toluene solution was bubbled with argon for 30 minutes. Thereafter, 6.52 mg (0.007 mmol) of tris (dibenzylideneacetone) dipalladium and 13.0 mg of tris (2-toluyl) phosphine were added to the toluene solution, and the mixture was stirred at 100 ° C. for 6 hours. Thereafter, 500 mg of phenyl bromide was added to the reaction solution, and the mixture was further stirred for 5 hours. Thereafter, the flask was cooled to 25 ° C., and the reaction solution was poured into 300 mL of methanol. The precipitated polymer was collected by filtration, and the obtained polymer was put into a cylindrical filter paper and extracted with methanol, acetone and hexane for 5 hours each using a Soxhlet extractor. The polymer remaining in the cylindrical filter paper was dissolved in 100 mL of toluene, 2 g of sodium diethyldithiocarbamate and 40 mL of water were added, and the mixture was stirred under reflux for 8 hours. After removing the aqueous layer, the organic layer was washed twice with 50 ml of water, then twice with 50 mL of a 3 wt% aqueous acetic acid solution, then twice with 50 mL of water, and then 50 mL of 5% aqueous potassium fluoride solution. And then washed twice with 50 mL of water, and the resulting solution was poured into methanol to precipitate a polymer. The polymer was filtered and dried, and the obtained polymer was redissolved in 50 mL of o-dichlorobenzene and passed through an alumina / silica gel column. The obtained solution was poured into methanol to precipitate a polymer, and the polymer was filtered and dried to obtain 185 mg of a purified polymer. Hereinafter, this polymer is referred to as polymer compound 4.

(塗布溶液1の製造)
フラーレン誘導体として25重量部の[6,6]−フェニルC71−酪酸メチルエステル(C70PCBM)(アメリカンダイソース社製、ADS71BFA)と、電子供与体化合物として2.5重量部の高分子化合物2及び2.5重量部の高分子化合物3と、溶媒として1000重量部のo−ジクロロベンゼンとを混合した。その後、混合して得られた液を孔径1.0μmのテフロン(登録商標)フィルターで濾過し、塗布溶液1を製造した。
(Manufacture of coating solution 1)
25 parts by weight of [6,6] -phenyl C71-butyric acid methyl ester (C70PCBM) (ADS71BFA) as fullerene derivatives and 2.5 parts by weight of polymer compounds 2 and 2 as electron donor compounds .5 parts by weight of the polymer compound 3 and 1000 parts by weight of o-dichlorobenzene as a solvent were mixed. Thereafter, the liquid obtained by mixing was filtered through a Teflon (registered trademark) filter having a pore diameter of 1.0 μm to produce a coating solution 1.

(塗布溶液2の製造)
フラーレン誘導体として5重量部の[6,6]−フェニルC61−酪酸メチルエステル(PCBM)(フロンティアカーボン社製、E100H)と、電子供与体化合物として2.5重量部の高分子化合物1と、溶媒として1000重量部のクロロホルム及び50重量部のo−ジクロロベンゼンとを混合した。その後、混合して得られた液を孔径1.0μmのテフロン(登録商標)フィルターで濾過し、塗布溶液2を製造した。
(Production of coating solution 2)
5 parts by weight of [6,6] -phenyl C61-butyric acid methyl ester (PCBM) (frontier carbon, E100H) as a fullerene derivative, 2.5 parts by weight of polymer compound 1 as an electron donor compound, and a solvent 1000 parts by weight of chloroform and 50 parts by weight of o-dichlorobenzene were mixed. Thereafter, the liquid obtained by mixing was filtered through a Teflon (registered trademark) filter having a pore diameter of 1.0 μm to produce a coating solution 2.

