CN103649027B - 制备环庚烯的方法 - Google Patents

制备环庚烯的方法 Download PDF

Info

Publication number
CN103649027B
CN103649027B CN201280034094.3A CN201280034094A CN103649027B CN 103649027 B CN103649027 B CN 103649027B CN 201280034094 A CN201280034094 A CN 201280034094A CN 103649027 B CN103649027 B CN 103649027B
Authority
CN
China
Prior art keywords
reaction
diene
suberene
formula
ring closing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201280034094.3A
Other languages
English (en)
Other versions
CN103649027A (zh
Inventor
J·H·特莱斯
M·林巴赫
R·德恩
S·多伊尔莱因
M·丹兹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of CN103649027A publication Critical patent/CN103649027A/zh
Application granted granted Critical
Publication of CN103649027B publication Critical patent/CN103649027B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C6/00Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
    • C07C6/02Metathesis reactions at an unsaturated carbon-to-carbon bond
    • C07C6/04Metathesis reactions at an unsaturated carbon-to-carbon bond at a carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/207Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds
    • C07C1/2078Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds by a transformation in which at least one -C(=O)-O- moiety is eliminated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/24Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds
    • C07C209/26Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds by reduction with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/353Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by isomerisation; by change of size of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/58Preparation of carboxylic acid halides
    • C07C51/60Preparation of carboxylic acid halides by conversion of carboxylic acids or their anhydrides or esters, lactones, salts into halides with the same carboxylic acid part
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/24Phosphines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/18Systems containing only non-condensed rings with a ring being at least seven-membered
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明提供一种通过不对称1,8-二烯的闭环易位反应制备环庚烯及其衍生物的方法,其中在所述1,8-二烯的8-位上的C-C双键不是位于端部的。环庚烯及其衍生物环庚酮、环庚胺、环庚烷甲醛、环庚烷甲酸和环庚烷碳酰氯以及它们的衍生物是重要的用于合成活性化合物的构成单元。闭环易位反应优选作为反应性蒸馏进行。用于闭环易位反应的不对称1,8-二烯可以通过相应不饱和羧酸和/或羧酸衍生物的催化脱羰基化反应或氧化脱羧基化反应获得。

