CN103715261B - 半导体合金鳍片场效应晶体管及其形成方法 - Google Patents
半导体合金鳍片场效应晶体管及其形成方法 Download PDFInfo
- Publication number
- CN103715261B CN103715261B CN201310447383.2A CN201310447383A CN103715261B CN 103715261 B CN103715261 B CN 103715261B CN 201310447383 A CN201310447383 A CN 201310447383A CN 103715261 B CN103715261 B CN 103715261B
- Authority
- CN
- China
- Prior art keywords
- semiconductor
- semi
- single crystal
- crystal semiconductor
- conducting material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000956 alloy Substances 0.000 title claims abstract description 114
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 95
- 238000000034 method Methods 0.000 title claims description 19
- 239000004065 semiconductor Substances 0.000 claims abstract description 491
- 239000000463 material Substances 0.000 claims abstract description 96
- 238000002955 isolation Methods 0.000 claims abstract description 11
- 230000008021 deposition Effects 0.000 claims abstract description 8
- 239000013078 crystal Substances 0.000 claims description 122
- 239000002019 doping agent Substances 0.000 claims description 59
- 230000004888 barrier function Effects 0.000 claims description 27
- 238000005530 etching Methods 0.000 claims description 23
- 239000000758 substrate Substances 0.000 claims description 23
- 150000001875 compounds Chemical class 0.000 claims description 18
- 229910052710 silicon Inorganic materials 0.000 claims description 11
- 239000010703 silicon Substances 0.000 claims description 11
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 238000000059 patterning Methods 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- 229910052732 germanium Inorganic materials 0.000 claims description 6
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 239000012212 insulator Substances 0.000 claims description 3
- 238000007373 indentation Methods 0.000 claims 2
- 230000005669 field effect Effects 0.000 description 29
- 229920002120 photoresistant polymer Polymers 0.000 description 13
- 239000007800 oxidant agent Substances 0.000 description 12
- 230000001590 oxidative effect Effects 0.000 description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 238000000151 deposition Methods 0.000 description 8
- 239000003989 dielectric material Substances 0.000 description 8
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 210000000746 body region Anatomy 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 3
- 229910021483 silicon-carbon alloy Inorganic materials 0.000 description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000004380 ashing Methods 0.000 description 2
- 235000019994 cava Nutrition 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 238000001259 photo etching Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- SLLGVCUQYRMELA-UHFFFAOYSA-N chlorosilicon Chemical compound Cl[Si] SLLGVCUQYRMELA-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000012940 design transfer Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 238000010023 transfer printing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/0886—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823821—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/84—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
- H01L21/845—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body including field-effect transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1203—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
- H01L27/1211—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with field-effect transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0642—Isolation within the component, i.e. internal isolation
- H01L29/0649—Dielectric regions, e.g. SiO2 regions, air gaps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/1608—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/161—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/161—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
- H01L29/165—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66053—Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
- H01L29/66068—Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66787—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
- H01L29/66795—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/785—Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/785—Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
- H01L29/7851—Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with the body tied to the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02529—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02636—Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
Claims (20)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/644,742 US8889495B2 (en) | 2012-10-04 | 2012-10-04 | Semiconductor alloy fin field effect transistor |
US13/644,742 | 2012-10-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103715261A CN103715261A (zh) | 2014-04-09 |
