CN103678897A - 一种基于凯恩方程的飞轮隔振平台专用动力学建模方法 - Google Patents
一种基于凯恩方程的飞轮隔振平台专用动力学建模方法 Download PDFInfo
- Publication number
- CN103678897A CN103678897A CN201310649141.1A CN201310649141A CN103678897A CN 103678897 A CN103678897 A CN 103678897A CN 201310649141 A CN201310649141 A CN 201310649141A CN 103678897 A CN103678897 A CN 103678897A
- Authority
- CN
- China
- Prior art keywords
- actuator
- platform
- mounting plate
- speed
- upper mounting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000002955 isolation Methods 0.000 title abstract description 8
- 230000001133 acceleration Effects 0.000 claims description 23
- 230000005484 gravity Effects 0.000 claims description 8
- 238000013016 damping Methods 0.000 claims description 6
- 241001282135 Poromitra oscitans Species 0.000 claims description 4
- 206010048232 Yawning Diseases 0.000 claims description 4
- 230000035807 sensation Effects 0.000 claims description 3
- 230000009885 systemic effect Effects 0.000 claims description 3
- 230000007246 mechanism Effects 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Landscapes
- Vibration Prevention Devices (AREA)
Abstract
本发明公开了一种基于凯恩方程的飞轮隔振平台专用动力学建模方法,该发明运用凯恩方程建立飞轮隔振平台动力学模型,以飞轮隔振平台参考点的速度和角速度作为伪速度,推导各个致动器和隔振平台偏速度和偏角速度,建立各个致动器的凯恩方程,并加以综合,得出系统的动力学模型。所建立的模型表达简洁,变量和方程的数目少,适用范围广,计算效率高,适于并行计算。
Description
技术领域
本发明涉及航天器系统与平台技术,具体解决航天器典型执行机构高频微振动抑制与隔离技术,更具体地说,是一种用于飞轮隔振平台的动力学建模方法。
背景技术
随着空间开发及探测活动技术的发展,使航天器及其所携带的精密设备要求轨道支撑平台具有超静意义上的力学环境,为保证仪器精度,隔振技术已不再是锦上添花的“装饰”,而是保证有效载荷正常工作的必要手段。因此必须对航天器工作过程中产生的高频微振动加以隔离,由于卫星上飞轮、陀螺等转动部件高速转动,太阳能电池板的运动以及卫星姿态变化对敏感载荷产生影响,现有技术尚不能够保证卫星上一些高精度、高稳定度的装置维持正常工作,为此需要开展航天器高频微振动多自由度隔振平台研究工作。
用不同方法列写刚体的运动微分方程式时所花的劳动与所得结果的简洁程度是不相同的。在处理单个刚体的定点运动时,若采用牛顿-欧拉力学中的动量矩方法,其推导省力且所得的结果是六个一阶微分方程,形式简洁。特别是欧拉动力学方程具有严格的对称形式,易于求解。但实际问题往往更为复杂,当系统包含一个以上的刚体和质点时,动量矩方法给出的方程式数目往往不够,这时需要对系统中的每个刚体及质点列些运动微分方程,因而出现了许多约束反力,使未知数增多,方程更加复杂。分析力学中的拉个朗日方法则是一个一般的方法,它将系统作为一个整体研究,在理想约束的情况下可以自动消除约束反力而给出与系统自由度数目相同的运动微分方程式,直接由主动力求出运动。但由于引入动能函数,需求两次导数,所以推导过程比较费力,给出的若干二阶微分方程式也相当冗长。
发明内容
本发明要解决的技术问题是提供一种用于飞轮隔振平台的动力学建模方法,能够满足隔振平台实时性和精确度要求较高的情况。
为了达到上述目的,本发明的技术方案是提供一种基于凯恩方程的飞轮隔振平台专用动力学建模方法,所述飞轮隔振平台包含上平台,下平台,分别连接了各自对应的上平台顶点与下平台顶点的六根致动器分支;每根致动器分支中包含上致动器、下致动器及连接两者的弹簧和阻尼器,其特征在于:
所述飞轮隔振平台专用动力学建模方法中,计算飞轮隔振平台参考点的速度和角速度作为伪速度,包含:上、下平台各自的原点位置矢量对时间的导数,即上、下平台各自的原点在参考坐标系中的速度矢量;上、下平台各自的角速度矢量;
以伪速度推导各个致动器分支和隔振平台的偏速度和偏角速度,包含:下致动器各自的质心偏速度;致动器分支的偏角速度;上下致动器相对运动的偏速度;上平台质心运动的偏速度;上平台顶点运动的偏速度;上、下平台各自的偏角速度;下平台的质心偏速度;
本发明采用的方法与现有技术相比,其优点和有益效果是:提出了一种运用Kane方程建立飞轮隔振平台动力学模型的建模方法,所建立的模型表达简洁,变量和方程的数目少,适用范围广,计算效率高,适用于并行计算。