(塗布溶液3の製造)
フラーレン誘導体として5重量部の[6,6]−フェニルC61−酪酸メチルエステル(PCBM)(フロンティアカーボン社製、E100H)と、電子供与体化合物として2.5重量部の高分子化合物4と、溶媒として1000重量部のo−ジクロロベンゼンとを混合した。その後、混合して得られた液を孔径1.0μmのテフロン(登録商標)フィルターで濾過し、塗布溶液3を製造した。
(Production of coating solution 3)
5 parts by weight of [6,6] -phenyl C61-butyric acid methyl ester (PCBM) (E100H, manufactured by Frontier Carbon Co.) as a fullerene derivative, 2.5 parts by weight of polymer compound 4 as an electron donor compound, and a solvent As 1000 parts by weight of o-dichlorobenzene. Thereafter, the liquid obtained by mixing was filtered through a Teflon (registered trademark) filter having a pore diameter of 1.0 μm to produce a coating solution 3.

<実施例1>
(有機薄膜太陽電池の作製)
スパッタ法により150nmの厚みでITO膜を付けたガラス基板をオゾンUV処理して表面処理を行った。次に、PEDOT:PSS溶液(H.C.スタルク社製、CleviosP VP AI4083)をスピンコートによりITO膜上に塗布し、大気中、120℃で10分間加熱することにより、膜厚50nmの正孔注入層を作製した。次に、前記塗布溶液1を、スピンコートによりITO膜上に塗布し、有機薄膜太陽電池の活性層1を得た。活性層1の膜厚は200nmであった。その後、40重量%の酸化亜鉛ナノ粒子のエチレングリコールモノブチルエーテル分散液(平均粒子サイズ35nm以下、最大粒子サイズ120nm以下、シグマアルドリッチジャパン社製)をさらに3倍重量部のエチレングリコールモノブチルエーテルで希釈した塗布液を用いて、スピンコートにより活性層1上に190nmの膜厚で塗布し電子輸送層を得た。その後、pH=6〜7の中性PEDOT:PSS分散液(H.C.スタルク社製、Clevios PH1000N)をスピンコートにより電子輸送層上に100nmの膜厚で塗布し、正孔輸送層を得た。その後、前記塗布溶液2を、スピンコートにより正孔輸送層上に100nmの膜厚で塗布し、有機薄膜太陽電池の活性層2を得た。その後、真空蒸着機によりカルシウムを膜厚4nmで蒸着し、次いで、アルミニウムを膜厚100nmで蒸着することにより、有機薄膜太陽電池を作製した。蒸着のときの真空度は、すべて1〜9×10-3Paであった。こうして得られた有機薄膜太陽電池の形状は、2mm×2mmの正方形であった。得られた有機薄膜太陽電池にソーラシミュレーター(分光計器製、商品名OTENTO-SUNII:AM1.5Gフィルター、放射照度100mW/cm2)を用いて一定の光を照射し、発生する電流と電圧を測定した。光電変換効率は6.4%であり、Jsc(短絡電流密度)は9.7mA/cmであり、Voc(開放端電圧)は1.35Vであり、FF(フィルファクター)は0.49であった。
<Example 1>
(Production of organic thin film solar cells)
A glass substrate provided with an ITO film with a thickness of 150 nm by a sputtering method was subjected to surface treatment by ozone UV treatment. Next, a PEDOT: PSS solution (manufactured by HC Starck, CleviosP VP AI4083) is applied onto the ITO film by spin coating, and heated in the atmosphere at 120 ° C. for 10 minutes to form a hole with a thickness of 50 nm. An injection layer was produced. Next, the coating solution 1 was applied onto the ITO film by spin coating to obtain an active layer 1 of an organic thin film solar cell. The thickness of the active layer 1 was 200 nm. Thereafter, an ethylene glycol monobutyl ether dispersion of 40% by weight of zinc oxide nanoparticles (average particle size of 35 nm or less, maximum particle size of 120 nm or less, manufactured by Sigma-Aldrich Japan) was further diluted with 3 times by weight of ethylene glycol monobutyl ether. Using the coating liquid, spin coating applied to the active layer 1 with a film thickness of 190 nm to obtain an electron transport layer. Thereafter, a neutral PEDOT: PSS dispersion (Clevios PH1000N, manufactured by HC Starck Co., Ltd.) having a thickness of 100 nm was applied on the electron transport layer by spin coating to obtain a hole transport layer. It was. Then, the said application | coating solution 2 was apply | coated with the film thickness of 100 nm on the positive hole transport layer by spin coating, and the active layer 2 of the organic thin-film solar cell was obtained. Then, the organic thin film solar cell was produced by vapor-depositing calcium with a film thickness of 4 nm with a vacuum evaporation machine, and vapor-depositing aluminum with a film thickness of 100 nm. The degree of vacuum at the time of vapor deposition was 1 to 9 × 10 −3 Pa in all cases. The shape of the organic thin film solar cell thus obtained was a square of 2 mm × 2 mm. The obtained organic thin film solar cell is irradiated with a certain amount of light using a solar simulator (trade name: OTENTO-SUNII: AM1.5G filter, irradiance: 100 mW / cm 2 ), and the generated current and voltage are measured. did. The photoelectric conversion efficiency is 6.4%, Jsc (short circuit current density) is 9.7 mA / cm 2 , Voc (open end voltage) is 1.35 V, and FF (fill factor) is 0.49. there were.