Description

制备环庚烯的方法
描述
本申请引入2011年7月12日递交的美国临时申请61/506,679作为参考。
本发明涉及一种通过1,8-二烯的闭环易位反应制备环庚烯的方法,其中在1,8-二烯的8-位上的C-C双键不是位于端部的。本发明还涉及从根据本发明制备的环庚烯制备环庚酮、环庚胺、环庚烷甲醛、环庚烷甲酸和环庚烷碳酰氯转化产物的方法。按照类似的方式,本发明还涉及制备在环庚烯环环上被一个或多个基团取代的相应衍生物的方法。
具有环庚烷环的化合物通常用作活性成分。市场上主要有例如苄环庚烷用作钙通道阻断剂,庚巴比妥作为能在合适时间内起作用的巴比妥类,以及英卡膦酸以抵抗恶性高钙血症。
所有这些活性成分是从环庚酮或从环庚胺开始合成的。在文献中所述的许多其它活性成分是从其它环庚烷衍生物开始合成的。其中重要的那些包括环庚烷甲醛和可由其制备的环庚烷甲酸,以及环庚烷碳酰氯。但是,仅仅环庚酮(软木酮)可以在工业上经由较长和复杂的合成路线获得。
EP0632004描述了通过辛二腈在高温下在水的存在下用Si/Ti混合氧化物催化剂进行环化来合成环庚酮。产率是较好的85%,但是催化剂的寿命仅仅是一般的。辛二腈必须按照多阶段合成制备:从1,6-己二醇开始,其被转化成1,6-二氯己烷和光气,随后与NaCN反应;或者从辛二酸开始,经由辛二酰胺,随后消除水,使用P4O10。这两种路线是非常长的,仅仅提供一种获得环庚酮的方式。
所有上述起始单元(环庚酮,环庚胺,环庚烷甲醛,环庚烷甲酸和环庚烷碳酰氯)的合成可以更简单地从作为中心单元的环庚烯开始进行:
环庚烯可以通过α,ω-烯烃1,8-壬二烯的闭环易位反应(RCM)制备,其中1,8-壬二烯的两个端部C-C双键进行环化以消除挥发性的乙烯(Ben-Asuly等,Organometallics(2008),27:811-813)。此方法的缺点特别是反应物缺少工业应用性和较高的稀释。此文献没有描述从不对称的α,ω-烯烃或甚至从仅仅具有一个端部C-C双键的二烯的闭环易位反应制备环庚烯或其衍生物。相反,此文献中认为,在使用不对称二烯的情况下,通过无环二烯易位进行的二聚反应(ADMET)是优选的(Conrad&Fogg,CurrOrgChemisty(2006),10:185-202)。
目前还没有获得环庚烯的简单工业方法。因此,需要从工业可获得的原料开始的方法。
所以,本发明的目的是提供一种制备环庚烯的方法,此方法是从另外的、尤其是从工业可获得的原料开始的。
因此,本发明涉及一种制备环庚烯或其衍生物的方法,其中式I的1,8-二烯:
及其衍生物进行催化闭环易位反应,
其中R1是具有1-20个碳原子的烷基,尤其是具有4、6、8或10个碳原子的烷基。本发明优选涉及一种制备环庚烯的方法,其中式I的1,8-二烯进行催化闭环易位反应,其中R1是具有1-20个碳原子的烷基,尤其是具有4、6、8或10个碳原子的烷基。式I的1,8-二烯或其衍生物优选不具有任何共轭双键。式I的1,8-二烯优选是十七碳-1,8-二烯。
在本发明中,烷基是不含杂原子的脂族烃基团。它们可以是支化或未支化的和饱和或不饱和的。它们优选是饱和和支化的。
式I的1,8-二烯的衍生物是已经通过从式I的1,8-二烯开始在其2-7位上被一个或多个、优选1-3个R2取代基各自独立地改性的那些化合物。R2是具有1-4个碳原子的烷基,具有1-4个碳原子的烷氧基,苯基,卤素,优选氯或溴,氨基,羟基,或磺基。
原则上,所有可考虑的易位反应催化剂可以用于式I的1,8-二烯或其衍生物的闭环易位反应。因为此反应具有正活化熵(两个分子是从一个分子获得的),所以此反应是在较高的温度下有利的。所以,对于此反应,也可以使用常规的用于高温气相易位的非均相催化剂,例如WO3/SiO2催化剂。所用的非均相催化剂例如不仅可以是WO3/SiO2催化剂,还有Re2O7/Al2O3催化剂。所用的均相易位反应催化剂通常是钨或铼的盐或配合物(例如WCl6或CH3Re(CO)5),或基于钌或钼的金属-卡宾配合物(第一代Grubbs催化剂,第二代Grubbs催化剂,Schrock催化剂,Hoveyda-Grubbs催化剂)。基于Re、Mo或W的催化剂通常与助催化剂(通常是主族元素的有机金属配合物,例如铝烷基化物、铝烷基氯化物或锌烷基化物)和活化剂(例如氧化合物,例如乙醇或乙醚)组合使用。合适的易位反应催化剂已经描述在文献中(例如US5,969,170,US6,111,121,US6,921,735,US11/094,102,US6,759,537,EP993465,US6,635,768,WO2007/003135,WO2008/065187,EP1468004,DE102008008299)。合适的易位反应催化剂是钌-卡宾配合物,例如二氯(3-甲基-2-亚丁烯基)二(三环戊基膦)钌(II),亚异戊烯基(1,3-二基亚咪唑烷-2-基)(三环己基膦)钌(II)二氯化物,亚苄基二(三环己基膦)二氯钌,1,3-二(2,4,6-三甲基苯基)-2-(亚咪唑烷基)二氯(苯基亚甲基)(三环己基膦)钌,二氯(o-异丙氧基苯基亚甲基)(三环己基膦)钌(II),(1,3-二(2,4,6-三甲基苯基)-2-亚咪唑烷基)二氯(o-异丙氧基苯基亚甲基)钌,1,3-二(2-甲基苯基)-2-亚咪唑烷基]二氯(苯基亚甲基)(三环己基膦)钌(II),二氯[1,3-二(2-甲基苯基)-2-亚咪唑烷基](2-异丙氧基苯基亚甲基)钌(II),二氯[1,3-二(2,4,6-三甲基苯基)-2-亚咪唑烷基][3-(2-吡啶基)亚丙基]钌(II),二氯[1,3-二(2,4,6-三甲基苯基)-2-亚咪唑烷基](亚苄基)二(3-溴吡啶)钌(II),[1,3-二(2,6-二-异丙基苯基)-4,5-二氢亚咪唑-2-基]-[2-异丙氧基-5-(三氟乙酰氨基)苯基]亚甲基钌(II)二氯化物,二(三环己基膦)-3-苯基-1H-亚茚-1-基-钌(II)二氯化物,二(三环己基膦)[(