CN103725674A - 一种在大肠杆菌中一步法合成dna片段并组装合成基因的方法 - Google Patents

一种在大肠杆菌中一步法合成dna片段并组装合成基因的方法 Download PDF

Info

Publication number
CN103725674A
CN103725674A CN201310753413.2A CN201310753413A CN103725674A CN 103725674 A CN103725674 A CN 103725674A CN 201310753413 A CN201310753413 A CN 201310753413A CN 103725674 A CN103725674 A CN 103725674A
Authority
CN
China
Prior art keywords
lic
carrier
plasmid
kana
synthetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310753413.2A
Other languages
English (en)
Other versions
CN103725674B (zh
Inventor
马立新
陈晚苹
陈羽西
汪晓娟
杨琥
余先红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WUHAN GENECREATE BIO-ENGINEERING CO., LTD.
Original Assignee
Hubei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University filed Critical Hubei University
Priority to CN201310753413.2A priority Critical patent/CN103725674B/zh
Publication of CN103725674A publication Critical patent/CN103725674A/zh
Application granted granted Critical
Publication of CN103725674B publication Critical patent/CN103725674B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提出了一种在大肠杆菌中一步法合成DNA片段并组装合成基因的方法,主要步骤包括:构建LIC载体质粒LIC-A;制备LIC-A线性载体;构建组装DNA片段的受体载体puc-Kana;选择目标基因,划分300bp左右的小片段进行合成;多个小片段DNA利用金门克隆反应组装成大片段基因。本发明操作简单,无需再重复做克隆和测序的操作,直接退火,克隆效率高,使用了发光报告基因sfgfp、gfp,筛选方法直观,合成方法的错误率很低,合成基因的周期短,大大节约了成本,节约了时间。本发明适用于各种基因的合成,对于大基因的合成特别有效。