附图说明
图1是飞轮隔振平台的坐标系示意图;
图2是飞轮隔振平台中致动器分支的示意图。
具体实施方式
下面结合附图说明本发明的优选实施方式。
本发明运用Kane(凯恩)方程建立飞轮隔振平台动力学模型,以并飞轮隔振平台参考点的速度和角速度作为伪速度,推导各个致动器和隔振平台偏速度和偏角速度,建立各个致动器的凯恩方程,并加以综合,得出系统的动力学模型。
所述的Kane方程可以写为如下形式:
具体的,本发明通过航天器动力学建模方法基于Kane方程建立系统的动力学方程,包括如下步骤:
步骤1坐标和位置姿态确定;
如图1、图2所示,飞轮隔振平台包含上平台,下平台,分别连接了各自对应的上平台顶点Ai与下平台顶点Bi的六根致动器分支;每根致动器分支中包含上致动器、下致动器及连接两者的弹簧和阻尼器。每个致动器分支的基本运动方程为:
其中,分别是两平台顶点到各自坐标系中原点的位置矢量。,表示上平台原点、下平台原点在参考坐标系中的位置矢量。li是致动器分支i的总长度,即上平台和基座对应顶点间的距离;为致动器分支i从下平台顶点指向对应上平台顶点的单位矢量;假定各平台质心位于其坐标原点处。
2.速度和角速度计算;
顶点Ai的速度可以看成连接Ai和Bi两个顶点的致动器分支i上一个端点的速度,也可以看作上平台上一个顶点的速度。设li为致动器分支i的输入运动,即该分支上下致动器的相对位移。用表示致动器分支i的输入运动li对时间的导数,表示致动器分支i长度的变化率,是一个标量。Wi表示致动器分支i的角速度,可以得到下式:
所以,上式两边同时点乘矢量,可得:
考虑在并联机构各个致动器分支均不能绕自身轴线转动的条件下,存在关系:
根据矢量的运算规则,可以得出并联机构典型分支的角速度
上平台顶点Ai的速度为:
步骤3.加速度和角加速度计算;
1)致动器分支的加速度和角加速度:
上式可化简为:
2)上平台的加速度和角加速度:
步骤4.偏速度与偏角速度计算;
2)下致动器的质心偏速度计算;
得下致动器的质心偏速度为:
3)致动器分支的偏角速度计算:
得到致动器分支的偏角速度为:
4)上下致动器相对运动的偏速度:
5)上平台质心运动的偏速度:
7)上平台的偏角速度为:
8)下平台的质心偏速度为:
9)下平台的偏角速度为:
5.主动力和广义主动力计算:
作用在飞轮隔振平台上的主动力包括驱动力、重力、外部载荷力、弹簧力、阻尼力等。将飞轮隔振机构下平台受到的干扰力向质心简化,记为,为干扰力,为干扰力矩。上平台重力记为,下平台重力记为;上下致动器的重力分别记为和,它们作用在各自的质心处。设弹簧刚度为k,阻尼系数为c,则弹簧力,阻尼力为。第i条致动器分支的上下致动器之间的驱动力为。其中为第i条致动器分支x方向力分量,为第i条致动器分支y方向力分量, 为第i条致动器分支z方向力分量, 为第i条致动器分支x方向力矩分量, 为第i条致动器分支y方向力矩分量, 为第i条致动器分支z方向力矩分量。由于飞轮隔振平台的驱动关节是直线移动关节,因此,驱动力的方向为驱动关节的轴线方向。飞轮隔振平台的广义驱动力可以表示为。
系统的六维广义主动力如下:
1)上平台的广义主动力:
2)下平台广义主动力:
3)致动器分支的广义主动力:
整个隔振平台系统的广义主动力为:
步骤6.惯性力与广义惯性力计算:
飞轮隔振平台的惯性力包括上平台和各个运动构件上的惯性力。上、下平台的惯性力和上下致动器的惯性力分别向各自的质心处简化,上、下平台质量分别为、,相对质心的惯量张量为、,第i条致动器分支的质量为和,相对质心的惯量张量为和。
1)上平台广义惯性力
2)下平台广义惯性力
3)致动器分支的广义惯性力
隔振平台系统的广义惯性力为:
基于上述步骤5和步骤6的计算,本发明所述隔振平台的动力学方程为:
综上所述,本发明公开了一种基于Kane方程的飞轮隔振平台专用动力学建模方法,避免了约束反力的出现,采用伪速度描述系统的运动,引入惯性力和广义惯性力,具有更大的自由度选取独立变量,使得方程简单。本发明克服了现有技术中的不足,提供了一种模型表达简洁,变量和方程数目少,适用范围广,计算效率高,适用于并行计算的飞轮隔振平台专用动力学建模方法。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。
Claims (7)
1.一种基于凯恩方程的飞轮隔振平台专用动力学建模方法,所述飞轮隔振平台包含上平台,下平台,分别连接了各自对应的上平台顶点与下平台顶点的六根致动器分支;每根致动器分支中包含上致动器、下致动器及连接两者的弹簧和阻尼器,其特征在于:
所述飞轮隔振平台专用动力学建模方法中,计算飞轮隔振平台参考点的速度和角速度作为伪速度,包含:上、下平台各自的原点位置矢量对时间的导数,即上、下平台各自的原点在参考坐标系中的速度矢量;上、下平台各自的角速度矢量;
以伪速度推导各个致动器分支和隔振平台的偏速度和偏角速度,包含:下致动器各自的质心偏速度;致动器分支的偏角速度;上下致动器相对运动的偏速度;上平台质心运动的偏速度;上平台顶点运动的偏速度;上、下平台各自的偏角速度;下平台的质心偏速度;
6.如权利要求5的飞轮隔振平台专用动力学建模方法,其特征在于,
进一步包含计算飞轮隔振平台主动力和广义主动力的以下过程:
飞轮隔振平台上的主动力包括:驱动力、重力、外部载荷力、弹簧力、阻尼力;其中,将飞轮隔振机构下平台受到的干扰力向质心简化,记为,为干扰力,为干扰力矩;上平台重力记为,下平台重力记为;上、下致动器的重力分别记为和,它们作用在各自的质心处;设弹簧刚度为k,阻尼系数为c,则弹簧力,阻尼力为;第i条致动器分支的上下致动器之间的驱动力,即飞轮隔振平台的广义驱动力为,其中、、分别为第i条致动器分支x、y、z方向力分量,、、分别为第i条致动器分支x、y、z方向力矩分量;