苯硫基)亚甲基]钌(II)二氯化物,二(三环己基膦)[(苯硫基)亚甲基]钌(II)二氯化物,1,3-二(2,4,6-三甲基苯基)-4,5-二氢亚咪唑-2-基[2-(异-丙氧基)-5-(N,N-二甲基氨基磺酰基)苯基]亚甲基钌(II)二氯化物,1,3-二(2,4,6-三甲基苯基)-4,5-二氢亚咪唑-2-基[2-(异丙氧基)-5-(N,N-二甲基氨基磺酰基)苯基]亚甲基钌(II)二氯化物,[1,3-二(2,4,6-三甲基苯基)-2-亚咪唑烷基]-[2-[[(4-甲基苯基)亚氨基]甲基]-4-硝基苯酚基]-[3-苯基-1H-亚茚-1-基]钌(II)氯化物;[1,3-二(2,4,6-三甲基苯基)-2-亚咪唑烷基]-[2-[[(2-甲基苯基)亚氨基]甲基]苯酚基]-[3-苯基-1H-亚茚-1-基]钌(II)氯化物,3-苯基-1H-亚茚-1-基[二(异丁基磷杂二环(phobane))]钌(II)二氯化物,{[2-(i-丙氧基)-5-(N,N-二甲基氨基磺酰基)苯基]亚甲基}(三环己基膦)钌(II)二氯化物,三环己基膦[1,3-二(2,4,6-三甲基苯基)-4,5-二氢亚咪唑-2-基][(苯硫基)亚甲基]钌(II)二氯化物,三环己基膦[1,3-二(2,4,6-三甲基苯基)亚咪唑-2-基][3-苯基-1H-亚茚-1-基]钌(II)二氯化物,三环己基膦[1,3-二(2,4,6-三甲基苯基)亚咪唑-2-基][2-噻吩基亚甲基]钌(II)二氯化物,三环己基膦[2,4-二氢-2,4,5-三苯基-3H-1,2,4-亚三唑-3-基][2-噻吩基亚甲基]钌(II)二氯化物,三环己基膦[4,5-二甲基-1,3-二(2,4,6-三甲基苯基)亚咪唑-2-基][2-噻吩基亚甲基]钌(II)二氯化物,三环己基膦[3-苯基-1H-亚茚-1-基][1,3-二(2,4,6-三甲基苯基)-4,5-二氢亚咪唑-2-基]钌(II)二氯化物,三氟乙酰基[4,5-二氢-1,3-二(2,4,6-三甲基苯基)亚咪唑-2-基]四(2,2-二甲基丙腈)钌(II)三氟乙酸盐或三(异丙氧基)膦(3-苯基-1H-亚茚-1-基)[1,3-二(2,4,6-三甲基苯基)-4,5-二氢亚咪唑-2-基]钌(II)二氯化物。
根据所用的催化剂类型,此反应是在温和的温度(例如0-100℃)或在升高的温度(例如100-500℃)下进行。
催化闭环易位反应可以在液相或气相中进行。其可以按照均相催化或非均相催化的形式进行。
对于本发明的闭环易位反应,优选使用Ru催化剂,例如式II的Ru催化剂(Mes=基,Ph=苯基,Pr=丙基),式III的Ru催化剂(其中Cy=环己基,Ph=苯基),或式IV的Ru催化剂(第二代Hoveyda-Grubbs催化剂,其中Mes=基):
在式I的1,8-二烯或其衍生物的闭环易位反应中,环庚烯或其衍生物是在同时消除作为副产物的式V烯烃的情况下进行的:
此副产物可以在反应条件下进行二聚,且同时消除乙烯以形成式VI的烯烃:
在十七碳-1,8-二烯的闭环易位反应的情况下,所消除的式V副产物是1-癸烯,相应的式VI二聚产物是9-十八烯。式V和VI的烯烃、尤其是1-癸烯和9-十八烯,也是工业上重要的有价值产物,其可以从反应混合物分离。式VI的烯烃、例如9-十八烯是通常在本发明闭环易位反应中作为底部产物获得的。式V和VI的烯烃可以是作为在本发明方法中除了环庚烯或其衍生物之外的联产物获得。
本发明的闭环易位反应可以按照间歇、半间歇或连续模式进行。优选,本发明的闭环易位反应作为反应性蒸馏进行。
在按照间歇模式进行本发明的闭环易位反应的情况下,先加入反应物(式I的1,8-二烯或其衍生物)和易位反应催化剂,优选在惰性溶剂中,并暴露于反应条件下。此反应优选在0-500℃、更优选20-100℃的温度和在优选1-5巴的压力、更优选标准压力下进行。应当选择压力以使得其大于反应混合物在合适温度下的蒸气压。反应物优选先以不超过1.0mol/l的浓度加入,优选不超过0.5mol/l,例如浓度在0.01-0.1mol/l的范围内。优选选择溶剂以使得其可以容易地从环庚烯反应产物或其衍生物分离出来,即,例如在蒸馏去除的情况下具有足够不同的沸点。溶剂的沸点优选与环庚烯反应产物或其衍生物在5-1500毫巴压力下的沸点相差至少20℃,更优选相差至少50℃。溶剂的沸点优选高于环庚烯或其衍生物的沸点。溶剂优选不会与环庚烯或其衍生物形成任何共沸物。合适的溶剂例如是二苯基醚、二氯苯、二氯乙烷、二甲苯、枯烯、甲苯和二氯甲烷。易位反应催化剂的用量是优选不超过0.1摩尔%,更优选不超过0.05摩尔%,基于反应物计。反应的最佳时间可以对于具体的反应和具体的反应条件而言是不同的。其可以通过从反应混合物取样并分析产物含量来确定。通常,反应时间是0.5-48小时,优选1-6小时。在反应时间过短的情况下,由于反应物的不完全转化,产物产率不是最佳的;在反应时间过长的情况下,由于不需要的副反应或产物的其它反应,产物产率不是最佳的。
在按照间歇模式作为反应性蒸馏进行本发明的闭环易位反应的情况下,先加入反应物(式I的1,8-二烯或其衍生物)和易位反应催化剂,优选在惰性溶剂中,并暴露于反应条件下。此反应优选在0-500℃、更优选20-100℃的温度和在优选1-150毫巴、更优选5-100毫巴的压力下进行。应当选择压力以使得环庚烯反应产物或其衍生物在合适温度下的蒸气压大于所施加的液相压力,使得产物能容易地在反应期间通过蒸馏除去。反应物优选先以不超过2mol/l的浓度加入,优选不超过1mol/l,例如浓度在0.01-0.5mol/l的范围内。优选选择溶剂以使得其在所选择的反应条件下在反应期间略微蒸发(小于在整个反应期间初始使用体积的10%),如果有的话。溶剂在5-1500毫巴压力下的沸点优选比环庚烯或其衍生物的沸点高出至少20℃,更优选高出至少50℃。溶剂优选不会与环庚烯或其衍生物形成任何共沸物。合适的溶剂例如是高沸点芳烃,例如二甲苯、甲苯或枯烯,卤代烃例如二氯甲烷或二氯乙烷,卤代芳族化合物例如二氯苯和二苯基醚。