CN103715325B - 单根ZnO微米线同质结发光二极管的制备方法 - Google Patents

单根ZnO微米线同质结发光二极管的制备方法 Download PDF

Info

Publication number
CN103715325B
CN103715325B CN201310730886.0A CN201310730886A CN103715325B CN 103715325 B CN103715325 B CN 103715325B CN 201310730886 A CN201310730886 A CN 201310730886A CN 103715325 B CN103715325 B CN 103715325B
Authority
CN
China
Prior art keywords
micro wire
zno
powder
purity
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310730886.0A
Other languages
English (en)
Other versions
CN103715325A (zh
Inventor
冯秋菊
唐凯
吕佳音
刘洋
李梦轲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Xinhe Environmental Technology Co., Ltd
Original Assignee
Liaoning Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning Normal University filed Critical Liaoning Normal University
Priority to CN201310730886.0A priority Critical patent/CN103715325B/zh
Publication of CN103715325A publication Critical patent/CN103715325A/zh
Application granted granted Critical
Publication of CN103715325B publication Critical patent/CN103715325B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0083Processes for devices with an active region comprising only II-VI compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/28Materials of the light emitting region containing only elements of Group II and Group VI of the Periodic Table

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

本发明公开一种单根ZnO微米线同质结发光二极管的制备方法,是采用简单的CVD方法通过控制生长时间等参数,首先在衬底上生长一层高取向的未掺杂n型ZnO微米线,然后在其上继续生长一层Sb掺杂的p型ZnO微米线,从而制备出ZnO微米线的同质结,再从样品衬底底部剥离出单根的微米线,在其两端做好电极,所得微米线直径为10~100μm,长度为1~20mm。不但制备过程简单、成本低,通过对该器件测试表明该器件具有良好的整流特性和极强的发光性能。