<実施例2>
(有機薄膜太陽電池の作製)
スパッタ法により150nmの厚みでITO膜を付けたガラス基板をオゾンUV処理して表面処理を行った。次に、PEDOT:PSS溶液(H.C.スタルク社製、CleviosP VP AI4083)をスピンコートによりITO膜上に塗布し、大気中、120℃で10分間加熱することにより、膜厚50nmの正孔注入層を作製した。次に、前記塗布溶液1を、スピンコートによりITO膜上に塗布し、有機薄膜太陽電池の活性層1を得た。活性層1の膜厚は200nmであった。その後、45重量%の酸化亜鉛ナノ粒子のイソプロパノール分散液(HTD−711Z、テイカ社製)をさらに5倍重量部の2−プロパノールで希釈した塗布液を用いて、スピンコートにより活性層1上に130nmの膜厚で塗布し電子輸送層を得た。その後、pH=6〜7の中性PEDOT:PSS分散液(H.C.スタルク社製、Clevios PH1000N)をさらに1倍重量部の超純水で希釈した塗布液をスピンコートにより電子輸送層上に30nmの膜厚で塗布し、正孔輸送層を得た。その後、前記塗布溶液3を、スピンコートにより正孔輸送層上に110nmの膜厚で塗布し、有機薄膜太陽電池の活性層2を得た。その後、真空蒸着機によりカルシウムを膜厚4nmで蒸着し、次いで、アルミニウムを膜厚100nmで蒸着することにより、有機薄膜太陽電池を作製した。蒸着のときの真空度は、すべて1〜9×10-3Paであった。こうして得られた有機薄膜太陽電池の形状は、4mm×4mmの正方形であった。得られた有機薄膜太陽電池にソーラシミュレーター(分光計器製、商品名OTENTO-SUNII:AM1.5Gフィルター、放射照度100mW/cm2)を用いて一定の光を照射し、発生する電流と電圧を測定した。光電変換効率は8.2%であり、Jsc(短絡電流密度)は8.2mA/cmであり、Voc(開放端電圧)は1.56Vであり、FF(フィルファクター)は0.59であった。
<Example 2>
(Production of organic thin film solar cells)
A glass substrate provided with an ITO film with a thickness of 150 nm by a sputtering method was subjected to surface treatment by ozone UV treatment. Next, a PEDOT: PSS solution (manufactured by HC Starck, CleviosP VP AI4083) is applied onto the ITO film by spin coating, and heated in the atmosphere at 120 ° C. for 10 minutes to form a hole with a thickness of 50 nm. An injection layer was produced. Next, the coating solution 1 was applied onto the ITO film by spin coating to obtain an active layer 1 of an organic thin film solar cell. The thickness of the active layer 1 was 200 nm. Thereafter, an isopropanol dispersion of 45% by weight of zinc oxide nanoparticles (HTD-711Z, manufactured by Teica) was further spin-coated on the active layer 1 by using a coating solution diluted with 5-fold parts by weight of 2-propanol. An electron transport layer was obtained by coating with a film thickness of 130 nm. After that, a neutral PEDOT: PSS dispersion (pH C: manufactured by HC Starck Co., Ltd., Clevios PH1000N) diluted with 1 part by weight of ultrapure water was spin coated on the electron transport layer. The film was applied to a thickness of 30 nm to obtain a hole transport layer. Then, the said application | coating solution 3 was apply | coated with the film thickness of 110 nm on the positive hole transport layer by spin coating, and the active layer 2 of the organic thin-film solar cell was obtained. Then, the organic thin film solar cell was produced by vapor-depositing calcium with a film thickness of 4 nm with a vacuum evaporation machine, and vapor-depositing aluminum with a film thickness of 100 nm. The degree of vacuum at the time of vapor deposition was 1 to 9 × 10 −3 Pa in all cases. The shape of the organic thin film solar cell thus obtained was a square of 4 mm × 4 mm. The obtained organic thin film solar cell is irradiated with a certain amount of light using a solar simulator (trade name: OTENTO-SUNII: AM1.5G filter, irradiance: 100 mW / cm 2 ), and the generated current and voltage are measured. did. The photoelectric conversion efficiency is 8.2%, Jsc (short circuit current density) is 8.2 mA / cm 2 , Voc (open circuit voltage) is 1.56 V, and FF (fill factor) is 0.59. there were.

