CN112909109B - 一种基于横向桥接pn结的自供电纳米紫外探测器 - Google Patents

一种基于横向桥接pn结的自供电纳米紫外探测器 Download PDF

Info

Publication number
CN112909109B
CN112909109B CN202110186953.1A CN202110186953A CN112909109B CN 112909109 B CN112909109 B CN 112909109B CN 202110186953 A CN202110186953 A CN 202110186953A CN 112909109 B CN112909109 B CN 112909109B
Authority
CN
China
Prior art keywords
nanowire
zno
seed layer
electrode
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110186953.1A
Other languages
English (en)
Other versions
CN112909109A (zh
Inventor
高志远
靳晓频
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202110186953.1A priority Critical patent/CN112909109B/zh
Publication of CN112909109A publication Critical patent/CN112909109A/zh
Application granted granted Critical
Publication of CN112909109B publication Critical patent/CN112909109B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • H01L31/1032Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type the devices comprising active layers formed only by AIIBVI compounds, e.g. HgCdTe IR photodiodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

一种基于横向桥接pn结的自供电纳米紫外探测器,涉及紫外探测技术领域。本发明通过在两个对称的ZnO种子层相对的侧壁上一个生长n型ZnO纳米线,一个生长p型ZnO纳米线形成横向桥接来制备自供电紫外探测器以避免纳米线转移的复杂过程和不需要考虑单根纳米线中如何控制一种导电类型的纳米线在另一种导电类型的纳米线上继续生长的问题;并增大了器件的感光面积,优化了紫外探测器的响应性能。

