CN103710606B - 一种含Cr高Nbβ-γ TiAl金属间化合物材料及其制备方法 - Google Patents

一种含Cr高Nbβ-γ TiAl金属间化合物材料及其制备方法 Download PDF

Info

Publication number
CN103710606B
CN103710606B CN201310688069.3A CN201310688069A CN103710606B CN 103710606 B CN103710606 B CN 103710606B CN 201310688069 A CN201310688069 A CN 201310688069A CN 103710606 B CN103710606 B CN 103710606B
Authority
CN
China
Prior art keywords
intermetallic compound
height
tial intermetallic
molar content
vacuum induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310688069.3A
Other languages
English (en)
Other versions
CN103710606A (zh
Inventor
陈子勇
宫子琪
柴丽
周峰
相志磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201310688069.3A priority Critical patent/CN103710606B/zh
Publication of CN103710606A publication Critical patent/CN103710606A/zh
Application granted granted Critical
Publication of CN103710606B publication Critical patent/CN103710606B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种含Cr高Nbβ-γTiAl金属间化合物材料及其制备方法,属于金属间化合物材料。其元素的摩尔百分含量为:43%~45%的Al、5~15%的Nb、不高于0.4%的Cr和余量的Ti及不可避免的杂质。按照组成将原料通过金属压块机进行压块成型,自下而上各层分别为海绵钛层、高纯铝层、铝铌中间合金层、电解铬片层和海绵钛层,将压块放入到水冷铜坩埚真空感应悬浮熔炼炉,抽真空,以10~15kw/min速率将熔炼功率升至140~160kw后停止增加功率,在恒定功率下熔炼,使熔体混合均匀;将熔体浇铸到预热的金属铸型中并离心旋转,并随炉冷却。本发明得到了均匀细小且无明显偏析的含有β相的γ-TiAl合金组织。