CN103715261B true CN103715261B (zh) | 2016-04-27 |
Family
ID=50408071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310447383.2A Expired - Fee Related CN103715261B (zh) | 2012-10-04 | 2013-09-27 | 半导体合金鳍片场效应晶体管及其形成方法 |
Country Status (2)
Country | Link |
---|---|
US (2) | US8889495B2 (zh) |
CN (1) | CN103715261B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9728530B1 (en) | 2016-12-20 | 2017-08-08 | Amazing Microelectronic Corp. | Bipolar transistor device |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130175618A1 (en) * | 2012-01-05 | 2013-07-11 | International Business Machines Corporation | Finfet device |
US9054212B2 (en) * | 2012-10-30 | 2015-06-09 | Globalfoundries Inc. | Fin etch and Fin replacement for FinFET integration |
US8933528B2 (en) * | 2013-03-11 | 2015-01-13 | International Business Machines Corporation | Semiconductor fin isolation by a well trapping fin portion |
US8912609B2 (en) * | 2013-05-08 | 2014-12-16 | International Business Machines Corporation | Low extension resistance III-V compound fin field effect transistor |
US8993399B2 (en) | 2013-05-17 | 2015-03-31 | International Business Machines Corporation | FinFET structures having silicon germanium and silicon fins |
US9093533B2 (en) * | 2013-07-24 | 2015-07-28 | International Business Machines Corporation | FinFET structures having silicon germanium and silicon channels |
US9425042B2 (en) * | 2013-10-10 | 2016-08-23 | Taiwan Semiconductor Manufacturing Company Limited | Hybrid silicon germanium substrate for device fabrication |
US9093275B2 (en) * | 2013-10-22 | 2015-07-28 | International Business Machines Corporation | Multi-height multi-composition semiconductor fins |
CN105097511B (zh) * | 2014-04-18 | 2018-09-07 | 中芯国际集成电路制造(上海)有限公司 | 鳍式场效应晶体管及其形成方法 |
CN105092324B (zh) * | 2014-05-07 | 2018-03-20 | 中芯国际集成电路制造(上海)有限公司 | 一种FinFET鳍片掺杂浓度分布的测量方法和测量样品制备方法 |
US9478663B2 (en) * | 2014-10-29 | 2016-10-25 | Globalfoundries Inc. | FinFET device including a uniform silicon alloy fin |
US9543382B1 (en) * | 2015-03-19 | 2017-01-10 | Altera Corporation | FinFET with improved SEU performance |
KR102367995B1 (ko) * | 2015-06-12 | 2022-02-25 | 인텔 코포레이션 | 다양한 채널 재료를 사용하여 동일한 다이 상에 트랜지스터들을 형성하기 위한 기술들 |
US10177240B2 (en) * | 2015-09-18 | 2019-01-08 | International Business Machines Corporation | FinFET device formed by a replacement metal-gate method including a gate cut-last step |
US9755078B2 (en) * | 2015-10-23 | 2017-09-05 | International Business Machines Corporation | Structure and method for multi-threshold voltage adjusted silicon germanium alloy devices with same silicon germanium content |
DE112015007241T5 (de) * | 2015-12-26 | 2019-01-24 | Intel Corporation | Begrenztes und skalierbares helmelement |
TWI678732B (zh) * | 2016-03-22 | 2019-12-01 | 聯華電子股份有限公司 | 一種形成半導體鰭狀結構的方法 |
CN107316814B (zh) * | 2016-04-26 | 2021-11-23 | 联华电子股份有限公司 | 半导体元件的制造方法 |
US9916978B2 (en) * | 2016-06-02 | 2018-03-13 | United Microelectronics Corporation | Method for fabricating a Fin field effect transistor (FinFET) |
US9799570B1 (en) * | 2017-02-13 | 2017-10-24 | International Business Machines Corporation | Fabrication of vertical field effect transistors with uniform structural profiles |
US10707208B2 (en) * | 2017-02-27 | 2020-07-07 | International Business Machines Corporation | Fabrication of fin field effect transistors utilizing different fin channel materials while maintaining consistent fin widths |
US10147651B1 (en) | 2017-05-12 | 2018-12-04 | International Business Machines Corporation | Fabrication of fin field effect transistor complementary metal-oxide-semiconductor devices with uniform hybrid channels |
US10475792B2 (en) * | 2017-06-08 | 2019-11-12 | Ubiq Semiconductor Corp. | Power transistor device |
US10497577B2 (en) | 2017-08-31 | 2019-12-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Fin field-effect transistor device and method |
CN110690285B (zh) * | 2018-07-05 | 2023-12-12 | 中芯国际集成电路制造(上海)有限公司 | 半导体结构及其形成方法 |
US11062963B2 (en) | 2018-08-15 | 2021-07-13 | Taiwan Semiconductor Manufacturing Co., Ltd. | Structure and process of integrated circuit having latch-up suppression |
DE102019120821A1 (de) * | 2018-08-15 | 2020-02-20 | Taiwan Semiconductor Manufacturing Co., Ltd. | Struktur und prozess einer integrierten schaltung mit einer latch-up-unterdrückung |
US10937703B2 (en) * | 2019-04-11 | 2021-03-02 | International Business Machines Corporation | Field-effect transistor having dual channels |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1714441A (zh) * | 2002-12-19 | 2005-12-28 | 国际商业机器公司 | 形成结构、隔离层和相关finfet的方法 |
CN1770450A (zh) * | 2004-09-30 | 2006-05-10 | 台湾积体电路制造股份有限公司 | 半导体装置及其制造方法 |
US7642603B2 (en) * | 2007-06-29 | 2010-01-05 | Intel Corporation | Semiconductor device with reduced fringe capacitance |