Description

一种基于横向桥接pn结的自供电纳米紫外探测器
技术领域
本发明涉及紫外探测技术领域,具体涉及一种基于横向桥接pn结的自供电纳米紫外探测器。
背景技术
近年来紫外探测技术应用的范围越来越广泛,人们对紫外探测器的需求越来越多,同时对紫外探测器的性能要求日趋严格,这在很大程度上推进了紫外探测器的发展。然而传统的紫外探测器一般需要外接电源才能工作,外接电源的使用会浪费能源。因此,自供电的紫外探测器受到了广泛的关注。
自供电紫外探测器即光伏型紫外探测器,通过器件中的内建电场使光生载流子分离,不需外界提供能量。光伏型紫外探测器包括pn结型、p-i-n结型、肖特基型和金属-半导体-金属型(MSM)。目前,研究比较广泛的探测器结构为pn结型,即n型半导体和p型半导体相接触,由于两边载流子浓度不同,载流子会发生扩散,在接触界面附近形成无法移动的电离施主和电离受主,形成空间电荷区产生内建电场。当能量大于材料带隙的光子入射时,器件内部产生光生载流子,在内建电场的作用下,形成光电流。
基于ZnO纳米结构的pn结,有异质pn结和同质pn结。由于异质pn结的更易于实现,所以对异质pn结的研究也更加广泛,主要有:
(1)ZnO纳米结构与有机-无机杂化钙钛矿材料如CH3NH3PbI3、MAPbI3等构成异质p-n结紫外探测器。由于钙钛矿材料有较高的吸收系数和外量子效率以及其带隙可以变化、载流子有较长的扩散长度和寿命等优良的性能被认为是制备异质pn结中充当p型电导率的一种很有潜力的材料,但是该种材料化学性质不稳定,遇水容易发生分解,因而在制备紫外探测器时多为多层结构,以保证器件的稳定性,这会使制造工艺复杂化。现今用溶液法制备出来的钙钛矿薄膜多为多晶薄膜,在成膜过程中引入缺陷会造成载流子散射,使载流子迁移率降低,从而降低紫外探测器的光学性能。
(2)通过向ZnO纳米结构上沉积Ag2S或ZnS等制备核壳纳米异质结,并以该结构作为光电极制备自供电紫外探测器。由于核壳纳米异质结构相接触时形成的能带排列有利于光生载流子分离,提高电荷分离的速度以提高紫外探测器的响应速度和对光敏性。但是当超过截止响应波长的时候,仍会有微弱的光响应,归因于Ag2S和ZnS纳米颗粒中缺陷的轻微光吸收引起的,从而影响紫外探测器探测的性能。且该结构制备的紫外探测器常以液体作为电解液,也会对保持器件性能的稳定提出挑战。
(3)ZnO纳米结构通过与呈现p型电导率的NiO、Si、Cu2O等薄膜构成异质pn结。制备此种结构的紫外探测器工艺简单,制作出的p型电导率的薄膜为单晶,缺陷少,从而比较容易制备高性能的紫外探测器。
但是ZnO和这些异质材料之间存在那怕微小的晶格失配也会影响到器件的性能,晶格失配而造成的位错会降低紫外探测器的量子效率。为了实现ZnO纳米结构紫外探测器得到广泛的应用,就必须制备出性能优良的同质pn结。制备同质pn结可以通过:
(1)在单根纳米线上一侧制备n型纳米线一侧制备p型纳米线来实现同质pn结。此种制备方法受生长条件的影响,无论是在单根纳米线上生长n型纳米线后沿着n型纳米线再继续生长p型纳米线,还是在单根纳米线上生长p型纳米线后沿着p型纳米线再继续生长n型纳米线都比较困难。例如为了控制p型ZnO纳米线更好的沿着n型ZnO纳米线连续生长,获得高质量均匀的纳米线,人们利用在化学气相沉积中引入外加电场来实现,或在热丝辅助下,采用气相沉积法来实现。但无论使用哪种制备方法,由于在制备过程中温度过高,都无法实现在柔性衬底上直接制备纳米线。且制备出来的ZnO纳米线为垂直结构,基于垂直结构的紫外探测器结构感光面积小,紫外光不容易直接照射在pn结上,使光生载流子不能快速被分离,从而影响紫外探测器的响应性能;