Description

一种含Cr高Nbβ-γ TiAl金属间化合物材料及其制备方法
技术领域
本发明涉及一种金属间化合物及其制备工艺,尤其涉及一种含Cr高Nbβ-γTiAl金属间化合物材料及其制备方法,属于金属间化合物材料。
背景技术
γ-TiAl基合金由于其具有低密度,高热导率以及较好的高温性能等被认为最有应用潜力的航空发动机材料。但是其共价键的特性导致了合金材料室温塑性低,可加工性差,限制了工业应用。为改善TiAl基合金的使用性能,研究人员进行了大量的研究。结果显示,引入β相是提高TiAl金属间化合物力学性能和热加工性能的重要手段。目前TiAl合金正朝着多组元化方向发展,一个重要的趋势是合金中A1含量逐渐降低,Nb的含量则有一定程度的升高,最终发展形成高铌TiAl合金。高溶点的难容元素Nb的添加,有效地提高了合金的高温力学性能,同时改善了高温抗氧化性能。然而关于含有β相的高Nb-TiAl金属间化合物材料的制备及Cr在高铌TiAl合金中的物理冶金行为尚未见报道。
发明内容
本发明的目的是提供一种通过在合金熔炼的过程中添加β相稳定元素Cr得到β相,进而改善材料性能的含Cr高Nbβ-γTiAl金属间化合物材料及制备方法。
本发明的一种含Cr高铌β-γTiAl金属间化合物材料,其特征在于,其元素的摩尔百分含量为:43%~45%的Al、5~15%(优选8~10%)的Nb、不高于0.4%(优选0.2%)的Cr和余量的Ti及不可避免的杂质。
本发明的含Cr高Nbβ-γTiAl金属间化合物的制备方法,通过下述步骤实现的:
(1)、称取如下原料:海绵钛、高纯铝、铝铌中间合金和电解铬片;其中控制Al、Nb、Cr和Ti元素的摩尔百分含量为43%~45%的Al、5~15%的Nb、不高于0.4%的Cr和余量为Ti及不可避免的杂质;
(2)、将步骤(1)称得的原料通过金属压块机进行压块成型,压块时自下而上各层分别为海绵钛层、高纯铝层、铝铌中间合金层、电解铬片层和海绵钛层;
(3)将步骤(2)得到的压块放入到可离心浇注的水冷铜坩埚真空感应悬浮熔炼炉中,熔炼前将金属铸型预热至300~350℃,将水冷铜坩埚真空感应熔炼炉抽真空至4.0~6.0×10-3mbar,以10~15kw/min(优选10kw/min)增长速率将水冷铜坩埚真空感应熔炼炉熔炼功率升至140~160kw后停止增加功率,然后在恒定功率下熔炼120~180s得熔体,使熔体混合均匀;
(4)将熔体浇铸到预热后的且离心旋转的金属铸型中,离心机转速优选为150r/min,形成含Cr高铌TiAl金属间化合物铸锭,并随炉冷却。
本发明步骤(1)中海绵钛的质量纯度为99.7%,高纯铝的质量纯度为99.99%,铝铌中间合金的质量纯度为99.8%,电解铬片的质量纯度为99.999%;各原料为市售产品。
本发明确定了Cr的最佳加入量范围,在材料凝固过程中,Cr的加入改变了合金的凝固路线,由传统的L→L+β→α→…变为L→L+β→β→…,得到的高铌TiAl金属间化合物材料显微组织非常细小,且无明显偏析出现,形成的β相主要出现在片层晶团晶界处。细小均匀、无明显偏析的组织有利于合金的热加工性,改善合金的综合性能。
本发明得到了均匀细小且无明显偏析的的TiAl合金组织,且采用水冷铜坩埚真空感应熔炼炉熔炼,工艺过程简单易操作。
附图说明
图1实施例1的含Cr高Nbβ-γTiAl金属间化合物Ti-45Al-8Nb-0.2Cr铸态合金光学显微组织图;
图2实施例1的含Cr高Nbβ-γTiAl金属间化合物Ti-45Al-8Nb-0.2Cr铸态合金X-射线衍射谱图;
图3实施例1的含Cr高Nbβ-γTiAl金属间化合物Ti-45Al-8Nb-0.2Cr铸态合金扫描电子显微图;
图4实施例2的含Cr高Nbβ-γTiAl金属间化合物Ti-43Al-10Nb-0.4Cr铸态合金光学显微组织图;
图5实施例2的含Cr高Nbβ-γTiAl金属间化合物Ti-43Al-10Nb-0.4Cr铸态合金X-射线衍射谱图;
图6实施例2的含Cr高Nbβ-γTiAl金属间化合物Ti-43Al-10Nb-0.4Cr铸态合金扫描电子显微图。
具体实施方式
下面结合实施例对本发明做进一步说明,但本发明并不限于以下实施例。
实施例1