<比較例1>
(有機薄膜太陽電池の作製)
スパッタ法により150nmの厚みでITO膜を付けたガラス基板をオゾンUV処理して表面処理を行った。次に、PEDOT:PSS溶液(H.C.スタルク社製、CleviosP VP AI4083)をスピンコートによりITO膜上に塗布し、大気中120℃で10分間加熱することにより、膜厚50nmの正孔注入層を作製した。次に、前記塗布溶液1を、スピンコートによりITO膜上に塗布し、有機薄膜太陽電池の活性層を得た。活性層の膜厚は200nmであった。その後、真空蒸着機によりカルシウムを膜厚4nmで蒸着し、次いで、アルミニウムを膜厚100nmで蒸着することにより、有機薄膜太陽電池を作製した。蒸着のときの真空度は、すべて1〜9×10-3Paであった。こうして得られた有機薄膜太陽電池の形状は、2mm×2mmの正方形であった。得られた有機薄膜太陽電池にソーラシミュレーター(分光計器製、商品名OTENTO-SUNII:AM1.5Gフィルター、放射照度100mW/cm2)を用いて一定の光を照射し、発生する電流と電圧を測定した。光電変換効率は6.0%であり、Jsc(短絡電流密度)は11.3mA/cmであり、Voc(開放端電圧)は0.89Vであり、FF(フィルファクター)は0.60であった。
<Comparative Example 1>
(Production of organic thin film solar cells)
A glass substrate provided with an ITO film with a thickness of 150 nm by a sputtering method was subjected to surface treatment by ozone UV treatment. Next, PEDOT: PSS solution (manufactured by HC Starck, CleviosP VP AI4083) is applied on the ITO film by spin coating, and heated at 120 ° C. in the atmosphere for 10 minutes to inject holes with a thickness of 50 nm. A layer was made. Next, the coating solution 1 was applied onto the ITO film by spin coating to obtain an active layer of an organic thin film solar cell. The thickness of the active layer was 200 nm. Then, the organic thin film solar cell was produced by vapor-depositing calcium with a film thickness of 4 nm with a vacuum evaporation machine, and vapor-depositing aluminum with a film thickness of 100 nm. The degree of vacuum at the time of vapor deposition was 1 to 9 × 10 −3 Pa in all cases. The shape of the organic thin film solar cell thus obtained was a square of 2 mm × 2 mm. The obtained organic thin film solar cell is irradiated with a certain amount of light using a solar simulator (trade name: OTENTO-SUNII: AM1.5G filter, irradiance: 100 mW / cm 2 ), and the generated current and voltage are measured. did. The photoelectric conversion efficiency is 6.0%, Jsc (short circuit current density) is 11.3 mA / cm 2 , Voc (open circuit voltage) is 0.89 V, and FF (fill factor) is 0.60. there were.