(2)为了制备感光面积大、光电转化效率高和稳定性好的基于横向ZnO纳米线结构的紫外探测器,通过纳米组装方法即利用显微镜并配有纳米操作系统人为进行纳米线转移,从而制备一根n型纳米线与一根p型纳米线相互接触的基于横向ZnO纳米线结构的紫外探测器。此种人工转移方法效率较低,不适用于制备纳米线阵列。通过接触印刷的方法可以实现多根纳米线的转移,但是若利用此种方法将制备好的n型纳米线和p型纳米线转移至两电极之间,但由于纳米线杂乱的分布在两电极之间,无法形成良好的pn结接触,则可能无法制备出性能优良的自供电紫外探测器。
综上可知,基于垂直结构的紫外探测器感光面积小,响应速度慢;人工转移纳米线制备紫外探测器不易制备纳米线阵列。要想制备优良性能的自供电紫外探测器,紫外探测器制备成基于横向ZnO纳米线结构的,且制备的n型ZnO纳米线和p型ZnO纳米线自然桥接是一种可行的选择。如何分别制备出n型ZnO纳米线和p型ZnO纳米线,并将生长出的两种导电类型的ZnO纳米线直接进行横向桥接,是现在研究的难点。
本发明通过水热法在两个对称种子层的相对的侧壁上一个生长n型ZnO纳米线,一个生长p型ZnO纳米线通过横向桥接构成pn结。其优点为:
(1)由于两个导电类型的纳米线生长后直接进行桥接避免了纳米线转移的复杂过程,不需要考虑单根纳米线中如何控制一种导电类型的纳米线在另一种导电类型的纳米线上继续生长的问题;
(2)本发明制备的紫外探测器基于ZnO纳米线横向桥接,增大了感光面积,紫外光容易照射到pn结处,提高了器件的响应速度,从而优化了紫外探测器的响应性能。
发明内容
根据上述所述问题,本发明目的是提出一种基于横向桥接pn结的自供电纳米紫外探测器,以增大器件的感光面积,优化紫外探测器的响应性能。
本发明的结构如以下描述:
一种基于横向桥接pn结的自供电纳米紫外探测器中pn结是由n型纳米线和p型纳米线横向桥接构成;
可选的,所述的自供电紫外探测器包括柔性衬底、种子层、复合电极、n型ZnO纳米线和p型ZnO纳米线;
所述的自供电紫外探测器,在柔性衬底上有两行沿长度方向平行且相对的种子层,种子层相对的两侧面之间有空隙且平行,种子层相对的侧面均齐平;所述复合电极包括Ti电极和Au电极;所述Ti电极在种子层之上,Au电极在Ti电极之上;
所述一行种子层相对的侧面生长n型ZnO纳米线、另一行种子层相对的侧面生长p型ZnO纳米线,所述生长在种子层相对的侧壁上的n型ZnO纳米线和p型ZnO纳米线横向(垂直于种子层的长度方向)桥接构成自供电紫外探测器的同质pn结;
可选的,所述的两行种子层相对面之间的距离为3μm~12μm;每一行种子层厚度均为50nm~600nm;
可选的,所述Au电极的厚度为10nm~30nm;
所述Ti电极的厚度为40nm~300nm;
所述n型ZnO纳米线的直径为50nm~800nm;n型ZnO纳米线的长度为3μm~5μm;
所述p型ZnO纳米线的直径为50nm~800nm;p型ZnO纳米线的长度为3μm~5μm;
本发明的基于横向桥接pn结的自供电纳米紫外探测器具有两种制备方法。
其中一种基于横向桥接pn结的自供电纳米紫外探测器的制备方法,其特征在于,包括以下步骤:
步骤1:准备长方形柔性衬底,将所述衬底清洗并烘干;
步骤2:通过光刻旋涂的光刻胶将所述衬底图案化;
步骤3:在已经图像图案化后的衬底上制备种子层;
步骤4:通过磁控溅射在所述种子层上制备复合电极即制备Ti电极和Au电极;
步骤5:采用剥离工艺,将步骤2光刻过程中旋涂的光刻胶剥离;
步骤6:将样品复合电极朝下倒置浮于已经制备好的前体溶液中,利用水热法生长ZnO纳米线;
所述的步骤2衬底图案化中的图案是两个对称的图形,采用光刻胶制备出对称的图形;
所述的步骤3是在步骤2光刻胶之间的空隙位置制备两行平行对称的种子层;其中一行种子层为ZnO种子层,另一行种子层为醋酸锌种子层;