上平台的广义主动力:
下平台的广义主动力:
致动器分支的广义主动力:
整个隔振平台系统的广义主动力为:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310649141.1A CN103678897B (zh) | 2013-12-06 | 2013-12-06 | 一种基于凯恩方程的飞轮隔振平台专用动力学建模方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310649141.1A CN103678897B (zh) | 2013-12-06 | 2013-12-06 | 一种基于凯恩方程的飞轮隔振平台专用动力学建模方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103678897A true CN103678897A (zh) | 2014-03-26 |
CN103678897B CN103678897B (zh) | 2017-02-08 |
Family
ID=50316427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310649141.1A Expired - Fee Related CN103678897B (zh) | 2013-12-06 | 2013-12-06 | 一种基于凯恩方程的飞轮隔振平台专用动力学建模方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103678897B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105128008A (zh) * | 2015-08-06 | 2015-12-09 | 珞石(北京)科技有限公司 | 一种基于惯量椭球的机器人运动灵活度判定方法 |
CN105857642A (zh) * | 2016-04-13 | 2016-08-17 | 中国人民解放军国防科学技术大学 | 基于折叠梁结构的航天器飞轮用多自由度被动隔振装置 |
CN107953324A (zh) * | 2017-12-29 | 2018-04-24 | 华南理工大学 | 基于旋量理论和凯恩方法的蛇形机器人动力学分析方法 |
CN110826251A (zh) * | 2019-11-13 | 2020-02-21 | 北京理工大学 | 一种基于Kane方程的充液柔性航天器动力学建模方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101949954A (zh) * | 2010-08-10 | 2011-01-19 | 南京航空航天大学 | 冗余并联式六维加速度传感器及其测量方法 |
CN102825613A (zh) * | 2012-09-17 | 2012-12-19 | 北京航空航天大学 | 一种基于可控局部自由度的主动减振方法与装置 |
-
2013
- 2013-12-06 CN CN201310649141.1A patent/CN103678897B/zh not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101949954A (zh) * | 2010-08-10 | 2011-01-19 | 南京航空航天大学 | 冗余并联式六维加速度传感器及其测量方法 |
CN102825613A (zh) * | 2012-09-17 | 2012-12-19 | 北京航空航天大学 | 一种基于可控局部自由度的主动减振方法与装置 |
Non-Patent Citations (4)
Title |
---|
MD. EMDADUL HOQUE等: ""A six-axis hybrid vibration isolation system using active zero-power control supported by passive weight support mechanism"", 《JOURNAL OF SOUND AND VIBRATION》, vol. 329, no. 17, 16 August 2010 (2010-08-16), pages 3417 - 3430, XP027020816 * |
张国伟等: ""并联机器人动力学问题的Kane方法"", 《系统仿真学报》, vol. 16, no. 7, 31 July 2004 (2004-07-31), pages 1386 - 1391 * |
张尧等: ""星上控制力矩陀螺群隔振平台的应用研究"", 《机械工程学报》, vol. 49, no. 21, 30 November 2013 (2013-11-30), pages 123 - 131 * |
沈建: ""动量飞轮隔振平台性能仿真与最优控制研究"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》, vol. 2013, no. 2, 15 February 2013 (2013-02-15), pages 031 - 262 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105128008A (zh) * | 2015-08-06 | 2015-12-09 | 珞石(北京)科技有限公司 | 一种基于惯量椭球的机器人运动灵活度判定方法 |