本实施例的含Cr高Nbβ-γTiAl金属间化合物材料制备通过下述步骤实现:一、称取如下原料:海绵钛、高纯铝、铝铌中间合金和电解铬片,其中Ti46.8at.%、Al45at.%、Nb8at.%、Cr0.2at.%;二、将步骤一称得的原料通过金属压块机进行压块成型,压块时自下而上各层分别为海绵钛层、高纯铝层、铝铌中间合金层、电解铬片层和海绵钛层;三、将步骤二得到的压块放入到可离心浇注的水冷铜坩埚真空感应悬浮熔炼炉中,熔炼前将金属铸型预热至300℃,将水冷铜坩埚真空感应熔炼炉抽真空至5.0×10-3mbar;四、以10kw/min增长速率将水冷铜坩埚真空感应熔炼炉熔炼功率升至160kw后停止增加功率,然后在恒定功率下熔炼150s得熔体,使熔体混合均匀;五、将熔体浇铸到预热后的且离心旋转的金属铸型中,离心机转速优选为150r/min,铸锭尺寸为φ40×180mm,并随炉冷却,得到Ti-45Al-8Nb-0.2Cr化合物铸锭。
采用电火花线切割方法从铸锭上切取15×15×10mm试样,金相与扫描试样经金相砂纸从240目磨到2000目,再用电解抛光机精抛,X射线衍射试样经水洗砂纸从240目磨到1000目,再用无水乙醇清洗表面,透射样品为0.5mm的薄片,用砂纸磨到40um厚,再采用双喷减薄技术制备。利用金相显微镜观察Ti-45Al-8Nb-0.2Cr的显微组织发现,TiAl合金的组织呈细小的等轴晶组织,微观组织中有白色亮相,见图1;利用XRD(X射线衍射仪)进行分析发现,合金中除了α2和γ相之外,还有β相出现,见图2;利用扫描电子显微镜和电子探针进行分析发现,白色亮相主要分布在片层晶团晶界处,见图3。
实施例2
本实施方式的含Cr高Nbβ-γTiAl金属间化合物材料制备通过下述步骤实现:一、称取如下原料:海绵钛、高纯铝、铝铌中间合金和电解铬片,其中Ti46.6at.%、Al43at.%、Nb10at.%、Cr0.4at.%;二、将步骤一称得的原料通过金属压块机进行压块成型,压块时自下而上各层分别为海绵钛层、高纯铝层、铝铌中间合金层、电解铬片层和海绵钛层;三、将步骤二得到的压块放入到可离心浇注的水冷铜坩埚真空感应悬浮熔炼炉中,熔炼前将金属铸型预热至350℃,将水冷铜坩埚真空感应熔炼炉抽真空至4.5×10-3mbar;四、以10kw/min增长速率将水冷铜坩埚真空感应熔炼炉熔炼功率升至150kw后停止增加功率,然后在恒定功率下熔炼170s得熔体,使熔体混合均匀;五、将熔体浇铸到预热后的且离心旋转的金属铸型中,离心机转速优选为150r/min,铸锭尺寸为φ40×180mm,并随炉冷却,得到Ti-43Al-10Nb-0.4Cr化合物铸锭。
采用电火花线切割方法从铸锭上切取15×15×10mm试样,金相与扫描试样经金相砂纸从240目磨到2000目,再用电解抛光机精抛,X射线衍射试样经水洗砂纸从240目磨到1000目,再用无水乙醇清洗表面,透射样品为0.5mm的薄片,用砂纸磨到40um厚,再采用双喷减薄技术制备。利用金相显微镜观察Ti-43Al-10Nb-0.4Cr的显微组织发现,TiAl合金的组织呈细小的等轴晶组织,微观组织中有白色亮相,见图4;利用XRD(X射线衍射仪)进行分析发现,合金中除了α2和γ相之外,还有β相出现,见图5;利用扫描电子显微镜和电子探针进行分析发现,白色亮相主要分布在片层晶团晶界处,见图6。
实施例3
(1)、称取如下原料:海绵钛、高纯铝、铝铌中间合金和电解铬片;其中控制Al、Nb、Cr和Ti元素的摩尔百分含量为43%~45%的Al、8~10%的Nb、0.1-0.4%的Cr和余量的Ti及杂质;
(2)、将步骤(1)称得的原料通过金属压块机进行压块成型,压块时自下而上各层分别为海绵钛层、高纯铝层、铝铌中间合金层、电解铬片层和海绵钛层;
(3)将步骤(2)得到的压块放入到可离心浇注的水冷铜坩埚真空感应悬浮熔炼炉中,熔炼前将金属铸型预热至300~350℃,将水冷铜坩埚真空感应熔炼炉抽真空至4.0~6.0×10-3mbar,以10~15kw/min增长速率将水冷铜坩埚真空感应熔炼炉熔炼功率升至140~160kw后停止增加功率,然后在恒定功率下熔炼120s得熔体,使熔体混合均匀;
(4)将熔体浇铸到预热后的且离心旋转的金属铸型中,离心机转速优选为150r/min,形成含Cr高铌TiAl金属间化合物铸锭,并随炉冷却。
采用与实施例1和实施例2相同的表征得到的含Cr高铌TiAl金属间化合物材料显微组织细小均匀且无明显偏析,组织中出现了亮白色的β相,主要分布在片层晶团晶界处。