所述的醋酸锌种子层是通过将醋酸锌溶于乙醇中滴在光刻胶空隙处的衬底上;所述溶液放置重复2~6次,以确保醋酸锌溶液全部覆盖衬底;
所述的ZnO种子层是通过磁控溅射所制备;
所述步骤6中的前体溶液是等摩尔比例的六水合硝酸锌(Zn(NO3)2·6H2O)和六次甲基四胺(HMTA),制成硝酸锌浓度为0.9mol/L~1.2mol/L的混合溶液;
所述的利用水热法生长ZnO纳米线是在温度为70℃~100℃下生长5h~24h;
其中ZnO种子层利用水热法生长出来的ZnO纳米线为n型ZnO纳米线;醋酸锌种子层利用水热法生长出来的ZnO纳米线为p型ZnO纳米线。
另一种基于横向桥接pn结的自供电纳米紫外探测器的制备方法,其特征在于,包括以下步骤:
步骤1:准备长方形柔性衬底,将所述衬底清洗并烘干;
步骤2:通过光刻旋涂的光刻胶将所述衬底图案化;所述的图案是对称的图形;
步骤3:通过磁控溅射在光刻胶之间的空隙处的衬底上制备ZnO种子层;制备两行平行相对的种子层;
步骤4:通过磁控溅射在两行ZnO种子层上均分别制备复合电极,即制备Ti电极和Au电极;
步骤5:采用剥离工艺,将步骤2光刻过程中旋涂的光刻胶剥离;
步骤6:利用SiC覆盖其中一行种子层,将样品倒置放在前体溶液1中,利用水热法在另一行种子层侧面生长ZnO纳米线;
步骤7:利用剥离工艺将步骤6所述的SiC剥离;
步骤8:利用SiC将步骤6已经长有ZnO纳米线的种子层覆盖,但是露出已生长的ZnO纳米线的端部,使得能够下一步桥接;
步骤9:将步骤8所述样品倒置放置在前提溶液2中,利用水热法在没有ZnO纳米线的种子层侧面生长ZnO纳米线,并与步骤8的纳米线端部桥接;
步骤10:将步骤8所述SiC剥离,得到基于横向桥接pn结的自供电纳米紫外探测器;
所述前体溶液1为0.1mol六水合硝酸锌(Zn(NO3)2·6H2O)、0.1mol六次甲基四胺(HMTA)、0.004mol次磷酸铵(NH4H2PO4)溶于水,形成的前体溶液;
所述前体溶液2为等摩尔比例的六水合硝酸锌(Zn(NO3)2·6H2O)和六次甲基四胺(HMTA),制成硝酸锌浓度为0.9mol/L~1.2mol/L的混合溶液。
进一步步骤6中所述的利用水热法生长ZnO纳米线是在温度为70℃~100℃下生长5h~24h;
进一步步骤9中所述的利用水热法生长ZnO纳米线是在温度为70℃~100℃下生长5h~24h;
步骤6中所述生长出的ZnO纳米线为p型ZnO纳米线;
步骤8中所述生长出的ZnO纳米线为n型ZnO纳米线。
基于横向桥接pn结的自供电紫外探测器结构,是由衬底、种子层、复合电极、n型纳米线和p型纳米线构成。种子层在衬底上方,电极在种子层的上方,在两个对称的ZnO种子层相对的侧壁生长纳米线,其中一个生长n型,一边生长p型纳米线,n型纳米线和p型纳米线横向桥接构成自供电紫外探测器。n型纳米线和p型纳米线相桥接后,由于两边载流子浓度不同,电子和空穴发生扩散,从而在接触界面附近形成无法移动的电离施主和电离受主,形成空间电荷区,产生p-n结内建电场。能量大于半导体带隙的入射光子激发半导体内部大量的光生载流子,在p-n结内建电场的驱动下快速分离,形成光电流,实现自供电特性。
本发明通过在两个对称的ZnO种子层相对的侧壁一个生长n型ZnO纳米线,一个生长p型ZnO纳米线横向桥接来构成自供电探测器的pn结。与先有技术相比优点在于:
(1)由于两个导电类型的纳米线生长后直接进行桥接避免了纳米线转移的复杂过程,不需要考虑单根纳米线中如何控制一种导电类型的纳米线在另一种导电类型的纳米线上继续生长的问题。
(2)本发明制备的紫外探测器基于ZnO纳米线横向桥接,增大了感光面积,紫外光容易照射到pn结处,提高了器件的响应速度,从而优化了紫外探测器的响应性能。