US7763954B2 (en) * | 2005-07-27 | 2010-07-27 | International Business Machines Corporation | Post last wiring level inductor using patterned plate process |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030227057A1 (en) | 2002-06-07 | 2003-12-11 | Lochtefeld Anthony J. | Strained-semiconductor-on-insulator device structures |
US7198995B2 (en) | 2003-12-12 | 2007-04-03 | International Business Machines Corporation | Strained finFETs and method of manufacture |
US7393733B2 (en) | 2004-12-01 | 2008-07-01 | Amberwave Systems Corporation | Methods of forming hybrid fin field-effect transistor structures |
US7256439B2 (en) * | 2005-01-21 | 2007-08-14 | International Business Machines Corporation | Trench capacitor array having well contacting merged plate |
US7101763B1 (en) | 2005-05-17 | 2006-09-05 | International Business Machines Corporation | Low capacitance junction-isolation for bulk FinFET technology |
US7736954B2 (en) * | 2005-08-26 | 2010-06-15 | Sematech, Inc. | Methods for nanoscale feature imprint molding |
JP4271210B2 (ja) | 2006-06-30 | 2009-06-03 | 株式会社東芝 | 電界効果トランジスタ、集積回路素子、及びそれらの製造方法 |
US8883597B2 (en) | 2007-07-31 | 2014-11-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of fabrication of a FinFET element |
US7767560B2 (en) | 2007-09-29 | 2010-08-03 | Intel Corporation | Three dimensional strained quantum wells and three dimensional strained surface channels by Ge confinement method |
US7687862B2 (en) * | 2008-05-13 | 2010-03-30 | Infineon Technologies Ag | Semiconductor devices with active regions of different heights |
US7838913B2 (en) * | 2008-05-28 | 2010-11-23 | International Business Machines Corporation | Hybrid FET incorporating a finFET and a planar FET |
US8048791B2 (en) * | 2009-02-23 | 2011-11-01 | Globalfoundries Inc. | Method of forming a semiconductor device |
US8030173B2 (en) * | 2009-05-29 | 2011-10-04 | Freescale Semiconductor, Inc. | Silicon nitride hardstop encapsulation layer for STI region |
JP5166458B2 (ja) | 2010-01-22 | 2013-03-21 | 株式会社東芝 | 半導体装置及びその製造方法 |
US8367498B2 (en) * | 2010-10-18 | 2013-02-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Fin-like field effect transistor (FinFET) device and method of manufacturing same |
-
2012
- 2012-10-04 US US13/644,742 patent/US8889495B2/en active Active
-
2013
- 2013-09-27 CN CN201310447383.2A patent/CN103715261B/zh not_active Expired - Fee Related
-
2014
- 2014-08-22 US US14/466,484 patent/US20140361314A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1714441A (zh) * | 2002-12-19 | 2005-12-28 | 国际商业机器公司 | 形成结构、隔离层和相关finfet的方法 |
CN1770450A (zh) * | 2004-09-30 | 2006-05-10 | 台湾积体电路制造股份有限公司 | 半导体装置及其制造方法 |
US7763954B2 (en) * | 2005-07-27 | 2010-07-27 | International Business Machines Corporation | Post last wiring level inductor using patterned plate process |
US7642603B2 (en) * | 2007-06-29 | 2010-01-05 | Intel Corporation | Semiconductor device with reduced fringe capacitance |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9728530B1 (en) | 2016-12-20 | 2017-08-08 | Amazing Microelectronic Corp. | Bipolar transistor device |
Also Published As
Publication number | Publication date |
---|---|
US20140097518A1 (en) | 2014-04-10 |
US20140361314A1 (en) | 2014-12-11 |
US8889495B2 (en) | 2014-11-18 |
CN103715261A (zh) | 2014-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103715261B (zh) | 半导体合金鳍片场效应晶体管及其形成方法 | |
US9508851B2 (en) | Formation of bulk SiGe fin with dielectric isolation by anodization | |
US8900934B2 (en) | FinFET devices containing merged epitaxial Fin-containing contact regions | |
US9659964B2 (en) | Method and structure for preventing epi merging in embedded dynamic random access memory | |
US10083874B1 (en) | Gate cut method | |
US10629698B2 (en) | Method and structure for enabling high aspect ratio sacrificial gates | |
US9583492B2 (en) | Structure and method for advanced bulk fin isolation | |
US9024355B2 (en) | Embedded planar source/drain stressors for a finFET including a plurality of fins | |
US9761720B2 (en) | Replacement body FinFET for improved junction profile with gate self-aligned junctions | |
US20150333087A1 (en) | Multi-height multi-composition semiconductor fins | |
TWI746957B (zh) | 混合閘極切割 | |
US9978775B2 (en) | FinFET device with abrupt junctions | |
US9209094B2 (en) | Fin field effect transistor with dielectric isolation and anchored stressor elements | |
US9953976B2 (en) | Effective device formation for advanced technology nodes with aggressive fin-pitch scaling | |
CN111627815A (zh) | 非平面型场效应晶体管的形成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20171109 Address after: Grand Cayman, Cayman Islands Patentee after: GLOBALFOUNDRIES INC. Address before: American New York Patentee before: Core USA second LLC Effective date of registration: 20171109 Address after: American New York Patentee after: Core USA second LLC Address before: New York grams of Armand Patentee before: International Business Machines Corp. |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160427 Termination date: 20180927 |