Claims (7)

1.一种含Cr高Nbβ-γTiAl金属间化合物材料,其特征在于,其元素的摩尔百分含量:43%~45%的Al、5~15%的Nb、不高于0.4%的Cr和余量的Ti及不可避免的杂质。
2.按照权利要求1的一种含Cr高Nbβ-γTiAl金属间化合物材料,其特征在于,Nb的摩尔百分含量8~10%,Cr的摩尔百分含量不高于0.4%。
3.按照权利要求1的一种含Cr高Nbβ-γTiAl金属间化合物材料,其特征在于,Nb的摩尔百分含量8%,Cr的摩尔百分含量0.2%。
4.含Cr高Nbβ-γTiAl金属间化合物的制备方法,其特征在于,包括下述步骤:
(1)、称取如下原料:海绵钛、高纯铝、铝铌中间合金和电解铬片;其中控制Al、Nb、Cr和Ti元素的摩尔百分含量为43%~45%的Al、5~15%的Nb、不高于0.4%的Cr和余量的Ti及杂质;
(2)、将步骤(1)称得的原料通过金属压块机进行压块成型,压块时自下而上各层分别为海绵钛层、高纯铝层、铝铌中间合金层、电解铬片层和海绵钛层;
(3)、将步骤(2)得到的压块放入到可离心浇注的水冷铜坩埚真空感应悬浮熔炼炉中,熔炼前将金属铸型预热至300~350℃,将水冷铜坩埚真空感应熔炼炉抽真空至4.0~6.0×10-3mbar,以10~15kw/min增长速率将水冷铜坩埚真空感应熔炼炉熔炼功率升至140~160kw后停止增加功率,然后在恒定功率下熔炼120~180s得熔体,使熔体混合均匀;
(4)、将熔体浇铸到预热后的且离心旋转的金属铸型中,形成含Cr高铌TiAl金属间化合物铸锭,并随炉冷却。
5.按照权利要求4的方法,其特征在于,以10kw/min增长速率将水冷铜坩埚真空感应悬浮熔炼炉熔炼功率升至140~160kw且进行离心浇注成型。
6.按照权利要求4的方法,其特征在于,离心机转速优选为150r/min。
7.按照权利要求4的方法,其特征在于,(1)中海绵钛的质量纯度为99.7%,高纯铝的质量纯度为99.99%,铝铌中间合金的质量纯度为99.8%,电解铬片的质量纯度为99.999%。
CN201310688069.3A 2013-12-16 2013-12-16 一种含Cr高Nbβ-γ TiAl金属间化合物材料及其制备方法 Active CN103710606B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310688069.3A CN103710606B (zh) 2013-12-16 2013-12-16 一种含Cr高Nbβ-γ TiAl金属间化合物材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310688069.3A CN103710606B (zh) 2013-12-16 2013-12-16 一种含Cr高Nbβ-γ TiAl金属间化合物材料及其制备方法

Publications (2)

Publication Number Publication Date
CN103710606A CN103710606A (zh) 2014-04-09
CN103710606B true CN103710606B (zh) 2016-07-06

Family

ID=50403951

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310688069.3A Active CN103710606B (zh) 2013-12-16 2013-12-16 一种含Cr高Nbβ-γ TiAl金属间化合物材料及其制备方法

Country Status (1)