附图说明
图1为本发明紫外探测器横向桥接pn处结构图;
图2为本发明紫外探测器横向桥接pn处俯视图;
图3为本发明实施例1紫外探测器结构的截面图;
图4中(a)~(g)为本发明实施例1制备紫外探测器的步骤图;
图5为本发明实施例2紫外探测器结构的截面图;
图6中(a)~(i)为本发明实施例2制备紫外探测器的步骤图;
图7为本发明紫外探测器原理图;
其中,1、衬底;2、种子层;3、复合电极;4、n型ZnO纳米线;5、p型ZnO纳米线;6、光刻胶;7、醋酸锌种子层;8、ZnO种子层;9、SiC;10、等摩尔比的六水合硝酸锌和六次甲基四胺混合溶液;11、醋酸锌溶液;12、紫外光;13、空穴;14电子。
具体实施方式
下面将结合实施例对本发明的结构进行清楚地、完整地描述。所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。
实施例1
(1)将聚酰亚胺(PI)衬底裁成正方形小块,然后以此用丙酮、乙醇和去离子水清洗;
(2)将(1)所述衬底前烘,旋涂AZ-5214光刻胶、坚膜、曝光、显影后将衬底图形化;
(3)将(2)所述已经图形化的衬底,将醋酸锌(99.99%)溶于乙醇中滴在衬底的一侧,用氮气烘干。溶液放置重复3次,以确保种子层完全覆盖衬底;
(4)在(3)所述衬底的另一侧溅射150厚的ZnO种子层,溅射功率为250W;
(5)在两侧的种子层上依次溅射15nm厚的Ti、80nm厚的Au作为电极,溅射功率为250W;
(6)将(2)所述的光刻胶剥离;
(7)将样品在150℃的N2环境下退火20分钟;
(8)将等摩尔比例的六水合硝酸锌(Zn(NO3)2·6H2O)和六次甲基四胺(HMTA)溶于去离子水中,搅拌均匀,配置成1mol/L的硝酸锌混合溶液作为前体溶液;
(9)将(8)所述制成的溶液,取30mL混合溶液转移到水热反应釜中,将(7)所述的样品倒置浮于溶液表面,在80℃恒定温度下生长5h。反应后,用去离子水洗涤样品,实现p型ZnO纳米线与n型ZnO纳米线的桥接,制备出基于横向桥接pn结的自供电纳米紫外探测器。
实施例2
(1)将聚酰亚胺(PI)衬底裁成边长1cm的正方形小块,然后以此用丙酮、乙醇和去离子水清洗;
(2)将(1)所述衬底前烘,旋涂AZ-5214光刻胶、坚膜、曝光、显影后将衬底图形化;
(3)在(2)所述已经图形化的衬底上依次溅射150nm厚的ZnO种子层、15nm厚的Ti、80nm厚的Au作为电极,溅射功率为200W;
(4)将(2)所述的光刻胶剥离;
(5)将样品在150℃的N2环境下退火10分钟;
(6)通过SiC覆盖两个对称种子层中其中一个种子层的侧壁;
(7)取0.1mol六水合硝酸锌(Zn(NO3)2·6H2O)、0.1mol六次甲基四胺(HMTA)、0.004mol次磷酸铵(NH4H2PO4)溶于水,形成50mL的前体溶液;
(8)将(7)所述制成的溶液,取30mL混合溶液转移到水热反应釜中,将(7)所述的样品倒置浮于溶液表面,在100℃温度下生长24h。反应后,用去离子水洗涤样品;
(9)将(6)所述的SiC剥离,在已生长好ZnO纳米线一侧用SiC覆盖;
(10)将等摩尔比例的六水合硝酸锌(Zn(NO3)2·6H2O)和六次甲基四胺(HMTA)溶于去离子水中,搅拌均匀,配置成1mol/L的硝酸锌混合溶液作为前体溶液;
(11)将(10)所述制成的溶液,取30mL混合溶液转移到水热反应釜中,将(10)所述的样品倒置浮于溶液表面,在80℃温度下生长8h。反应后,用去离子水洗涤样品;
(12)将(11)所述的SiC剥离,实现p型ZnO纳米线与n型ZnO纳米线的桥接,制备出基于横向桥接pn结的自供电紫外探测器。