Description

单根ZnO微米线同质结发光二极管的制备方法
技术领域
本发明属于半导体器件领域,具体涉及一种用化学气相沉积(CVD)设备制备单根ZnO微米线同质结发光二极管的方法。
背景技术
ZnO是一种直接带隙宽禁带半导体材料,室温下禁带宽度为3.37eV,激子束缚能高达60meV,在光电、催化、传感以及生化等不同领域都有着广阔的应用前景。而纳/微米结构的ZnO具有比薄膜和体单晶更加优越的性能,如高的结晶质量和量子限域效应等,可以用于纳/微米紫外激光器、发光二极管、场发射晶体管等光电器件的制备,成为纳/微米半导体材料研究领域的新热点。ZnO的微米结构和纳米结构相比,由于其尺寸较大可以在肉眼或光学显微镜下进行操作,所以其相关器件的制作就更方便和容易,此外,单根微米线制成的发光器件在发光性能发面也要优于单根纳米线的发光器件。为了实现纳/微米结构的ZnO同质结光电器件的应用,n型和p型ZnO纳/微米材料的制备是必需的,由于ZnO是本征n型半导体材料,很容易获得n型ZnO,但是p型ZnO却很难制备。经过人们的大量努力,目前p型ZnO纳/微米材料的研究已经取得了一些进展。简单化学气相沉积(CVD)方法因不采用金属有机源,具有设备简单、价格低廉、生产成本低等一些优势,已广泛用于低维材料的制备。目前已有采用CVD方法制备p型ZnO纳米线和微米线以及纳米线的同质结发光二极管,但是由于受制备方法等因素的影响,迄今为止还没有单根ZnO微米线同质结发光二极管的相关报道。
发明内容
本发明是为了解决现有技术中所存在的上述技术问题,提供一种用化学气相沉积(CVD)设备制备单根ZnO微米线同质结发光二极管的方法。
本发明的技术解决方案是: 一种单根ZnO微米线同质结发光二极管的制备方法,其特征在于依次按如下步骤进行:
a.将纯度大于99%的ZnO粉末和C粉按照质量比1~10:1充分混合制成反应源材料,将反应源材料放入石英舟内,然后再将石英舟放入化学气相沉积系统石英管的中心处,衬底位于反应源材料下方1~30cm处;
b. 通入载气氩气,氩气流量为10~500ml/min,当温度加热至950~1100℃时,通入氧气,氧气流量为1~100ml/min,开始n型ZnO微米线的生长,生长时间为15~30分钟;
c. 关闭氧气、保持氩气流量,降温至400~700℃拔掉进气口处的石英帽,把石英舟取出;
d. 将纯度大于99%的ZnO粉末和C粉及纯度大于99.9%的Sb2O3粉末按照质量比20:3:1~10充分混合制成反应源材料,再将反应源材料放入另一石英舟内,然后再将此石英舟放入化学气相沉积系统石英管的中心处;
e. 当温度加热至950~1100℃时,通入氧气,氧气流量为1~100ml/min,开始p型ZnO微米线的生长,生长时间为20~40分钟;
f. 关闭氧气,保持氩气流量,降温至室温,取出样品;
g. 从样品衬底底部剥离出单根微米线,分别在单根微米线的两端制作电极,从而制成单根ZnO微米线同质结发光二极管。
所述生长温度均为1000℃;所述d步骤的纯度大于99%的ZnO粉末和C粉及纯度大于99.9%的Sb2O3粉末的质量比为20:3:5。
本发明是采用简单的CVD方法通过控制生长时间等参数,首先在衬底上生长一层高取向的未掺杂n型ZnO微米线,然后在其上继续生长一层Sb掺杂的p型ZnO微米线,从而制备出ZnO微米线的同质结,再从样品衬底底部剥离出单根的微米线,在其两端做好电极,所得微米线直径为10~100μm,长度为1~20mm。不但制备过程简单、成本低,通过对该器件测试表明该器件具有良好的整流特性和极强的发光性能。
附图说明
图1是本发明实施例1所得ZnO微米线同质p-n结的场发射扫描电子显微镜照片(FE-SEM)。
图2是本发明实施例1所得单根ZnO微米线同质结发光二极管的I-V曲线图。
图3是本发明实施例2所得ZnO微米线同质p-n结的场发射扫描电子显微镜照片(FE-SEM)。
图4是本发明实施例3所得ZnO微米线同质p-n结的场发射扫描电子显微镜照片(FE-SEM)。
图5是本发明实施例4所得单根ZnO微米线同质结发光二极管的电致发光照片。
具体实施方式
实施例1:
a.将纯度大于99%的ZnO粉末和C粉按照质量比2:1充分混合制成反应源材料,将反应源材料放入石英舟内,然后再将石英舟放入化学气相沉积系统生长室内的高温加热区,硅衬底位于反应源材料下方20cm处;
衬底可以采用氧化锌、氮化镓、蓝宝石、碳化硅、硅、砷化镓、磷化铟、氟化钙、石英、玻璃以及金属,也可以直接以化学气相沉积系统的石英管内壁为衬底;
b. 通入高纯度氩气为载气,氩气流量为50ml/min,当温度加热至1000℃时,通入氧气,氧气流量为25ml/min,开始n型ZnO微米线的生长,生长时间为15分钟;
c. 关闭氧气、保持氩气流量,降温至500℃拔掉进气口处的石英管帽,把反应完的装有ZnO粉末和C粉的石英舟取出;
d. 将纯度大于99%的ZnO粉末和C粉及纯度大于99.9%的Sb2O3粉末按照质量比20:3:3充分混合制成反应源材料,再将反应源材料放入另一石英舟内,然后再将此石英舟放入化学气相沉积系统生长室内的高温加热区;
e. 当温度加热至1000℃时,通入氧气,氧气流量为25ml/min,开始p型ZnO微米线的生长,生长时间为20分钟;
f. 关闭氧气,保持氩气流量,降温至室温,取出样品;
g. 用细牙签仔细从样品衬底底部剥离出单根微米线,放在干净的玻璃载玻片上,在微米线的两端分别点上导电银胶制成电极,从而制成单根ZnO微米线同质结发光二极管。
本发明实施例1在衬底上有大量的微米线生长出来,而且取向性非常好,都垂直于衬底表面。生长出的微米线直径大约为30μm,长度约为20mm,其扫描电镜照片如图1所示。此外,制成的单根ZnO微米线同质结发光二极管呈现出较好的整流特性,I-V曲线如图2所示。
实施例2:
方法与实施例1基本相同,与实施例1所不同的是两次生长温度均为950℃。所得样品的扫描电镜照片如图3所示。从图3中可以看出样品表面有一些微米线的生成,但是微米线的长度相对较短(5mm),取向性不及实施例1。
实施例3:
方法与实施例1基本相同,与实施例1所不同的是两次生长温度均为1100℃。所得样品的扫描电镜照片如图4所示。从图4中可以看出样品表面有大量的微米线的生成,但是微米线的长度相对较短(10mm),取向性亦不及实施例1。
实施例4:
方法与实施例1基本相同,与实施例1所不同的是d步骤的纯度大于99%的ZnO粉末和C粉及纯度大于99.9%的Sb2O3粉末的质量比为20:3:5,分别为20克3克和5克。所得制品的发光二极管的电致发光强度高,如图3所示。
对比实验表明:随着Sb含量的增加,微米线的长度开始变短,而且其直径和长度也开始变得不均匀,Sb含量是随着Sb2O3粉量的增加而有所增加。分别将实施例1、2、3、4实现了室温下的电致发光,其发光强度很强在亮室中就可以用肉眼清楚的观察到,在相同外加电压下,实施例4的电致发光发光强度要高于实施例1、2、3。