易位反应催化剂的用量是优选不超过0.1摩尔%,更优选不超过0.05摩尔%,基于反应物计。反应的最佳时间可以对于具体的反应和具体的反应条件而言是不同的。其可以通过从反应混合物取样并分析反应物转化率来确定。通常,反应时间是0.5-48小时,优选1-6小时。在反应时间过短的情况下,由于反应物的不完全转化,产物产率不是最佳的;过长的反应时间是不经济的。反应混合物优选含有夹带剂,其改进了产物在反应期间的蒸馏去除。优选选择夹带剂以使得其具有与产物相似的沸点((+/-20℃,优选+/-10℃,在进行反应或蒸馏的压力下)。合适的夹带剂是甲苯。夹带剂优选在蒸馏去除操作之后从产物分离出来,并送回反应混合物。或者,也可以连续地向反应混合物加入新鲜的夹带剂。在这种反应性蒸馏操作模式下,所形成的产物在反应期间直接从反应混合物取出,从而免受不需要的副反应的影响。
在按照半间歇模式作为反应性蒸馏进行本发明的闭环易位反应的情况下,先在惰性溶剂中加入易位反应催化剂。在反应条件下,计量加入反应物(式I的1,8-二烯或其衍生物)。此反应优选在0-500℃、更优选20-100℃的温度和在优选1-200毫巴、更优选5-150毫巴的压力下进行。应当选择压力以使得环庚烯反应产物或其衍生物在合适温度下的蒸气压大于所施加的液相压力,使得产物能容易地在反应期间通过蒸馏除去。反应物的计量添加流速优选使得反应物的浓度不超过1mol/l的值,优选不超过0.5mol/l,例如浓度在0.005-0.5mol/l、优选0.01-0.1mol/l的范围内。优选选择溶剂以使得其在所选择的反应条件下的反应期间略微蒸发(小于在整个反应期间初始使用体积的10%),如果有的话。溶剂在5-1500毫巴压力下的沸点优选比环庚烯或其衍生物的沸点高出至少20℃,更优选高出至少50℃。溶剂优选不会与环庚烯或其衍生物形成任何共沸物。合适的溶剂例如是高沸点芳烃,例如二甲苯、甲苯或枯烯,卤代烃例如二氯甲烷或二氯乙烷,卤代芳族化合物例如二氯苯和二苯基醚。易位反应催化剂的用量是优选不超过0.1摩尔%,更优选不超过0.05摩尔%,基于反应物计。反应混合物优选含有夹带剂,其改进了产物在反应期间的蒸馏去除。优选选择夹带剂以使得其具有与产物相似的沸点((+/-20℃,优选+/-10℃,在进行反应或蒸馏的压力下)。合适的夹带剂是甲苯。夹带剂优选在蒸馏去除操作之后从产物分离出来,并送回反应混合物。或者,也可以连续地向反应混合物加入新鲜的夹带剂。在这种反应性蒸馏操作模式下,所形成的产物在反应期间直接从反应混合物持续地取出,从而免受不需要的副反应的影响。半间歇模式的反应性蒸馏允许在反应混合物中的较低反应物浓度下达到高转化率,这另外抑制了分子间副反应,例如式I的1,8-二烯或其衍生物的二聚。
在按照连续反应性蒸馏进行本发明的闭环易位反应的情况下,将反应物(式I的1,8-二烯或其衍生物)、优选在惰性溶剂中连续地供应给具有精馏段和汽提段的精馏塔的反应区。在反应区中先装入易位反应催化剂。此反应优选在0-500℃、更优选20-100℃的温度和在优选1-200毫巴、更优选5-150毫巴的压力下进行。通过在精馏塔中蒸馏,从反应混合物除去产物(环庚烯或其衍生物,以及在易位中消除的烯烃或其二聚物),并连续地取出。优选选择溶剂,其沸点使得溶剂能大部分保留在塔的反应区中。从塔中取出的含产物的溶剂优选从产物分离出来(例如通过蒸馏),并与反应物一起送回反应。优选调节反应条件以使得在反应区中的反应物的浓度不超过1mol/l,优选不超过0.5mol/l,例如浓度在0.005-0.5mol/l、优选0.01-0.1mol/l的范围内。合适的溶剂例如是高沸点芳烃,例如二甲苯、甲苯或枯烯,卤代烃例如二氯甲烷或二氯乙烷,卤代芳族化合物例如二氯苯和二苯基醚。易位反应催化剂的用量是优选不超过0.1摩尔%,更优选不超过0.05摩尔%,基于反应物计。优选向反应混合物加入夹带剂,其改进了产物在反应期间的蒸馏去除。夹带剂优选在蒸馏去除操作之后从产物分离出来,并送回反应混合物。
用于本发明催化闭环易位反应的式I的1,8-二烯可以通过式VII的羧酸或羧酸衍生物的催化脱羰基化反应(Trost&Fleming(Eds.),有机合成百科(ComprehensiveOrganicSynthesis),第1版,Elsevier(1991)3:1040-1042)或脱羧基化反应(Carey&Sundberg,高等有机化学(AdvancedOrganicChemistry),PlenumPress(1990),第3版,NewYork,第649-651页)制备:
X是卤素,优选氯,氢原子,羟基或其它合适的离去基团,例如酰基,优选乙酰基、新戊酰基或苯甲酰基。原则上,其它羧酸活化也是可能的,例如咪唑烷或活性酯。式I的1,8-二烯的衍生物可以按照类似的方式从式VII的羧酸或羧酸衍生物的相应衍生物制备。十七碳-1,8-二烯可以例如通过油酸或油酸衍生物例如油酰氯的催化脱羰基化反应或氧化脱羧基化反应制备。按照相应的方式,适用于闭环易位反应以得到环庚烯的式I的1,8-二烯也可以例如通过肉豆蔻油酸、棕榈油酸、反油酸或顺-9-二十碳烯酸或其酸衍生物的催化脱羰基化反应或氧化脱羧基化反应制备。适用相应的多不饱和羧酸或羧酸衍生物例如亚油酸也是可能的,但是闭环易位反应会主要导致具有更大环尺寸的不饱和脂环族化合物作为副产物。
这些催化脱羰基化反应或氧化脱羧基化反应已经在原则上记载在文献中(Blum等,JAmChemSoc(1967)89:2338-2341;Ohno&Tsuji,JAmChemSoc(1968)90:99-107;Tsuji&Ohno,合成(1969)157-169)。Goossen&Rodríguez(ChemComm(2004)724-725)描述了例如油酸在过量新戊酸酐和Pd催化剂的存在下向十七碳-1,8-二烯的转化,产率为69%。也已经知道的是油酸在过量乙酸酐和PdCl2(PPh3)2催化剂的存在下的脱羰基化反应(Miller等,JOrgChem(1993)58:18-20)。US5,077,447和US3,109,040描述了具有相似催化剂体系的相同反应。
其中X=OH的式VII羧酸,例如油酸,是在催化脱羰基化反应或氧化脱羧基化反应中转化成式I的1,8-二烯,例如十七碳-1,8-二烯,且同时消除CO和水。因为在此转化中的水是不良的离去基团,所以其中X=OH的式VII羧酸对于此转化而言不是特别好的基质。有利的是,其中X=OH的式VII羧酸在原地被活化,例如通过与乙酸酐或新戊酸酐形成混合酸酐,或者使用具有更好的离去基团的羧酸衍生物,例如酰氯。此反应可以被视为逆-Koch羰基化。代替酸,还可以使用醛,在这种情况下消除CO和H2,并且此反应可以被视为逆加氢甲酰化。可以使用纯的式VII羧酸或羧酸衍生物,或者含有它们的混合物。这些混合物含有的式VII羧酸或羧酸衍生物的比例是优选至少50重量%。
因为油酸和油酰氯是工业可获得的,所以它们用于制备十七碳-1,8-二烯的用途是特别优选的。
对于式VII的羧酸或羧酸衍生物的催化脱羰基化反应或氧化脱羧基化反应,可以使用在文献中描述的所有催化剂。特别优选使用Pd(II)和Rh(I)配合物作为催化剂。
式VII的羧酸或羧酸衍生物进行催化脱羰基化或氧化脱羧基化以得到式I的1,8-二烯的反应是优选作为反应性蒸馏按照半间歇模式进行的,在这种情况下将式VII的羧酸或羧酸衍生物均匀地计量加入反应器中,并非常快速地除去挥发性产物。为了实现此目的,根据催化剂选择反应温度以获得合适的反应速率。根据此反应温度,然后选择压力以使得式I的1,8-二烯的沸点比在此压力下的反应温度低至少10℃。此反应可以在本体中进行,或在反应条件下呈惰性的高沸点溶剂的存在下进行。在本文中,“高沸点溶剂”表示其在给定反应条件下的沸点高于所选择的反应温度的那些溶剂。
在催化脱羰基化反应或氧化脱羧基化反应的一个优选方案中,将催化剂先溶解在高沸点溶剂或离子液体中,并将此溶液施用到多孔惰性载体上。催化剂然后用于固定床反应器中。
在用于本发明的本发明闭环易位反应中之前,式I的1,8-二烯优选进行提纯。提纯也可以是多步骤的。例如,从油酰氯开始,气态反应出料可以先冷凝,然后所形成的含水HCl可以通过相分离除去,然后有机相可以用水和/或稀碱洗涤,任选地也洗涤多于一次,最后有机相可以通过蒸馏提纯。
根据本发明制备的环庚烯可以在另一个步骤中,例如用N2O氧化得到环庚酮。也可以是两步工序,即环氧化,并将环氧化物重排成环庚酮。环庚酮进而可以在随后的步骤中催化转化,例如用氢气和氨进行,得到环庚胺(还原胺化)。或者,根据本发明制备的环庚烯也可以例如用氢气和一氧化碳催化转化成环庚烷甲醛(加氢甲酰化)。这可以在随后的步骤中氧化,例如加入氧气进行,得到环庚烷甲酸。环庚烷甲酸也可以直接从环庚烯制备,例如根据WO01/05738所述通过与甲酸反应制备。环庚烷甲酸进而可以例如用光气转化成环庚烷碳酰氯。按照类似的方式,环庚酮、环庚胺、环庚烷甲醛、环庚烷甲酸或环庚烷碳酰氯的相应衍生物也可以从在环庚烯环上具有一个或多个R2取代基的相应环庚烯衍生物制备,在这种情况下这根据本发明从已经在式I的1,8-二烯的2-7位上被一个或多个、优选1-3个R2取代基各自独立地改性的化合物进行。R2是具有1-4个碳原子的烷基,具有1-4个碳原子的烷氧基,苯基,卤素,优选氯或溴,氨基,羟基,或磺基。
下面通过非限制性实施例更详细地说明本发明。
实施例1
将作为易位反应催化剂的式II的Ru配合物(73mg,80μmol)在二苯基醚(222g)中的溶液在减压(8毫巴)下加热到85℃。用注射泵将1,8-十七碳二烯(21.9g,纯度是90重量%,83mmol)在甲苯(22ml)中的溶液在4小时内均匀地滴加入此混合物,同时将环庚烯产物和其它低沸点物(例如1-癸烯和甲苯)恒定地蒸馏出到接收器中。在反应结束时,检测到反应物的完全转化。通过GC分析检测在馏出物中的环庚烯的量,对应于4.80g(50mmol,60%的理论产率)。
实施例2
此反应按照与实施例1类似的方式进行,不同的是使用74.3mg(83μmol)的式III的Ru配合物作为易位反应催化剂。在这种情况下,反应物也被完全转化。馏出物含有4.97g(52mmol)的环庚烯,对应于63%的理论产率。
实施例3
此反应按照与实施例1类似的方式进行,不同的是使用仅仅36.6mg(42μmol)的式II的Ru配合物。在这种情况下,在反应结束时也检测到反应物的完全转化。馏出物含有4.23g(44mmol)的环庚烯,对应于53%的理论产率。
实施例4
此反应按照与实施例1类似的方式进行,不同的是使用47.7mg(76μmol)的式IV的Ru配合物作为易位反应催化剂。在这种情况下,反应物也被完全转化。馏出物含有5.57g(58mmol)的环庚烯,对应于70%的理论产率。
实施例5
在室温下向1,8-十七碳二烯(23.3g,纯度是90重量%,89mmol)在二苯基醚(236g)中的溶液中加入50.6mg(81μmol)的式IV的易位反应催化剂。将此反应混合物在减压(8毫巴)下加热到85℃。在反应期间将所形成的环庚烯产物和其它低沸点物(例如1-癸烯)均匀地蒸馏到接收器中。在24小时的反应时间之后,通过GC分析测得反应物的转化率>95%。根据GC分析,馏出物含有1.78g(19mmol)的环庚烯,对应于20%的理论产率。在添加另一部分的易位反应催化剂(50mg,80μmol)之后,反应再继续进行6小时。然后,在接收器中仅仅检测到痕量的额外环庚烯。
实施例6
在85℃下,向1,8-十七碳二烯(2.12g,纯度是90重量%,8mmol)在二苯基醚(21g)中的溶液中加入2.56mg(4μmol,来自标准溶液)的式IV的易位反应催化剂。在3小时的反应时间之后,分析反应混合物。反应物已经被转化88%,并且反应混合物含有110mg(1mmol)的环庚烯,对应于15%的理论产率。

Claims (6)

1.一种制备环庚烯的方法,其中式I的1,8-二烯:
进行催化闭环易位反应,
其中R1是具有1-20个碳原子的烷基,
其中闭环易位反应是在反应混合物中在惰性溶剂的存在下进行,和
其中所形成的环庚烯是通过蒸馏从反应混合物除去并且在反应期间分离,并且将式I的1,8-二烯计量加入反应混合物中以使得式I的1,8-二烯在反应混合物中的浓度不超过1mol/l,
其中所述方法是按照半间歇或连续模式进行的。
2.根据权利要求1的方法,其中反应混合物另外含有夹带剂。
3.根据权利要求1或2的方法,其中钌-卡宾配合物用作闭环易位反应的催化剂。
4.根据权利要求1或2的方法,其中在式I的1,8-二烯的闭环易位反应中,除了环庚烯之外,式V的烯烃:
和/或其二聚产物、即式VI的烯烃:
也作为此方法的联产物分离出来。
5.根据权利要求1或2的方法,其中式I的1,8-二烯在用于闭环易位反应中之前进行提纯。
6.根据权利要求1或2的方法,其中式I的1,8-二烯是十七碳-1,8-二烯。
CN201280034094.3A 2011-07-12 2012-07-03 制备环庚烯的方法 Expired - Fee Related CN103649027B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11173656 2011-07-12
EP11173656.7 2011-07-12
PCT/EP2012/062944 WO2013007561A1 (de) 2011-07-12 2012-07-03 Verfahren zur herstellung von cyclohepten

Publications (2)

Publication Number Publication Date
CN103649027A CN103649027A (zh) 2014-03-19
CN103649027B true CN103649027B (zh) 2016-04-20

Family

ID=46466512

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280034094.3A Expired - Fee Related CN103649027B (zh) 2011-07-12 2012-07-03 制备环庚烯的方法

Country Status (6)

Country Link
EP (1) EP2731923B1 (zh)
JP (1) JP5916855B2 (zh)
KR (1) KR20140054030A (zh)
CN (1) CN103649027B (zh)
IN (1) IN2014CN00746A (zh)
WO (1) WO2013007561A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013186238A1 (de) 2012-06-13 2013-12-19 Basf Se Verfahren zur herstellung makrocyclischer ketone
GB201604110D0 (en) * 2016-03-10 2016-04-20 Givaudan Sa Preparation of macrocyclic lactones

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101084184A (zh) * 2004-12-20 2007-12-05 霍夫曼-拉罗奇有限公司 环烷基胺衍生物

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3109040A (en) 1960-05-23 1963-10-29 Armour & Co Preparation of terminally unsaturated olefins from aliphatic carboxylic acids
US5077447A (en) 1990-09-28 1991-12-31 Henkel Research Corporation Process for making olefins
AU691645B2 (en) 1992-04-03 1998-05-21 California Institute Of Technology High activity ruthenium or osmium metal carbene complexes for olefin metathesis reactions and synthesis thereof
DE4321692A1 (de) 1993-06-30 1995-01-12 Basf Ag Verfahren zur Herstellung von cyclischen Ketonen
US5831108A (en) 1995-08-03 1998-11-03 California Institute Of Technology High metathesis activity ruthenium and osmium metal carbene complexes
EP0993465B1 (en) 1997-06-25 2002-11-20 Ciba SC Holding AG Ruthenium and osmium carbene catalysts
DE19815275B4 (de) 1998-04-06 2009-06-25 Evonik Degussa Gmbh Alkylidenkomplexe des Rutheniums mit N-heterozyklischen Carbenliganden und deren Verwendung als hochaktive, selektive Katalysatoren für die Olefin-Metathese
FR2796639A1 (fr) 1999-07-21 2001-01-26 Rhodia Chimie Sa Procede de preparation d'un acide carboxylique
EP1313559B2 (en) 2000-08-10 2012-10-24 Trustees of Boston College Recyclable metathesis catalysts
US6759537B2 (en) 2001-03-23 2004-07-06 California Institute Of Technology Hexacoordinated ruthenium or osmium metal carbene metathesis catalysts
WO2003062253A1 (en) 2002-01-22 2003-07-31 Universiteit Gent Metal complexes for use in metathesis
EP1394190B1 (de) * 2002-07-31 2007-01-03 Saltigo GmbH Metathesekatalysatoren
CN102643175B (zh) 2005-07-04 2014-12-10 赞南科技(上海)有限公司 钌络合物配体、钌络合物、固载钌络合物催化剂及其制备方法和用途
JP5612304B2 (ja) * 2006-04-11 2014-10-22 エージェンシー フォー サイエンス, テクノロジー アンド リサーチ 閉環メタセシスのための触媒
FR2909382B1 (fr) 2006-11-30 2009-01-23 Enscr Complexes catalytiques a base de ruthenium et utilisation de tels complexes pour la metathese d'olefines
DE102008008299B3 (de) 2008-02-08 2009-08-13 Leibniz-Institut für Oberflächenmodifizierung e.V. Latente photoaktivierbare Präkatalysatoren für die Metathesepolymerisation
US8044043B2 (en) * 2008-04-11 2011-10-25 Bristol-Myers Squibb Company CGRP receptor antagonists
US9410205B2 (en) 2010-02-18 2016-08-09 New York University Methods for predicting survival in metastatic melanoma patients

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101084184A (zh) * 2004-12-20 2007-12-05 霍夫曼-拉罗奇有限公司 环烷基胺衍生物

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
A Highly Catalytic and Selective Conversion of Carboxylic Acids to 1-Alkenes of One Less Carbon Atom;Joseph A. Miller;《J. Org. Chem.》;19931231;第58卷;18-20 *
New efficient catalytic system for hydroxycarbonylation without CO gas;Jean-Pierre Simonato;《Journal of Molecular Catalysis A: Chemical》;20031231;第197卷;61-64 *
On the relationship between structure and reaction rate in olefin ring-closing metathesis;Ian W. Ashworth et al;《Chem. Commun.》;20100906;第46卷;7145–7147 *
Organocatalyzed Conjugate Addition of Carbonyl Compounds to Nitrodienes/Nitroenynes and Synthetic Applications;Sébastien Belot et al;《Adv. Synth. Catal.》;20100219;第352卷;667-695 *
OXIDATION OF ORGANOBORANES WITH PYRIDINIUM CHLOROCHROMATE: A FACILE SYNTHESIS OF KETONES FROM ALKENES;V.V. RAMANA RAO et al;《Journal of Organomefallic Chemistry》;19781231;第162卷;C9-C10 *
Tandem Metal and Organocatalysis in Sequential Hydroformylation and Enantioselective Mannich Reactions;Serghei Chercheja et al;《Adv. Synth. Catal.》;20090206;第351卷;339-344 *

Also Published As

Publication number Publication date
KR20140054030A (ko) 2014-05-08
WO2013007561A1 (de) 2013-01-17
JP2014524915A (ja) 2014-09-25
EP2731923B1 (de) 2015-09-09
JP5916855B2 (ja) 2016-05-11
IN2014CN00746A (zh) 2015-04-03
CN103649027A (zh) 2014-03-19
EP2731923A1 (de) 2014-05-21

Similar Documents

Publication Publication Date Title
Ojima et al. Hydrosilylation of 1-hexyne catalyzed by rhodium and cobalt-rhodium mixed-metal complexes. Mechanism of apparent trans addition
US11918985B2 (en) Ruthenium-based metathesis catalysts, precursors for their preparation and their use
Murray et al. Asymmetric Kita spirolactonisation catalysed by anti-dimethanoanthracene-based iodoarenes
US7507854B2 (en) Impurity reduction in Olefin metathesis reactions
Brenner et al. Calix [4] arenes with one and two N-linked imidazolium units as precursors of N-heterocyclic carbene complexes. Coordination chemistry and use in Suzuki–Miyaura cross-coupling
Barluenga et al. Synthesis of spiroquinolines through a one‐pot multicatalytic and multicomponent cascade reaction
JP2009501211A (ja) メタセシス反応における使用のための、環式リン含有リガンドおよび環式有機リガンドを有する、遷移金属化合物
Nair et al. Increased catalytic productivity for nanofiltration-coupled Heck reactions using highly stable catalyst systems
CN103649027B (zh) 制备环庚烯的方法
An et al. Metal-free enantioselective addition of nucleophilic silicon to aromatic aldehydes catalyzed by a [2.2] paracyclophane-based N-heterocyclic carbene catalyst
Vagedes et al. Treatment of naphthols with B (C6F5) 3: formation and characterization of the Lewis acid adducts of their keto isomers
Drozdzak et al. Rational design and convenient synthesis of a novel family of ruthenium complexes with O, N-bidentate ligands
US8993819B2 (en) Process for preparing cycloheptene
Lujan et al. The influence of N-heterocyclic carbene steric and electronic properties in Ru-catalysed cross metathesis reactions
Bartók et al. Unexpected change of the sense of the enantioselective hydrogenation of ethyl pyruvate catalyzed by a Pt–alumina-cinchona alkaloid system
Jin et al. Catalyst-dependent chemoselective insertion of diazoalkanes into the N–H/C–H/O–H/C–O bonds of 2-hydroxybenzothiazoles
CN111217809B (zh) 一类手性含氮双烯配体及其制备方法和应用
Hryniewicka et al. New olefin metathesis catalysts bearing polyether clamp in N-heterocyclic carbenes ligands
Bieniek et al. New air-stable ruthenium olefin metathesis precatalysts derived from bisphenol S
Dönnecke et al. The ruthenium catalyzed formation of chiral dihydropyrrolones from α, β-unsaturated imines: extending the reaction to terminal alkenes and investigating the formation of pyrroles as side-products
CN107001234B (zh) ω-羟基脂肪酸酯及其前体化合物的制备方法
Markowicz et al. Enantiomerically pure α-pinene derivatives from material of 65% enantiomeric purity. Part 1: Di [3α-(2α-hydroxy) pinane] amine
Nagashima et al. Hydrosilanes are not always a reducing reagent: a ruthenium-catalyzed introduction of primary alkyl groups to electron-rich aromatic rings using esters as a source of the alkyl groups
HyunáKim A new type of self-supported, polymeric Ru-carbene complex for homogeneous catalysis and heterogeneous recovery: synthesis and catalytic activities for ring-closing metathesis
KR20180100611A (ko) 하이드록시피발 알데하이드의 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160420

Termination date: 20170703