CN105128008B (zh) * | 2015-08-06 | 2017-08-11 | 珞石(北京)科技有限公司 | 一种基于惯量椭球的机器人运动灵活度判定方法 |
CN105857642A (zh) * | 2016-04-13 | 2016-08-17 | 中国人民解放军国防科学技术大学 | 基于折叠梁结构的航天器飞轮用多自由度被动隔振装置 |
CN107953324A (zh) * | 2017-12-29 | 2018-04-24 | 华南理工大学 | 基于旋量理论和凯恩方法的蛇形机器人动力学分析方法 |
CN110826251A (zh) * | 2019-11-13 | 2020-02-21 | 北京理工大学 | 一种基于Kane方程的充液柔性航天器动力学建模方法 |
CN110826251B (zh) * | 2019-11-13 | 2020-10-20 | 北京理工大学 | 一种基于Kane方程的充液柔性航天器动力学建模方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103678897B (zh) | 2017-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wu et al. | Strapdown inertial navigation system algorithms based on dual quaternions | |
Moallem et al. | An integral manifold approach for tip-position tracking of flexible multi-link manipulators | |
CN112364571B (zh) | 大型复杂耦合航天器动力学模型建模方法 | |
Cuadrado et al. | A combined penalty and recursive real-time formulation for multibody dynamics | |
JP2009511968A5 (zh) | ||
Wang et al. | High-order nonlinear differentiator and application to aircraft control | |
CN109657282B (zh) | 一种基于拉格朗日动力学的h型运动平台建模方法 | |
Dyniewicz | Space–time finite element approach to general description of a moving inertial load | |
CN103678897A (zh) | 一种基于凯恩方程的飞轮隔振平台专用动力学建模方法 | |
CN103984237A (zh) | 基于运动状态综合识别的轴对称飞行器三通道自适应控制系统设计方法 | |
Lankarani et al. | Application of the canonical equations of motion in problems of constrained multibody systems with intermittent motion | |
CN102288177A (zh) | 一种基于角速率输出的捷联系统速度解算方法 | |
CN108182330A (zh) | 一种基于b样条计算柔性矩形薄板刚柔耦合动力学响应的方法 | |
Escalona et al. | Validation of multibody modeling and simulation using an instrumented bicycle: from the computer to the road | |
Lee et al. | The development of a sliding joint for very flexible multibody dynamics using absolute nodal coordinate formulation | |
Lee | A short note for numerical analysis of dynamic contact considering impact and a very stiff spring-damper constraint on the contact point | |
CN105674971B (zh) | 基于陀螺飞轮系统的二维航天器角速率测量方法 | |
CN104317981A (zh) | 一种桨毂中心非线性动特性建模方法 | |
Ider et al. | Trajectory tracking control of flexible-joint robots | |
CN112149234A (zh) | 一种基于俯仰角速率输入的飞行器质点运动模型设计方法 | |
CN113419433B (zh) | 一种自平衡电动轮椅欠驱动系统跟踪控制器的设计方法 | |
Wang et al. | Nonlinear model reduction for aeroelastic control of flexible aircraft described by large finite-element models | |
CN103217924A (zh) | 面向实时控制应用的过约束重型并联机床动力学建模方法 | |
CN111814277B (zh) | 一种隔振平台设备及其动力学模型构建方法 | |
CN109684766B (zh) | 含转角的大变形柔性梁单元建模方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170208 |