Claims (9)

1.一种基于横向桥接pn结的自供电纳米紫外探测器的制备方法,其特征在于,所述的基于横向桥接pn结的自供电纳米紫外探测器,pn结是由n型纳米线和p型纳米线横向桥接构成;
所述的自供电紫外探测器包括柔性衬底、种子层、复合电极、n型ZnO纳米线和p型ZnO纳米线;
所述的自供电紫外探测器,在柔性衬底上有两行沿长度方向平行且相对的种子层,种子层相对的两侧面之间有空隙且平行,种子层相对的侧面均齐平;所述复合电极包括Ti电极和Au电极;所述Ti电极在种子层之上,Au电极在Ti电极之上;
其中一行种子层相对的侧面生长n型ZnO纳米线、另一行种子层相对的侧面生长p型ZnO纳米线,所述生长在种子层相对的侧壁上的n型ZnO纳米线和p型ZnO纳米线横向桥接构成自供电紫外探测器的同质pn结;
包括以下步骤:
步骤1:准备长方形柔性衬底,将所述衬底清洗并烘干;
步骤2:通过光刻旋涂的光刻胶将所述衬底图案化;
步骤3:在已经图像图案化后的衬底上制备种子层;
步骤4:通过磁控溅射在所述种子层上制备复合电极即制备Ti电极和Au电极;
步骤5:采用剥离工艺,将步骤2光刻过程中旋涂的光刻胶剥离;
步骤6:将样品复合电极朝下倒置浮于已经制备好的前体溶液中,利用水热法生长ZnO纳米线;
所述的步骤2衬底图案化中的图案是两个对称的图形,采用光刻胶制备出对称的图形;
所述的步骤3是在步骤2光刻胶之间的空隙位置制备两行平行对称的种子层;其中一行种子层为ZnO种子层,另一行种子层为醋酸锌种子层;
所述的醋酸锌种子层是通过将醋酸锌溶于乙醇中滴在光刻胶空隙处的衬底上;所述溶液放置重复2~6次,以确保醋酸锌溶液全部覆盖衬底;
所述的ZnO种子层是通过磁控溅射所制备;
所述步骤6中的前体溶液是等摩尔比例的六水合硝酸锌(Zn(NO3)2·6H2O)和六次甲基四胺(HMTA),制成硝酸锌浓度为0.9mol/L~1.2mol/L的混合溶液;
所述的利用水热法生长ZnO纳米线是在温度为70℃~100℃下生长5h~24h;
其中ZnO种子层利用水热法生长出来的ZnO纳米线为n型ZnO纳米线;醋酸锌种子层利用水热法生长出来的ZnO纳米线为p型ZnO纳米线。
2.按照权利要求1所述的方法,其特征在于,所述的两行种子层相对面之间的距离为3μm~12μm;每一行种子层厚度均为50nm~600nm。
3.按照权利要求1所述的方法,其特征在于,所述Au电极的厚度为10nm~30nm;所述Ti电极的厚度为40nm~300nm。
4.按照权利要求1所述的方法,其特征在于,所述n型ZnO纳米线的直径为50nm~800nm;n型ZnO纳米线的长度为3μm~5μm;
所述p型ZnO纳米线的直径为50nm~800nm;p型ZnO纳米线的长度为3μm~5μm。
5.一种基于横向桥接pn结的自供电纳米紫外探测器的制备方法,其特征在于,所述的基于横向桥接pn结的自供电纳米紫外探测器,pn结是由n型纳米线和p型纳米线横向桥接构成;
所述的自供电紫外探测器包括柔性衬底、种子层、复合电极、n型ZnO纳米线和p型ZnO纳米线;
所述的自供电紫外探测器,在柔性衬底上有两行沿长度方向平行且相对的种子层,种子层相对的两侧面之间有空隙且平行,种子层相对的侧面均齐平;所述复合电极包括Ti电极和Au电极;所述Ti电极在种子层之上,Au电极在Ti电极之上;
其中一行种子层相对的侧面生长n型ZnO纳米线、另一行种子层相对的侧面生长p型ZnO纳米线,所述生长在种子层相对的侧壁上的n型ZnO纳米线和p型ZnO纳米线横向桥接构成自供电紫外探测器的同质pn结;
包括以下步骤:
步骤1:准备长方形柔性衬底,将所述衬底清洗并烘干;
步骤2:通过光刻旋涂的光刻胶将所述衬底图案化;所述的图案是对称的图形;
步骤3:通过磁控溅射在光刻胶之间的空隙处的衬底上制备ZnO种子层;制备两行平行相对的种子层;
步骤4:通过磁控溅射在两行ZnO种子层上均分别制备复合电极,即制备Ti电极和Au电极;
步骤5:采用剥离工艺,将步骤2光刻过程中旋涂的光刻胶剥离;
步骤6:利用SiC覆盖其中一行种子层,将样品倒置放在前体溶液1中,利用水热法在另一行种子层侧面生长ZnO纳米线;
步骤7:利用剥离工艺将步骤6所述的SiC剥离;
步骤8:利用SiC将步骤6已经长有ZnO纳米线的种子层覆盖,但是露出已生长的ZnO纳米线的端部,使得能够下一步桥接;
步骤9:将步骤8所述样品倒置放置在前体溶液2中,利用水热法在没有ZnO纳米线的种子层侧面生长ZnO纳米线,并与步骤8的纳米线端部桥接;
步骤10:将步骤8所述SiC剥离,得到基于横向桥接pn结的自供电纳米紫外探测器。
6.按照权利要求5所述的方法,其特征在于,所述前体溶液1为0.1mol六水合硝酸锌(Zn(NO3)2·6H2O)、0.1mol六次甲基四胺(HMTA)、0.004mol次磷酸铵(NH4H2PO4)溶于水,形成的前体溶液;
所述前体溶液2为等摩尔比例的六水合硝酸锌(Zn(NO3)2·6H2O)和六次甲基四胺(HMTA),制成硝酸锌浓度为0.9mol/L~1.2mol/L的混合溶液;
步骤6中所述的利用水热法生长ZnO纳米线是在温度为70℃~100℃下生长5h~24h;
步骤9中所述的利用水热法生长ZnO纳米线是在温度为70℃~100℃下生长5h~24h;
步骤6中所述生长出的ZnO纳米线为p型ZnO纳米线;
步骤8中所述生长出的ZnO纳米线为n型ZnO纳米线。
7.按照权利要求5所述的方法,其特征在于,所述的两行种子层相对面之间的距离为3μm~12μm;每一行种子层厚度均为50nm~600nm。
8.按照权利要求5所述的方法,其特征在于,所述Au电极的厚度为10nm~30nm;所述Ti电极的厚度为40nm~300nm。
9.按照权利要求5所述的方法,其特征在于,所述n型ZnO纳米线的直径为50nm~800nm;n型ZnO纳米线的长度为3μm~5μm;
所述p型ZnO纳米线的直径为50nm~800nm;p型ZnO纳米线的长度为3μm~5μm。
CN202110186953.1A 2021-02-10 2021-02-10 一种基于横向桥接pn结的自供电纳米紫外探测器 Active CN112909109B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110186953.1A CN112909109B (zh) 2021-02-10 2021-02-10 一种基于横向桥接pn结的自供电纳米紫外探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110186953.1A CN112909109B (zh) 2021-02-10 2021-02-10 一种基于横向桥接pn结的自供电纳米紫外探测器