<比較例2>
(有機薄膜太陽電池の作製)
スパッタ法により150nmの厚みでITO膜を付けたガラス基板をオゾンUV処理して表面処理を行った。次に、PEDOT:PSS溶液(H.C.スタルク社製、CleviosP VP AI4083)をスピンコートによりITO膜上に塗布し、大気中120℃で10分間加熱することにより、膜厚50nmの正孔注入層を作成した。次に、前記塗布溶液2を、スピンコートによりITO膜上に塗布し、有機薄膜太陽電池の活性層を得た。活性層の膜厚は100nmであった。その後、真空蒸着機によりカルシウムを膜厚4nmで蒸着し、次いで、アルミニウムを膜厚100nmで蒸着することにより、有機薄膜太陽電池を作製した。蒸着のときの真空度は、すべて1〜9×10-3Paであった。こうして得られた有機薄膜太陽電池の形状は、2mm×2mmの正方形であった。得られた有機薄膜太陽電池にソーラシミュレーター(分光計器製、商品名OTENTO-SUNII:AM1.5Gフィルター、放射照度100mW/cm2)を用いて一定の光を照射し、発生する電流と電圧を測定した。光電変換効率は3.4%であり、Jsc(短絡電流密度)は11.6mA/cmであり、Voc(開放端電圧)は0.54Vであり、FF(フィルファクター)は0.54であった。
<Comparative example 2>
(Production of organic thin film solar cells)
A glass substrate provided with an ITO film with a thickness of 150 nm by a sputtering method was subjected to surface treatment by ozone UV treatment. Next, PEDOT: PSS solution (manufactured by HC Starck, CleviosP VP AI4083) is applied on the ITO film by spin coating, and heated at 120 ° C. in the atmosphere for 10 minutes to inject holes with a thickness of 50 nm. Created a layer. Next, the coating solution 2 was applied onto the ITO film by spin coating to obtain an active layer of an organic thin film solar cell. The thickness of the active layer was 100 nm. Then, the organic thin film solar cell was produced by vapor-depositing calcium with a film thickness of 4 nm with a vacuum evaporation machine, and vapor-depositing aluminum with a film thickness of 100 nm. The degree of vacuum at the time of vapor deposition was 1 to 9 × 10 −3 Pa in all cases. The shape of the organic thin film solar cell thus obtained was a square of 2 mm × 2 mm. The obtained organic thin film solar cell is irradiated with a certain amount of light using a solar simulator (trade name: OTENTO-SUNII: AM1.5G filter, irradiance: 100 mW / cm 2 ), and the generated current and voltage are measured. did. The photoelectric conversion efficiency is 3.4%, Jsc (short circuit current density) is 11.6 mA / cm 2 , Voc (open end voltage) is 0.54 V, and FF (fill factor) is 0.54. there were.

<比較例3>
(有機薄膜太陽電池の作製)
スパッタ法により150nmの厚みでITO膜を付けたガラス基板をオゾンUV処理して表面処理を行った。次に、PEDOT:PSS溶液(H.C.スタルク社製、CleviosP VP AI4083)をスピンコートによりITO膜上に塗布し、大気中120℃で10分間加熱することにより、膜厚50nmの正孔注入層を作成した。次に、前記塗布溶液3を、スピンコートによりITO膜上に塗布し、有機薄膜太陽電池の活性層を得た。活性層の膜厚は110nmであった。その後、真空蒸着機によりカルシウムを膜厚4nmで蒸着し、次いで、アルミニウムを膜厚100nmで蒸着することにより、有機薄膜太陽電池を作製した。蒸着のときの真空度は、すべて1〜9×10-3Paであった。こうして得られた有機薄膜太陽電池の形状は、4mm×4mmの正方形であった。得られた有機薄膜太陽電池にソーラシミュレーター(分光計器製、商品名OTENTO-SUNII:AM1.5Gフィルター、放射照度100mW/cm2)を用いて一定の光を照射し、発生する電流と電圧を測定した。光電変換効率は6.0%であり、Jsc(短絡電流密度)は14.7mA/cmであり、Voc(開放端電圧)は0.70Vであり、FF(フィルファクター)は0.58であった。
<Comparative Example 3>
(Production of organic thin film solar cells)
A glass substrate provided with an ITO film with a thickness of 150 nm by a sputtering method was subjected to surface treatment by ozone UV treatment. Next, PEDOT: PSS solution (manufactured by HC Starck, CleviosP VP AI4083) is applied on the ITO film by spin coating, and heated at 120 ° C. in the atmosphere for 10 minutes to inject holes with a thickness of 50 nm. Created a layer. Next, the coating solution 3 was applied on the ITO film by spin coating to obtain an active layer of an organic thin film solar cell. The thickness of the active layer was 110 nm. Then, the organic thin film solar cell was produced by vapor-depositing calcium with a film thickness of 4 nm with a vacuum evaporation machine, and vapor-depositing aluminum with a film thickness of 100 nm. The degree of vacuum at the time of vapor deposition was 1 to 9 × 10 −3 Pa in all cases. The shape of the organic thin film solar cell thus obtained was a square of 4 mm × 4 mm. The obtained organic thin film solar cell is irradiated with a certain amount of light using a solar simulator (trade name: OTENTO-SUNII: AM1.5G filter, irradiance: 100 mW / cm 2 ), and the generated current and voltage are measured. did. The photoelectric conversion efficiency is 6.0%, Jsc (short circuit current density) is 14.7 mA / cm 2 , Voc (open circuit voltage) is 0.70 V, and FF (fill factor) is 0.58. there were.

Claims (6)

複数の活性層と、該活性層間に位置する接合体とが、一対の電極間に積層されて構成される有機光電変換素子であって、
前記接合体が、電子輸送層及び正孔輸送層を含む複数の層を含有し、
前記電子輸送層が、電子輸送性材料と式(1a)で表される溶媒又は式(1b)で表される溶媒とを含む塗布液を、電子輸送層の下の層上に塗布することにより形成される有機光電変換素子。
Figure 2012182439
(1a) (1b)
〔式中、nは、2〜5の整数を表し、Rは、炭素数1〜10のアルキル基を表す。〕
An organic photoelectric conversion element configured by laminating a plurality of active layers and a joined body positioned between the active layers between a pair of electrodes,
The joined body contains a plurality of layers including an electron transport layer and a hole transport layer,
By applying the coating liquid containing the electron transporting material and the solvent represented by the formula (1a) or the solvent represented by the formula (1b) on the layer below the electron transporting layer. Organic photoelectric conversion element to be formed.
Figure 2012182439
(1a) (1b)
[Wherein, n represents an integer of 2 to 5, and R represents an alkyl group having 1 to 10 carbon atoms. ]
電子輸送性材料が酸化亜鉛からなる粒子を含有する請求項1に記載の有機光電変換素子。   The organic photoelectric conversion element according to claim 1, wherein the electron transporting material contains particles made of zinc oxide. 正孔輸送層が、正孔輸送性材料と溶媒とを含みpHが3〜9である塗布液を、正孔輸送層の下の層上に塗布することにより形成される請求項1又は2に記載の有機光電変換素子。   The hole transport layer is formed by applying a coating solution containing a hole transport material and a solvent and having a pH of 3 to 9 on a layer below the hole transport layer. The organic photoelectric conversion element as described. 活性層が、共役高分子化合物とフラーレン誘導体とを含む請求項1〜3のいずれか一項に記載の有機光電変換素子。   The organic photoelectric conversion element as described in any one of Claims 1-3 in which an active layer contains a conjugated polymer compound and a fullerene derivative. 複数の活性層と、該活性層間に位置し電子輸送層及び正孔輸送層を含む複数の層を含有する接合体とが、一対の電極間に積層されて構成される有機光電変換素子の製造方法であって、
電子輸送層が、電子輸送性材料と式(1a)で表される溶媒又は式(1b)で表される溶媒とを含む塗布液を、電子輸送層の下の層上に塗布することにより形成する有機光電変換素子の製造方法。
Figure 2012182439
(1a) (1b)
〔式中、nは、2〜5の整数を表し、Rは、炭素数1〜10のアルキル基を表す。〕
Manufacture of an organic photoelectric conversion element configured by laminating a plurality of active layers and a joined body including a plurality of layers located between the active layers and including an electron transport layer and a hole transport layer, between a pair of electrodes A method,
The electron transport layer is formed by applying a coating liquid containing an electron transport material and a solvent represented by the formula (1a) or a solvent represented by the formula (1b) on a layer below the electron transport layer. A method for producing an organic photoelectric conversion element.
Figure 2012182439
(1a) (1b)
[Wherein, n represents an integer of 2 to 5, and R represents an alkyl group having 1 to 10 carbon atoms. ]
正孔輸送層を、正孔輸送性材料と溶媒とを含みpHが3〜9である塗布液を、正孔輸送層の下の層上に塗布することにより形成する請求項5に記載の製造方法。   6. The production according to claim 5, wherein the hole transport layer is formed by coating a coating solution containing a hole transport material and a solvent and having a pH of 3 to 9 on a layer below the hole transport layer. Method.
JP2012002801A 2011-01-14 2012-01-11 Organic photoelectric conversion element Pending JP2012182439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012002801A JP2012182439A (en) 2011-01-14 2012-01-11 Organic photoelectric conversion element

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2011005739 2011-01-14
JP2011005739 2011-01-14
JP2011025917 2011-02-09
JP2011025917 2011-02-09
JP2012002801A JP2012182439A (en) 2011-01-14 2012-01-11 Organic photoelectric conversion element

Publications (1)

Publication Number Publication Date
JP2012182439A true JP2012182439A (en) 2012-09-20

Family

ID=46507250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012002801A Pending JP2012182439A (en) 2011-01-14 2012-01-11 Organic photoelectric conversion element

Country Status (3)

Country Link
JP (1) JP2012182439A (en)
TW (1) TW201235439A (en)
WO (1) WO2012096359A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746078A (en) * 2014-01-27 2014-04-23 北京大学 Perovskite solar cell and preparation method thereof
JP2014189666A (en) * 2013-03-27 2014-10-06 Mitsubishi Chemicals Corp Composition for forming semiconductor layer and solar cell element using the composition
CN104112786A (en) * 2014-04-22 2014-10-22 武汉鑫神光电科技有限公司 Copper indium sulfur/perovskite hetero-junction solar cell and preparation method thereof
CN104393177A (en) * 2014-10-24 2015-03-04 姚冀众 Perovskite phase organic metal halide-based solar cell and manufacturing method thereof
CN108574047A (en) * 2018-06-08 2018-09-25 中南大学 A kind of preparation method of perovskite solar cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150038353A (en) 2012-08-01 2015-04-08 더 리젠츠 오브 더 유니버시티 오브 미시간 Organic optoelectronics with electrode buffer layers