Claims (2)

1.一种单根ZnO微米线同质结发光二极管的制备方法,其特征在于依次按如下步骤进行:
a.将纯度大于99%的ZnO粉末和C粉按照质量比1~10:1充分混合制成反应源材料,将反应源材料放入石英舟内,然后再将石英舟放入化学气相沉积系统石英管的中心处,衬底位于反应源材料下方1~30cm处;
b. 通入载气氩气,氩气流量为10~500ml/min,当温度加热至950~1100℃时,通入氧气,氧气流量为1~100ml/min,开始n型ZnO微米线的生长,生长时间为15~30分钟;
c. 关闭氧气、保持氩气流量,降温至400~700℃拔掉进气口处的石英帽,把石英舟取出;
d. 将纯度大于99%的ZnO粉末和C粉及纯度大于99.9%的Sb2O3粉末按照质量比20:3:1~10充分混合制成反应源材料,再将反应源材料放入另一石英舟内,然后再将此石英舟放入化学气相沉积系统石英管的中心处;
e. 当温度加热至950~1100℃时,通入氧气,氧气流量为1~100ml/min,开始p型ZnO微米线的生长,生长时间为20~40分钟;
f. 关闭氧气,保持氩气流量,降温至室温,取出样品;
g. 从样品衬底底部剥离出单根微米线,分别在单根微米线的两端制作电极,从而制成单根ZnO微米线同质结发光二极管。
2.根据权利要求1所述的单根ZnO微米线同质结发光二极管的制备方法,其特征在于:所述生长温度为1000℃;所述d步骤的纯度大于99%的ZnO粉末和C粉及纯度大于99.9%的Sb2O3粉末的质量比为20:3:5。
CN201310730886.0A 2013-12-26 2013-12-26 单根ZnO微米线同质结发光二极管的制备方法 Expired - Fee Related CN103715325B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310730886.0A CN103715325B (zh) 2013-12-26 2013-12-26 单根ZnO微米线同质结发光二极管的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310730886.0A CN103715325B (zh) 2013-12-26 2013-12-26 单根ZnO微米线同质结发光二极管的制备方法

Publications (2)

Publication Number Publication Date
CN103715325A CN103715325A (zh) 2014-04-09
CN103715325B true CN103715325B (zh) 2016-09-14

Family

ID=50408127

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310730886.0A Expired - Fee Related CN103715325B (zh) 2013-12-26 2013-12-26 单根ZnO微米线同质结发光二极管的制备方法

Country Status (1)

Country Link
CN (1) CN103715325B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104810434A (zh) * 2015-02-10 2015-07-29 华中科技大学 一种白光发光二极管及其制备方法
CN108088875A (zh) * 2017-12-22 2018-05-29 辽宁师范大学 基于单根ZnO微米线的非平衡电桥式乙醇气体传感器
CN112909109B (zh) * 2021-02-10 2022-11-29 北京工业大学 一种基于横向桥接pn结的自供电纳米紫外探测器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1691362A (zh) * 2004-04-07 2005-11-02 三星电子株式会社 纳米丝发光器件及其制造方法
CN1949554A (zh) * 2006-11-02 2007-04-18 浙江大学 一种ZnO基纳米线发光二极管及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040252737A1 (en) * 2003-06-16 2004-12-16 Gyu Chul Yi Zinc oxide based nanorod with quantum well or coaxial quantum structure
KR101186246B1 (ko) * 2010-12-03 2012-09-27 한국화학연구원 나노 와이어, 이를 이용한 발광 다이오드, 및 이의 제조 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1691362A (zh) * 2004-04-07 2005-11-02 三星电子株式会社 纳米丝发光器件及其制造方法
CN1949554A (zh) * 2006-11-02 2007-04-18 浙江大学 一种ZnO基纳米线发光二极管及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《CVD法制备p-ZnO薄膜/n-Si异质结发光二极管及其性能研究》;冯秋菊等;《物理学报》;20130331;第62卷(第5期);第1-5页 *
《纳/微米半导体氧化物(氧化锌和三氧化二镓)的制备及其特性分析》;曹璐;《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》;20111215(第S1期);第B020-115-1~B020-115-37页 *