Publications (2)

Publication Number Publication Date
CN112909109A CN112909109A (zh) 2021-06-04
CN112909109B true CN112909109B (zh) 2022-11-29

Family

ID=76123775

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110186953.1A Active CN112909109B (zh) 2021-02-10 2021-02-10 一种基于横向桥接pn结的自供电纳米紫外探测器

Country Status (1)

Country Link
CN (1) CN112909109B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113937174B (zh) * 2021-10-14 2023-12-12 南京大学 一种基于选区离子注入的碳化硅基横向pn结极紫外探测器及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751318A (zh) * 2012-07-18 2012-10-24 合肥工业大学 一种ZnO同质pn结及其制备方法
CN103715325A (zh) * 2013-12-26 2014-04-09 辽宁师范大学 单根ZnO微米线同质结发光二极管的制备方法
CN104638019A (zh) * 2015-02-02 2015-05-20 青岛大学 一种氧化锌纳米纤维同质p-n结器件及其制备方法
CN106409975A (zh) * 2016-11-17 2017-02-15 北京工业大学 一种可定制的高增益ZnO纳米线阵列紫外探测器及其制备方法
CN107123701A (zh) * 2017-05-08 2017-09-01 北京工业大学 一种控制横向ZnO纳米线阵列紫外探测器均匀性的方法
CN107275424A (zh) * 2017-06-13 2017-10-20 大连民族大学 一种基于同质ZnO纳米核壳阵列的紫外光响应器件及制备方法
CN107634075A (zh) * 2017-08-26 2018-01-26 北京工业大学 柔性背照全透式纳米紫外焦平面探测器芯片