Country Link
CN (1) CN103710606B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578769A (ja) * 1991-09-25 1993-03-30 Mitsubishi Heavy Ind Ltd 金属間化合物基耐熱合金
JPH05320791A (ja) * 1992-05-15 1993-12-03 Mitsubishi Heavy Ind Ltd Ti−Al系金属間化合物合金
CN1912161A (zh) * 2006-08-22 2007-02-14 哈尔滨工业大学 一种细晶TiAl金属间化合物材料的制备方法
CN103074520A (zh) * 2013-01-14 2013-05-01 北京工业大学 一种含Er高铌TiAl金属间化合物材料及其制备方法
CA2809444A1 (en) * 2012-03-23 2013-09-23 General Electric Company Methods for processing titanium aluminide intermetallic compositions
EP2657358A1 (en) * 2012-03-24 2013-10-30 General Electric Company Titanium aluminide intermetallic compositions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578769A (ja) * 1991-09-25 1993-03-30 Mitsubishi Heavy Ind Ltd 金属間化合物基耐熱合金
JPH05320791A (ja) * 1992-05-15 1993-12-03 Mitsubishi Heavy Ind Ltd Ti−Al系金属間化合物合金
CN1912161A (zh) * 2006-08-22 2007-02-14 哈尔滨工业大学 一种细晶TiAl金属间化合物材料的制备方法
CA2809444A1 (en) * 2012-03-23 2013-09-23 General Electric Company Methods for processing titanium aluminide intermetallic compositions
EP2657358A1 (en) * 2012-03-24 2013-10-30 General Electric Company Titanium aluminide intermetallic compositions
CN103074520A (zh) * 2013-01-14 2013-05-01 北京工业大学 一种含Er高铌TiAl金属间化合物材料及其制备方法

Also Published As

Publication number Publication date
CN103710606A (zh) 2014-04-09

Similar Documents

Publication Publication Date Title
CN103820676B (zh) 一种Cr、V合金化β相凝固高Nb-TiAl合金及其制备方法
CN103074520A (zh) 一种含Er高铌TiAl金属间化合物材料及其制备方法
CN107164639B (zh) 一种电子束层覆式凝固技术制备高温合金的方法
CN109161770B (zh) 一种高模量镁合金及其制备方法
Chen et al. Microstructures and mechanical properties of in-situ Al 3 Ti/2024 aluminum matrix composites fabricated by ultrasonic treatment and subsequent squeeze casting
CN104388862B (zh) 一种含τ3相γ-TiAl金属间化合物铸锭的全片层热处理方法
CN103820677B (zh) 一种含Mn高Nb新型β-γTiAl金属间化合物材料及其制备方法
CN104451277B (zh) 铬铝合金靶材及其制备方法
CN106636741A (zh) TiAl合金棒材的制备方法
CN110616341B (zh) 一种CoCrNiNbx共晶中熵合金及其制备方法
CN103820697B (zh) 一种多元合金化β相凝固高Nb-TiAl合金及其制备方法
CN109234552A (zh) 一种压力下凝固制备高Cu含量Al-Cu合金的方法
CN103695708A (zh) 一种含W高Nb新型β-γTiAl金属间化合物材料及其制备方法
CN105543618B (zh) 一种减少定向凝固钛铝合金铸件与铸型涂层反应的优化工艺
CN104704139A (zh) Cu-Ga合金溅射靶及其制造方法
CN104404345A (zh) 一种含τ3相γ-TiAl金属间化合物铸锭及其制备方法
CN103820673B (zh) 一种W、V合金化β相凝固高Nb-TiAl合金及其制备方法
CN103710606B (zh) 一种含Cr高Nbβ-γ TiAl金属间化合物材料及其制备方法
CN108866365A (zh) 一种高品质钛铝预合金粉末用电极制备方法
CN107400809A (zh) 锆锶复合微合金化的高强韧耐腐蚀低硅含量铝硅铜系铸造铝合金及制备方法
CN104513914A (zh) 一种超低间隙相高韧性铸造钛合金及熔铸方法
CN103834844B (zh) 一种V、Mn合金化β相凝固高Nb-TiAl合金及其制备方法
CN103820672B (zh) 一种Cr、Mn合金化β相凝固高Nb‑TiAl合金及其制备方法
CN103820675A (zh) 一种含V高Nb新型β-γTiAl金属间化合物材料及其制备方法
CN105039783A (zh) Ti2AlC颗粒细化γ-TiAl金属间化合物材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CB03 Change of inventor or designer information

Inventor after: Chen Ziyong

Inventor after: Gong Ziqi

Inventor after: Chai Lihua

Inventor after: Zhou Feng

Inventor after: Xiang Zhilei

Inventor before: Chen Ziyong

Inventor before: Gong Ziqi

Inventor before: Chai Li

Inventor before: Zhou Feng

Inventor before: Xiang Zhilei

COR Change of bibliographic data