Description

一种在大肠杆菌中一步法合成DNA片段并组装合成基因的方法
技术领域
本发明涉及一种基因合成方法的研究,是一种在大肠杆菌中一步法合成DNA片段并组装合成基因的方法,属于基因工程技术领域。
背景技术
合成生物学是生命科学在二十一世纪刚刚出现的一个分支学科,近年来合成生物学的研究进展很快,特别是基因合成技术。全基因合成是依照某一蛋白质的基因序列,设计合成相互重叠的单链寡核苷酸,再通过重叠延伸PCR法拼接出全长,基因合成无需模板,是获取基因的手段之一。通过全基因合成实现基因的分子改造和人工组建正成为一种实验室常规手段。因此,建立一种能够在相对低廉和短时间内准确和高效地设计和合成长片段基因的方法十分重要。
随着合成生物学的研究越来越流行,人们对生命的探究不再仅仅局限在宏观生物上,而是从更简单的基本单元基因着手,至从上个世纪70年代以来分子生物学基因工程迅猛发展,到目前为止DNA合成的方法主要集中3种方法:(1)化学合成方法,由于化学合成的原理决定了化学法合成的DNA片段不可能太长,所以主要用于寡核苷酸的合成;(2)PCR介导的合成方法,这种方法是可以合成大的DNA片段,而且周期也比较短,但是到目前为止,PCR介导的合成方法错误率比较高,尤其对于合成大于2kb以上的DNA由于错误率高,所以为了得到正确的克隆,需要做多次克隆和测序的重复工作,这样成本会很高;而且由于是PCR介导的方法,需要DNA高温聚合酶和DNTP等试剂,这样成本会比较高;(3)非PCR介导的方法,到目前为止报道的基于非PCR的DNA合成方法主要是DNA的固相合成技术。这种固相合成技术,在合成中的错误率确实大大降低了很多,但是由于在合成的时候引物需要经过特殊的修饰,再加上该方法需要建库,引物成本会比较高;其次是由于该方法每次只能增加3个碱基,这样合成的速度会比较慢,特别对于大的DNA片段的合成,周期尤为长,虽然可以实现自动化操作,但是对于一般的实验室研究不是很实用。
鉴于目前的基因合成的方法中错误率高,合成成本高等问题,有必要寻找新的基因合成方法来解决现有技术存在的问题。
发明内容
本发明的目的是提出一种在大肠杆菌中一步法合成DNA片段并组装合成基因的一种新的基因合成方法。该方法利用大肠杆菌自身的修复机制,在大肠杆菌中一步法合成DNA片段,并把DNA小片段组装合成基因。主要步骤包括:载体的改造,线性载体的制备,小DNA片段的合成,组装DNA片段的载体的构建,多个300bp左右的DNA片段的组装合成基因。
具体做法如下:
1)、构建LIC载体LIC-A。
以商品化的pet23a和pLP-VSVG载体用常规方法构建T7-sfgfp质粒,以sfgfp-PF/PBR–PR、T7-sfgfp质粒为模板,通过PCR扩增得到线性载体骨架LIC(3.5kb)(序列列表对应为NO1);设计SPC-PF/SPC-PR(序列见表1)为两对引物,以T7-sfgfp为模板,通过PCR扩增得到SPC盒式结构(1kb)(序列列表对应为NO2),扩增好的SPC盒式结构的两端都带上了一个限制性酶切位点(BciVI)和13bp的片段填充序列和T7启动子下游的10个碱基的序列;其次,在载体骨架LIC-A和SPC盒式结构两端引入了20bp的同源序列,扩增获得的SPC盒式结构,通过无酶克隆的方式(Zhu D,Zhong X,Tan R,Chen L,Huang G,Li J,et al.High-throughput cloning of human liver complete open readingframes using homologous recombination in Escherichia coli.[J]Anal Biochem.2010;397(2):162-7)克隆到载体骨架LIC-A上。经过限制性内切酶酶切和测序鉴定得到正确的LIC-A载体质粒(序列列表对应为NO3),命名为LIC-A载体质粒(构建过程见图1)。
表1骨架载体LIC-A构建中使用的引物
2)、LIC-A线性载体的制备(如图2所示)。把测序正确的LIC-A质粒先用限制性内切酶BciVI在37℃酶切,并凝胶回收后的产物,然后再用T4DNA聚合酶3次分别在加dGTP、dCTP、dTTP的保护下12℃利用T4DNA聚合酶3’-5’外切酶活性的作用消化30min,溶液回收后备用,这样处理的载体在其3’端各突出13nt。
3)、构建组装DNA片段的受体载体puc-Kana,构建过程见图3。
首先,以PBR322-PF/PBR322-PR为引物(序列见表2),以商品化的puc-19质粒为模板,通过PCR扩增获得线性骨架载体片段PBR322(序列列表对应为NO4);以gfp-PF/gfp-PR(序列见表2)为引物,以pGSilG-Lic为模板,通过PCR获得两端带有BspQI酶切位点和EarI酶切位点的gfp盒式结构(约1.0kb)(序列列表对应为NO5);以Kana-PF/Kana-PR(序列见表2)为引物,以pGSilG-Lic为模板通过PCR扩增,获得Kana盒式结构(序列列表对应为NO6)。其次,通过重叠延伸PCR(Overlap ExtensionPCR)将gfp盒式结构和Kana盒式结构拼接成gfp-Kana单元。
最后,将gfp-Kana单元和线性骨架载体片段PBR322进行1:3混合通过无酶克隆方式转化大肠杆菌XL-Gold进行克隆。挑取在蓝光仪下发绿光的菌落,通过质粒电泳、质粒酶切鉴定和质粒测序等方式得到了正确的puc-Kana质粒,puc-Kana质粒大小为3686bp(序列列表对应为NO7)。puc-Kana用于后续的金门克隆反应的受体载体用。
表2骨架载体puc-Kana构建中使用的引物
Figure BDA0000451014400000031
4)、选择目标基因,划分300bp左右的小片段进行合成。
先选择确定目标基因XY,将需要合成的目标基因的DNA序列按照每300bp左右进行划分为G1、G2、G3、G4、G5……多个小片段,分别设计彼此重叠(overlapping)17bp左右且无缝的引物序列对,每个300bp左右的片段需要合成12条长度为40-45nt左右的寡核苷酸引物。再分别将合成好的12条寡核苷酸序列稀释成终浓度10μM,然后分别取0.5μL至一PCR管内,加2ul的LA Taq Buffer最后加双蒸水至终体积20μL混合,分别让其按照94℃5min,94℃à37℃slope20min,37℃7min的逐步降温的程序退火,且首尾两条引物的5’端分别引入13nt与线性载体同源互补的序列。
将步骤2)准备好的线性载体与退火形成的小DNA片段混合,37℃放置30min后转化大肠杆菌感受态细胞,通过重构T7启动子启动下游报告基因sfgfp的表达,由于重组子质粒内含sfgfp的表达盒,其发光比普通gfp强,不需要借助蓝光仪等外界仪器就可以看见发光,从而可以很直观可视化的筛选发光的重组子,所以可以直接通过筛选发光的菌落送测序就可以得到正确的序列。将测序正确重组子分别命名为XYG1、XYG2、XYG3、XYG4、XYG5……。
5、多个小片段DNA组装成大片段基因。
要合成大于300bp以上的DNA片段,需要用步骤4的XYG1、XYG2、XYG3、XYG4、XYG5……质粒作为供体质粒,再另加切好的受体载体质粒puc-Kana做金门克隆反应(Engler,C.,R.Kandzia,and S.Marillonnet,A one pot,one step,precision cloning method with high throughput capability.PLoS One,2008.3(11):p.e3647),这样就合成了与目标基因序列一致相同的合成基因,具体过程见图4。
合成的300bp左右的DNA片段XYG1、XYG2、XYG3、XYG4、XYG5……转化大肠杆菌的菌落是发光的,本发明构建的金门克隆受体载体puc-Kana也有gfp表达盒式结构,所以受体质粒转化大肠杆菌菌落也是发光的,而且puc-Kana受体载体和LIC-F供体质粒的抗性不一样,所以最后转化所得重组子可以通过Kana抗性的正筛选作用和gfp的负筛选作用,这样可以使后期筛选重组子的工作进一步的简洁化和效率化。将PCR鉴定正确的重组子送测序,就可以得到正确的完整的DNA序列,由于在后期的金门克隆反应中只涉及到酶切连接反应,所以只要合成的小片段DNA是正确的,就不会突变,这样准确率很高。
本发明的DNA合成方法具有以下优势:
(1)操作简单,合成成本低。现有的DNA合成方法的过程繁琐,合成的成本较高,比如DNA纯化、PCR扩增反应、DNA酶切还有电泳等。而本发明的DNA合成过程只要将引物简单稀释退火,再与载体孵育30min便可直接转化,主要利用了大肠杆菌自身的多核苷酸激酶将引物的3’端磷酸化,然后再利用大肠杆菌自身的连接酶把缺刻的环状DNA质粒进行连接和修复成环化质粒,大大简化了实验步骤,而且不需要用高温DNA聚合酶,DNTP等试剂,节省了实验试剂,由于退火的条件简单,在退火的过程中甚至都可以不需要PCR仪,不需要将DNA纯化、PCR反应、电泳、片段与载体的连接等操作,而且具有较高的克隆效率。这样合成的成本主要就只有引物的合成成本,一方面节约了大量时间,另一方面节省了大量人力,也大大降低了成本。
(2)克隆效率高,筛选方法直观。本发明合成DNA片段的方法是引物直接退火搭桥,任意一条引物没有退火上去,下一条引物就不能退火,而且退火后的DNA与载体的连接用的是LIC的克隆原理,LIC克隆是利用了碱基间氢键的力量以及大肠杆菌的DNA修复能力,克隆效率不受体外连接效率的限制,克隆效率极其高。载体与片段退火的两段DNA序列是不同的,因此也决定了目的DNA与载体退火时的方向,所以不会出现DNA反向插入的情况。本发明选用的是重构T7启动子启动sfgfp的表达,由于T7启动子在启动外源蛋白的表达的时候存在渗漏表达,再加上sfgfp比普通的gfp发光更强,所以即使不加任何诱导剂如IPTG等也能不借助蓝光仪等任何仪器就能很直观的观察到发光的重组菌落。
(3)合成方法的错误率很低。本发明的DNA合成方法错误很低,没有经过任何方式处理如MutS,核酸酶等降低突变率的方法处理,目前得到的数据中错误率大约在0.04%左右。由于发明的合成方法中是用引物直接退火的,没有涉及PCR反应,所以引物的错误率不会被积累和放大化。由于引物退火靠的是引物直接的氢键直接互补配对,只要引物碱基中有大的缺失或错误,就可以进行淘汰一些错误的引物,从而降低错误率。
(4)合成基因的周期短。本发明的合成方法错误率极低,用本发明的方法合成小基因,一次就可得到正确的基因。对于大基因,可以先分成小片段(300bp左右)组装合成,然后再用金门克隆的方法把这些300bp左右的片段组装成完整的基因。本发明的基因合成的方法对于大基因的合成特别有效,由于大基因在PCR的过程相对容易突变,传统的Muts处理等校正突变的方法都比较麻烦,而本发明的方法相当于先把大基因进行模块化,突变率极低,无需后期的校正突变的操作,这样就无需再重复做克隆和测序的操作,这样就大大节约了成本,节约了时间,这样合成的周期就比较短。
附图说明
图1为载体LIC-A的构建过程。以实验室保存的载体质粒T7-sfgfp为骨架,改造载体,通过PCR和无酶克隆等操作构建载体LIC-A。
图2为线性LIC-A载体的制备过程。先用BciVI酶切,然后再用T4DNA聚合酶3次分别在加dGTP,dCTP,dTTP的保护下12℃利用T4DNA聚合酶3’-5’外切酶活性的作用消化30min,溶液回收后备用,这样处理的载体在其3’端各突出13nt
图3为载体puc-Kana的构建过程。以载体puc19和实验室保存的载体pGSiLG-Lic出发,通过PCR以及overlapping和无酶克隆等操作最终构建puc-Kana。
图4为以LIC-F供体质粒和puc-Kana受体载体做金门克隆反应的原理和流程图。
具体实施方式
下面以实施例对本发明进一步说明
实施例1:利用本发明,合成黑曲霉(Aspergillusniger)来源的葡萄糖氧化酶(AGOX)基因。
1、使用发明内容的1)、2)、3)步骤分别制备合成LIC-A载体质粒、LIC-A线性载体,受体载体puc-Kana,备用。
2、先将目标基因AGOX的氨基酸(589个aa)序列分成10个小段,分别命名为AG1、AG2、……AG10,每段大约为55-60个aa,再在DNAworks在线软件设计无缝的引物序列,合成10组引物(每组10-12条)。
3、分别将合成好的每组12条寡核苷酸序列首先分别稀释成终浓度10μM,然后分别取0.5μL至一PCR管内,加2ul的LA Taq Buffer最后加双蒸水至终体积20μL(终浓度约为0.25μM),退火时在PCR仪上按照94℃5min,94℃à37℃slope20min,37℃7min的逐步降温的程序对混合物进行处理,且在首尾两条引物的5’端分别引入13nt与线性载体同源互补的序列(如图2所示)。
4、将步骤(1)准备好的线性载体LIC-A与步骤(3)退火形成的小DNA片段(AG1、AG2、……AG10)分别以1:3的比例混合,37℃放置30min后分别转化Rosetta(DE3)pLysS大肠杆菌感受态细胞,通过重构T7启动子启动下游报告基因sfgfp的表达,不需要借助仪器直观可视化的筛选发光的重组子,将筛选发光的菌落送测序就可以得到正确的序列,分别命名为LAG1、LAG2……LAG10。
5、将测序正确的质粒(LAG1、LAG2……LAG10和步骤(1)构建好的载体质粒puc-Kana按照以下体系和程序反应
反应体系:
Figure BDA0000451014400000071
反应程序:
反应完后取5ul直接转化大肠杆菌感受态细胞,涂LB+kana的平板,37度培养过夜,挑取不发光的菌落进行PCR和质粒大小鉴定,再送去测序,就可以得到正确的全长的AGOX的基因序列。
实施例2:利用本发明,合成产黄青霉(Penicillium chrysogenum Wisconsin54-125)来源的脯氨酸内肽酶(SCP)基因。
1、使用发明内容的1)、2)、3)步骤分别制备合成LIC-A载体质粒、LIC-A线性载体,受体载体puc-Kana,备用。
2、先将目标基因SCP的氨基酸(543个aa)序列分成9个小段,分别命名为SP1、SP2、……SP9,每段大约为55-60个aa,再在DNAworks在线软件设计无缝的引物序列,合成9组引物(每组10-12条)。
3、分别将合成好的每组12条寡核苷酸序列首先分别稀释成终浓度10μM,然后分别取0.5μL至一PCR管内,加2ul的LA Taq Buffer最后加双蒸水至终体积20μL(终浓度约为0.25μM),退火时在PCR仪上按照94℃5min,94℃à37℃slope20min,37℃7min的逐步降温的程序对混合物进行处理,且在首尾两条引物的5’端分别引入13nt与线性载体同源互补的序列(如图2所示)。
4、将步骤(1)准备好的线性载体LIC-A与退火形成的小DNA片段(SP1、SP2、……SP9)分别以1:3的比例混合,37℃放置30min后分别转化Rosetta(DE3)pLysS大肠杆菌感受态细胞,通过重构T7启动子启动下游报告基因sfgfp的表达,不需要借助仪器直观可视化的筛选发光的重组子,将筛选发光的菌落送测序就可以得到正确的序列,分别命名为LSP1、LSP2……LSP9。
5、将测序正确的质粒LSP1、LSP2……LSP9和步骤(1)构建好的载体质粒puc-Kana按照以下体系和程序反应
反应体系:
Figure BDA0000451014400000081
反应程序:
Figure BDA0000451014400000082
反应完后取5ul直接转化大肠杆菌感受态细胞,涂LB+kana的平板,37度培养过夜,挑取不发光的菌落进行PCR和质粒大小鉴定,再送去测序,就可以得到正确的全长的SCP的基因序列。
Figure IDA0000451014490000011
Figure IDA0000451014490000021
Figure IDA0000451014490000031
Figure IDA0000451014490000041
Figure IDA0000451014490000061
Figure IDA0000451014490000071
Figure IDA0000451014490000091
Figure IDA0000451014490000101
Figure IDA0000451014490000111

Claims (2)

1.一种在大肠杆菌中一步法合成DNA片段并组装合成基因的方法,其特征在于主要步骤包括:构建LIC载体质粒LIC-A;LIC-A线性载体的制备;构建组装DNA片段的受体载体puc-Kana;选择目标基因,划分300bp左右的小片段进行合成;多个小片段DNA用金门克隆反应组装成大片段基因。
2.根据权利要求1所述的一种在大肠杆菌中一步法合成DNA片段并组装合成基因的方法,其特征在于具体步骤为:
1)、构建LIC载体LIC-A
以商品化的pet23a和pLP-VSVG载体用常规方法构建T7-sfgfp质粒,以sfgfp-PF/PBR–PR、T7-sfgfp质粒为模板,通过PCR扩增得到线性载体骨架LIC;设计SPC-PF/SPC-PR为两对引物,以T7-sfgfp为模板,通过PCR扩增得到SPC盒式结构;扩增好的SPC盒式结构的两端都带上了一个限制性酶切位点BciVI和13bp的片段填充序列和T7启动子下游的10个碱基的序列;其次,在载体骨架LIC和SPC盒式结构两端引入20bp的同源序列,扩增获得的SPC盒式结构,通过无酶克隆的方式克隆到载体骨架LIC上;经过限制性内切酶酶切和测序鉴定得到正确的LIC-A载体质粒;
2)、LIC-A线性载体的制备(如图2所示),把测序正确的LIC-A质粒先用限制性内切酶BciVI在37℃酶切,并凝胶回收后的产物,然后再用T4DNA聚合酶3次分别在加dGTP、dCTP、dTTP的保护下12℃利用T4DNA聚合酶消化30min,溶液回收后备用,这样处理的载体在其3’端各突出13nt;
3)、构建组装DNA片段的受体载体puc-Kana
首先,以PBR322-PF/PBR322-PR为引物,以商品化的puc-19质粒为模板,通过PCR扩增获得线性骨架载体片段PBR322;以gfp-PF/gfp-PR为引物,以pGSilG-Lic为模板,通过PCR获得两端带有BspQI酶切位点和EarI酶切位点的gfp盒式结构;以Kana-PF/Kana-PR为引物,以pGSilG-Lic为模板通过PCR扩增,获得Kana盒式结构;其次,通过重叠延伸PCR(Overlap Extension PCR)将gfp盒式结构和Kana盒式结构拼接成gfp-Kana单元;
最后,将gfp-Kana单元和线性骨架载体片段PBR322进行1:3混合通过无酶克隆方式转化大肠杆菌XL-Gold进行克隆;挑取在蓝光仪下发绿光的菌落,通过质粒电泳、质粒酶切鉴定和质粒测序等方式得到了正确的大小为3686bp的puc-Kana质粒;
4)、选择目标基因,划分300bp左右的小片段进行合成
先选择确定目标基因XY,将需要合成的目标基因的DNA序列按照每300bp左右进行划分为G1、G2、G3、G4、G5……多个小片段,分别设计彼此重叠(overlapping)17bp左右且无缝的引物序列对,每个300bp左右的片段需要合成12条长度为40-45nt左右的寡核苷酸引物;再分别将合成好的12条寡核苷酸序列稀释成终浓度10μM,然后分别取0.5μL至一PCR管内,加2ul的LA TaqBuffer最后加双蒸水至终体积20μL混合;分别让其按照94℃5min,94℃à37℃slope20min,37℃7min的逐步降温的程序退火,且首尾两条引物的5’端分别引入13nt与线性载体同源互补的序列;
将步骤2)准备好的线性载体与退火形成的小DNA片段混合,37℃放置30min后转化大肠杆菌感受态细胞,通过重构T7启动子启动下游报告基因sfgfp的表达,将筛选后测序正确重组子分别命名为XYG1、XYG2、XYG3、XYG4、XYG5……;
5)、多个小片段DNA组装成大片段基因
要合成大于300bp以上的DNA片段,需要用步骤4的XYG1、XYG2、XYG3、XYG4、XYG5……质粒作为供体质粒,再另加切好的受体载体质粒puc-Kana做金门克隆反应,这样就合成了与目标基因相同的合成基因。
CN201310753413.2A 2013-12-31 2013-12-31 一种在大肠杆菌中一步法合成dna片段并组装合成基因的方法 Active CN103725674B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310753413.2A CN103725674B (zh) 2013-12-31 2013-12-31 一种在大肠杆菌中一步法合成dna片段并组装合成基因的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310753413.2A CN103725674B (zh) 2013-12-31 2013-12-31 一种在大肠杆菌中一步法合成dna片段并组装合成基因的方法

Publications (2)

Publication Number Publication Date
CN103725674A true CN103725674A (zh) 2014-04-16
CN103725674B CN103725674B (zh) 2016-06-08

Family

ID=50449967

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310753413.2A Active CN103725674B (zh) 2013-12-31 2013-12-31 一种在大肠杆菌中一步法合成dna片段并组装合成基因的方法

Country Status (1)

Country Link
CN (1) CN103725674B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015176339A1 (zh) * 2014-05-19 2015-11-26 武汉金开瑞生物工程有限公司 一种基于库的无引物的基因合成方法
CN105200035A (zh) * 2014-06-17 2015-12-30 中国科学院上海生命科学研究院 高gc含量大片段dna的体外组装方法及应用
CN105907749A (zh) * 2016-05-24 2016-08-31 东北林业大学 基于重叠延伸pcr法的基因突变、缺失、插入和重组片段的获取方法
CN106282157A (zh) * 2015-05-22 2017-01-04 南京金斯瑞生物科技有限公司 一种由短链核苷酸介导的dna组装方法及其应用
CN107190001A (zh) * 2017-04-17 2017-09-22 武汉金开瑞生物工程有限公司 一种基因合成方法
CN107287228A (zh) * 2016-04-11 2017-10-24 南京金斯瑞生物科技有限公司 构建基因组编辑正负筛选标记模板的方法及其应用
CN108251444A (zh) * 2018-03-22 2018-07-06 柳素玲 基于pcr的无缝构建小rna表达载体的方法
CN108531471A (zh) * 2017-03-01 2018-09-14 南京金斯瑞生物科技有限公司 一种长基因合成方法
CN112481285A (zh) * 2020-11-03 2021-03-12 武汉金开瑞生物工程有限公司 一种目的基因片段的合成方法
CN117778377A (zh) * 2023-12-14 2024-03-29 湖北大学 基于新型可编程核酸酶Argonaute的大片段DNA高效合成与组装方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CAROLA ET AL: "Combinatorial DNA Assembly Using Golden Gate Cloning", 《SYNTHETIC BIOLOGY》, 9 August 2013 (2013-08-09) *
WEBER ET AL: "Assembly of Designer TAL Effectors by Golden Gate Cloning", 《PLOS ONE》, 31 December 2011 (2011-12-31), pages 1 - 5 *
谈蓉等: "一种新的产生天然蛋白的不依赖于连接的克隆载体", 《湖北大学学报( 自然科学版)》, 31 December 2009 (2009-12-31) *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015176339A1 (zh) * 2014-05-19 2015-11-26 武汉金开瑞生物工程有限公司 一种基于库的无引物的基因合成方法
CN105200035B (zh) * 2014-06-17 2019-02-22 中国科学院上海生命科学研究院 高gc含量大片段dna的体外组装方法及应用
CN105200035A (zh) * 2014-06-17 2015-12-30 中国科学院上海生命科学研究院 高gc含量大片段dna的体外组装方法及应用
CN106282157B (zh) * 2015-05-22 2019-11-12 南京金斯瑞生物科技有限公司 一种由短链核苷酸介导的dna组装方法及其应用
CN106282157A (zh) * 2015-05-22 2017-01-04 南京金斯瑞生物科技有限公司 一种由短链核苷酸介导的dna组装方法及其应用
CN107287228A (zh) * 2016-04-11 2017-10-24 南京金斯瑞生物科技有限公司 构建基因组编辑正负筛选标记模板的方法及其应用
CN105907749A (zh) * 2016-05-24 2016-08-31 东北林业大学 基于重叠延伸pcr法的基因突变、缺失、插入和重组片段的获取方法
CN108531471A (zh) * 2017-03-01 2018-09-14 南京金斯瑞生物科技有限公司 一种长基因合成方法
CN108531471B (zh) * 2017-03-01 2020-08-07 南京金斯瑞生物科技有限公司 一种长基因合成方法
CN107190001A (zh) * 2017-04-17 2017-09-22 武汉金开瑞生物工程有限公司 一种基因合成方法
CN108251444A (zh) * 2018-03-22 2018-07-06 柳素玲 基于pcr的无缝构建小rna表达载体的方法
CN112481285A (zh) * 2020-11-03 2021-03-12 武汉金开瑞生物工程有限公司 一种目的基因片段的合成方法
CN117778377A (zh) * 2023-12-14 2024-03-29 湖北大学 基于新型可编程核酸酶Argonaute的大片段DNA高效合成与组装方法

Also Published As

Publication number Publication date
CN103725674B (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
CN103725674A (zh) 一种在大肠杆菌中一步法合成dna片段并组装合成基因的方法
Lu et al. Precise genome modification in tomato using an improved prime editing system
CN110358767B (zh) 一种基于CRISPR-Cas12a系统的运动发酵单胞菌基因组编辑方法及其应用
CN102864158B (zh) 用于基因定点修饰的tale重复片段的高效合成方法
Kadkhodaei et al. Multiple overlap extension PCR (MOE-PCR): an effective technical shortcut to high throughput synthetic biology
CN101368188B (zh) 一种快速高效的植物人工微rna表达载体构建方法
CN104593354A (zh) 一种基于体外组合组装快速定向进化dna的方法
CN108138189A (zh) 一种dna片段体外组装方法和试剂盒
CN108424907B (zh) 一种高通量dna多位点精确碱基突变方法
CN103160495A (zh) 一种非连接依赖性的快速克隆方法
CN104911199B (zh) Dna分子克隆方法
CN105087517B (zh) 一种重组酶复合物及体外同源重组无缝克隆的方法
CN105969784A (zh) 一种不依赖重组酶的dna无缝克隆方法
CN104109683A (zh) 一种无引物的基因合成方法
CN103952396B (zh) 一种基于质粒库的无引物基因合成方法
CN106906233A (zh) 一种基于CcdB致死基因和SmaI酶切位点的酶切连接共体系同时进行的方法
CN107974448B (zh) 一种序列复杂基因的合成方法
Aprilyanto et al. Development of CRISPR/Cas9 plasmid for multiple sites genome editing in oil palm (Elaeis guineensis Jacq.)
CN104560972A (zh) 一种pcr引物及其修饰方法及基于平行高通量单分子高保真扩增方法
CN107287228A (zh) 构建基因组编辑正负筛选标记模板的方法及其应用
CN105802954A (zh) 一种基于耐热dna聚合酶和连接酶的体外快速无缝组装dna的方法
CN103695452B (zh) 一种多模块dna文库及转录激活子样效应因子核酸酶质粒的构建方法
WO2021017200A1 (zh) 一种基于运动发酵单胞菌的CRISPR-Cas系统、基因组编辑体系及其应用
CN106047912B (zh) 一种新的基因克隆方法
CN101880661A (zh) 基于PCR扩增的200bpDNAladder模板p222及其制备体系

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20171222

Address after: 430000, building, B, C and D District, Wuhan high tech Avenue, East Lake Development Zone, Hubei, Wuhan, B1

Patentee after: WUHAN GENECREATE BIO-ENGINEERING CO., LTD.

Address before: 430062 Wuhan, Hubei Friendship Road, No. 368, Wuchang

Patentee before: Hubei University