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009065216A (en) * 2008-12-22 2009-03-26 Seiko Epson Corp Photoelectric conversion element
JP2009206273A (en) * 2008-02-27 2009-09-10 National Institute Of Advanced Industrial & Technology Laminated organic solar battery
JP2009234987A (en) * 2008-03-27 2009-10-15 L'oreal Sa Method for permanently deforming keratinic fiber involving step for applying intermediate rinsing composition containing monovalent metallic cation or ammonium salt and organic acid
JP2010109227A (en) * 2008-10-31 2010-05-13 Konica Minolta Holdings Inc Organic photoelectric conversion element
WO2010102178A2 (en) * 2009-03-06 2010-09-10 University Of Florida Research Foundation, Inc. Air stable organic-inorganic nanoparticles hybrid solar cells
JP2010285520A (en) * 2009-06-10 2010-12-24 Harima Chem Inc Varnish for printing ink, and printing ink composition
JP2011082421A (en) * 2009-10-09 2011-04-21 Konica Minolta Holdings Inc Method for manufacturing organic photoelectric conversion element, and organic photoelectric conversion element
JP2012134337A (en) * 2010-12-22 2012-07-12 Konica Minolta Holdings Inc Organic photoelectric conversion element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4872628B2 (en) * 2006-11-28 2012-02-08 住友化学株式会社 Electron transport membrane
KR20110008282A (en) * 2008-04-28 2011-01-26 스미또모 가가꾸 가부시키가이샤 Organic photoelectric conversion element and manufacturing method thereof
JP2010258205A (en) * 2009-04-24 2010-11-11 Konica Minolta Holdings Inc Manufacturing method of organic photoelectric conversion element, and the organic photoelectric conversion element manufactured by the manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206273A (en) * 2008-02-27 2009-09-10 National Institute Of Advanced Industrial & Technology Laminated organic solar battery
JP2009234987A (en) * 2008-03-27 2009-10-15 L'oreal Sa Method for permanently deforming keratinic fiber involving step for applying intermediate rinsing composition containing monovalent metallic cation or ammonium salt and organic acid
JP2010109227A (en) * 2008-10-31 2010-05-13 Konica Minolta Holdings Inc Organic photoelectric conversion element
JP2009065216A (en) * 2008-12-22 2009-03-26 Seiko Epson Corp Photoelectric conversion element
WO2010102178A2 (en) * 2009-03-06 2010-09-10 University Of Florida Research Foundation, Inc. Air stable organic-inorganic nanoparticles hybrid solar cells
JP2010285520A (en) * 2009-06-10 2010-12-24 Harima Chem Inc Varnish for printing ink, and printing ink composition
JP2011082421A (en) * 2009-10-09 2011-04-21 Konica Minolta Holdings Inc Method for manufacturing organic photoelectric conversion element, and organic photoelectric conversion element
JP2012134337A (en) * 2010-12-22 2012-07-12 Konica Minolta Holdings Inc Organic photoelectric conversion element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAN GILOT, MARTIJN M. WIENK, AND RENE A. J. JANSSEN: "Double and triple junction polymer solar cells processed from solution", APPLIED PHYSICS LETTERS, vol. 第90巻, JPN6015046720, 5 April 2007 (2007-04-05), pages 143512, ISSN: 0003200308 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189666A (en) * 2013-03-27 2014-10-06 Mitsubishi Chemicals Corp Composition for forming semiconductor layer and solar cell element using the composition
CN103746078A (en) * 2014-01-27 2014-04-23 北京大学 Perovskite solar cell and preparation method thereof
CN104112786A (en) * 2014-04-22 2014-10-22 武汉鑫神光电科技有限公司 Copper indium sulfur/perovskite hetero-junction solar cell and preparation method thereof
CN104393177A (en) * 2014-10-24 2015-03-04 姚冀众 Perovskite phase organic metal halide-based solar cell and manufacturing method thereof
CN108574047A (en) * 2018-06-08 2018-09-25 中南大学 A kind of preparation method of perovskite solar cell

Also Published As

Publication number Publication date
WO2012096359A1 (en) 2012-07-19
TW201235439A (en) 2012-09-01

Similar Documents

Publication Publication Date Title
JP5034818B2 (en) Organic photoelectric conversion element
US9362515B2 (en) Photoelectric conversion element
WO2012132828A1 (en) Process for producing organic photoelectric conversion element
EP2067806A1 (en) Organic photoelectric conversion device and polymer useful for producing the same
JP2012182439A (en) Organic photoelectric conversion element
JP2010062550A (en) Photoelectric conversion element
JP2013237828A (en) Method for producing nitrogen-containing compound
WO2010024157A1 (en) Organic photoelectric conversion element and fabrication method therefor
US20110042665A1 (en) Organic photoelectric conversion element and manufacturing method therefor
JP2010206146A (en) Organic photoelectric conversion element
JP2008106239A (en) Organic photoelectric conversion element and polymer useful for producing the same
CN106796992B (en) Organic photoelectric conversion element and method for manufacturing same
JP5476660B2 (en) Organic photoelectric conversion device and polymer useful for production thereof
WO2012147756A1 (en) Multi-junction photoelectric conversion element
JP6032284B2 (en) Manufacturing method of organic photoelectric conversion element
JP2015099810A (en) Method of manufacturing organic photoelectric conversion element
US20110037066A1 (en) Organic photoelectric conversion element and manufacturing method thereof
JP2013207252A (en) Photoelectric conversion element
JP6995596B2 (en) Photoelectric conversion element
WO2013047293A1 (en) Photoelectric conversion element
JP6180099B2 (en) Photoelectric conversion element
JP2016134415A (en) Organic photoelectric conversion element
JP2015021064A (en) Ink composition and method for manufacturing organic photoelectric conversion element
JP2013207259A (en) Photoelectric conversion element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170207