Also Published As

Publication number Publication date
CN103715325A (zh) 2014-04-09

Similar Documents

Publication Publication Date Title
Sadaf et al. Alternating-current InGaN/GaN tunnel junction nanowire white-light emitting diodes
Dai et al. Flexible light-emitting diodes based on vertical nitride nanowires
US8426224B2 (en) Nanowire array-based light emitting diodes and lasers
Hsieh et al. Electroluminescence from ZnO/Si-nanotips light-emitting diodes
KR101416663B1 (ko) 산화아연 나노로드를 이용한 레이저 다이오드 및 그 제조 방법
Hung et al. Low-temperature solution approach toward highly aligned ZnO nanotip arrays
Sun et al. Recent Advances on III‐Nitride nanowire light emitters on foreign substrates–toward flexible photonics
Klason et al. Fabrication and characterization of p-Si/n-ZnO heterostructured junctions
US20070158661A1 (en) ZnO nanostructure-based light emitting device
CN106981549B (zh) 生长在硅衬底上的氮化镓纳米柱led外延片及其制备方法
WO2018107713A1 (zh) 生长在Si衬底上的InN纳米柱外延片及其制备方法
CN103715325B (zh) 单根ZnO微米线同质结发光二极管的制备方法
Zhang et al. Wavelength-tunable infrared light emitting diode based on ordered ZnO nanowire/Si 1–x Ge x alloy heterojunction
KR20100088273A (ko) pn 구조를 지닌 Zn 산화물 나노 와이어 및 그 제조 방법
Vignesh et al. III-nitride nanowires for emissive display technology
KR100974626B1 (ko) 접촉 구조의 나노로드 반도체 소자 및 그 제조 방법
Karegar et al. Light-emitting n-ZnO nanotube/n+-GaAs heterostructures processed at low temperatures
JP2012033936A (ja) Ii−iii−v化合物半導体
Zhang et al. Hybrid photodetector based on ZnO nanofiber polymers with high spectrum selectivity
Lin et al. Fabrication of the selective-growth ZnO nanorods with a hole-array pattern on a p-type GaN: Mg layer through a chemical bath deposition process
Pandey et al. Pd/ZnO Schottky ultraviolet photodiode fabricated on ITO using rGO seed layer
Yan et al. Synthesis of a high-quality Al-doped CdS/Si nanoheterojunction array and characterization of its electrical and electroluminescence properties
CN208848921U (zh) 生长在硅/石墨烯复合衬底上的GaN基纳米柱LED外延片
Lee et al. Investigation of single n-ZnO/i-ZnO/p-GaN-heterostructed nanorod ultraviolet photodetectors
Chang et al. Use of the Thermal Chemical Vapor Deposition to Fabricate Light‐Emitting Diodes Based on ZnO Nanowire/p‐GaN Heterojunction

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20180105

Address after: 430074, 3, 22, 09, 41, No. 1, modern and international design city, Optics Valley Avenue, East Lake New Technology Development Zone, Hubei, Wuhan

Patentee after: Wuhan Mai Liao Network Technology Co., Ltd.

Address before: 116029 the Yellow River Road, Shahekou District, Liaoning, No. 850, No.

Patentee before: Liaoning Normal University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20191114

Address after: 214500 No.8 JinDou Road, Jingjiang City, Taizhou City, Jiangsu Province

Patentee after: Jiangsu Xinhe Environmental Technology Co., Ltd

Address before: 430074 No. 41 Guanggu Avenue, Donghu New Technology Development Zone, Wuhan City, Hubei Province. Room 09, 22 floors, 3 buildings in phase I of International Design City

Patentee before: Wuhan Mai Liao Network Technology Co., Ltd.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160914

Termination date: 20191226

CF01 Termination of patent right due to non-payment of annual fee