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8367462B2 (en) * 2010-04-21 2013-02-05 Georgia Tech Research Corporation Large-scale fabrication of vertically aligned ZnO nanowire arrays

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751318A (zh) * 2012-07-18 2012-10-24 合肥工业大学 一种ZnO同质pn结及其制备方法
CN103715325A (zh) * 2013-12-26 2014-04-09 辽宁师范大学 单根ZnO微米线同质结发光二极管的制备方法
CN104638019A (zh) * 2015-02-02 2015-05-20 青岛大学 一种氧化锌纳米纤维同质p-n结器件及其制备方法
CN106409975A (zh) * 2016-11-17 2017-02-15 北京工业大学 一种可定制的高增益ZnO纳米线阵列紫外探测器及其制备方法
CN107123701A (zh) * 2017-05-08 2017-09-01 北京工业大学 一种控制横向ZnO纳米线阵列紫外探测器均匀性的方法
CN107275424A (zh) * 2017-06-13 2017-10-20 大连民族大学 一种基于同质ZnO纳米核壳阵列的紫外光响应器件及制备方法
CN107634075A (zh) * 2017-08-26 2018-01-26 北京工业大学 柔性背照全透式纳米紫外焦平面探测器芯片

Also Published As

Publication number Publication date
CN112909109A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
Rasool et al. Analysis on different detection mechanisms involved in ZnO-based photodetector and photodiodes
KR100847741B1 (ko) p-n접합 계면에 패시베이션층을 구비하는 점 접촉 이종접합 실리콘 태양전지 및 그의 제조방법
US9105787B2 (en) Techniques for enhancing efficiency of photovoltaic devices using high-aspect-ratio nanostructures
CN111725338B (zh) 一种微米线阵列异质结紫外光探测器及其制备方法
Yadav et al. Sol-gel-based highly sensitive Pd/n-ZnO thin film/n-Si Schottky ultraviolet photodiodes
US9064991B2 (en) Photovoltaic devices with enhanced efficiencies using high-aspect ratio nanostructures
CN105814695A (zh) 纳米结构多结光伏器件
Li et al. Using novel semiconductor features to construct advanced ZnO nanowires-based ultraviolet photodetectors: A brief review
US20110155236A1 (en) Nanowire Solar Cell and Manufacturing Method of the Same
CN110707218A (zh) 一种氮化镓微米线阵列光电探测器及其制备方法
EP2253021B1 (en) Photovoltaic devices with high-aspect-ratio nanostructures
CN105720197A (zh) 一种自驱动宽光谱响应硅基杂化异质结光电传感器及其制备方法
CN110690317A (zh) 一种基于单层MoS2薄膜/GaN纳米柱阵列的自供电紫外探测器及其制备方法
CN112909109B (zh) 一种基于横向桥接pn结的自供电纳米紫外探测器
KR101136882B1 (ko) 질화물 반도체 기반의 태양전지 및 그 제조방법
CN211295123U (zh) 一种基于核壳结构GaN-MoO3纳米柱的自供电紫外探测器
CN210805803U (zh) 一种基于单层MoS2薄膜/GaN纳米柱阵列的自供电紫外探测器
CN217426770U (zh) 一种纳米线-薄膜结构紫外探测器
CN112054074A (zh) 光电探测器阵列及其制备方法、光电探测器及其制备方法
CN115775848A (zh) 垂直结构GaN紫外光探测器及其制备方法
Goodnick et al. Solar cells
CN210866245U (zh) 一种氮化镓微米线阵列光电探测器
CN111739963B (zh) 一种硅基宽光谱光电探测器的制备方法
CN110690316A (zh) 一种基于核壳结构GaN-MoO3纳米柱的自供电紫外探测器及其制备方法
Kumar et al. Time-Dependent Study of Solution-Processed Low-Cost ZnO QDs and NRA-based UV Photodetector

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant