CN103648968A - 纳米线制造方法 - Google Patents

纳米线制造方法 Download PDF

Info

Publication number
CN103648968A
CN103648968A CN201280032764.8A CN201280032764A CN103648968A CN 103648968 A CN103648968 A CN 103648968A CN 201280032764 A CN201280032764 A CN 201280032764A CN 103648968 A CN103648968 A CN 103648968A
Authority
CN
China
Prior art keywords
nano wire
lattice
manufacture method
sacrifice layer
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280032764.8A
Other languages
English (en)
Inventor
李领宰
刘庆钟
李俊
金镇秀
朴宰完
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Innotek Co Ltd
Original Assignee
LG Innotek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Innotek Co Ltd filed Critical LG Innotek Co Ltd
Publication of CN103648968A publication Critical patent/CN103648968A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0005Separation of the coating from the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/04Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt
    • C30B11/08Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt every component of the crystal composition being added during the crystallisation
    • C30B11/12Vaporous components, e.g. vapour-liquid-solid-growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66469Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with one- or zero-dimensional channel, e.g. quantum wire field-effect transistors, in-plane gate transistors [IPG], single electron transistors [SET], Coulomb blockade transistors, striped channel transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/888Shaping or removal of materials, e.g. etching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/89Deposition of materials, e.g. coating, cvd, or ald
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/298Physical dimension

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Thin Film Transistor (AREA)
  • Micromachines (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供了一种纳米线制造方法,所述方法包括:在基板上形成多个网格图案;在所述网格图案上形成纳米线;以及将所述网格图案和所述纳米线分离。根据本发明,纳米线的宽度和高度可以通过控制湿刻蚀过程的时间段来调节,并且能够在室温下以低成本制造纳米线,纳米线可以批量制造,并且即使在批量生产的情况下也可以制造具有规则性的纳米线。

Description

纳米线制造方法
相关申请的交叉引用
本申请要求于2011年6月29日提交到韩国知识产权局的韩国专利申请No.10-2011-0063528的优先权,其全部内容通过引用的方式并入于此。
技术领域
本发明涉及一种纳米线制造方法。
背景技术
纳米线是具有纳米单位尺寸的纳米结构,其中纳米结构具有从不到10nm到几百nm的多种直径尺寸。在这种纳米线中,存在如下优点,例如,基于特定方向的电子移动性能或者偏振现象的光学性能。因此,纳米线已经用于光电二极管的多个领域,例如,作为下一代技术的激光器、晶体管和存储元件等。
目前,虽然已经积极地开展了对于纳米颗粒的制造方法和材料性能的研究,但是对于纳米线制造方法的研究很少。现有的具有代表性的纳米线制造方法如图1所示,被称为汽-液-固(VLS)生长方法。
VLS生长方法用于按照以下步骤来制造纳米线。首先,制备基板11,如图1(a)所示,然后通过涂覆诸如Au的金属而在基板11的上形成金属层12,如图1(b)所示。此后,对设置有金属层的基板在约500℃进行热处理,然后金属层12上的物质被烧结,结果形成金属催化剂13,如图1(c)所示。此时,各金属催化剂13通常具有不规则尺寸,而不是规则的尺寸。此后,基于将金属催化剂作为成核位置来形成纳米线14,如图1(d)所示。这里,纳米线14可以通过以下方式来形成:将SiH4等硅氢化合物供应到金属催化剂13并且在处理温度下将SiH4的Si元素引导至金属催化剂处以形成核。当向该核连续供应硅烷时,纳米线可以在金属催化剂13的下方连续生长,如图1(d)所示。根据VLS生长方法,通过适当地调节诸如硅烷的原料气体的量可以形成所需长度的纳米线。然而,当形成纳米线时存在最大长度的限制,并且进一步批量生产并不合适,因为必须进行高温热处理。另外,纳米线生长受到金属催化剂13的直径以及金属催化剂的分布的限制,其中难以调节精确的宽度(厚度)和分布,并且金属催化剂会在纳米线中造成杂质污染。
另外,VLS生长方法的过程成本很高,并且不适合批量生产,因此VLS生长方法不适合用于纳米线的批量生产。
发明内容
技术问题
本发明的一方面旨在提供一种纳米线制造方法,所述方法能通过在基板上形成多个网格图案、在所述网格图案上形成纳米线以及将所述网格图案和所述纳米线分离而在室温下以低成本来批量生产具有高规则性的纳米线。
技术方案
根据本发明的用于解决上述缺陷的纳米线制造方法包括:在基板上形成多个网格图案;在所形成的网格图案上形成纳米线;以及将所述网格图案和所述纳米线分离。
所述形成多个网格图案的步骤包括:在所述基板上形成聚合物的网格基层;以及使用压印模压制所述网格基层。
所述网格图案的宽度是20nm至200nm。
所述形成纳米线的步骤包括:通过在所述网格图案上沉积纳米线材料来形成纳米线基层;以及湿刻蚀所述纳米线基层。
所述纳米线材料是金属、金属氧化物、氮化物和陶瓷中的至少一种。
所述沉积纳米线材料的步骤是通过使用溅镀方法、CVD和蒸镀方法中的至少一种来执行的。
所述分离所述纳米线的步骤包括:通过将粘合剂附着在所述纳米线的上部来将所述网格图案与所述纳米线分离,通过紫外线使所述粘合剂的粘附力失去;在所述粘合剂上照射紫外线来去除所述粘合剂的粘附力;以及将所述粘合剂和所述纳米线分离,并且所述粘合剂可以是薄膜形式。
所述分离所述纳米线的步骤包括:通过在所述网格图案上施加超声波振动来将所述网格图案与所述纳米线分离。
所述纳米线制造方法进一步包括:在所述形成所述网格图案的步骤与所述形成所述纳米线的步骤之间,通过在所述网格图案上沉积牺牲物质来形成牺牲层,其中所述分离所述纳米线的步骤包括通过刻蚀所述牺牲层来分离所述网格图案和所述纳米线。
有益效果
根据本发明,在不需要高温下的热处理过程的情况下,可以容易地在室温下制造纳米线,因此提高了过程效率。
另外,根据本发明,通过调节湿刻蚀的时间段可以调节所制造的纳米线的宽度和高度。
另外,根据本发明,通过使用湿刻蚀过程来制造纳米线,因此能够以低成本来制造纳米线。
同时,根据本发明,纳米线可以被批量生产,并且即使在批量生产的情况下也可以制造出具有高规则性的纳米线。
附图说明
结合附图,本发明某些示例性实施例的上述和其他方面、特征和优点通过以下描述会更加明显,其中:
图1是示出了纳米线的现有制造方法的视图;
图2是顺序地示出了根据本发明的纳米线制造方法的视图;
图3至图5是分别示出了根据本发明的纳米线制造方法的视图;以及
图6至图8是示出了根据本发明的制造过程的视图。
具体实施方式
以下将参照附图描述本发明的示例性实施例。应当理解,本文中描述的以及附图图示的配置仅仅是本发明的实施例,并且当提交了本申请时可以用多种修改来代替。另外,在本发明的以下描述中,当并入本文的公知的功能和配置的详细描述会使本发明的主题相当不清楚时,就会省略这些公知的功能和配置的详细描述。以下术语在考虑它们在本发明中的功能的情况下进行定义,并且应当根据本说明书的全部内容进行理解。在整个说明书中,相同或相似的附图标记表示执行相同或相似功能和操作的元件。
图2是顺序地示出了根据本发明的纳米线制造方法的视图。
参见图2,根据本发明的纳米线制造方法可以包括以下步骤:在基板上形成多个网格图案(S1);在所形成的网格图案上形成纳米线(S3);以及将网格图案和纳米线分离(S5)。
作为在S1步骤中使用的基板材料,除多种材料之外,可以使用包括玻璃、石英、丙烯酰基、PC(聚碳酸酯)和PET(聚对苯二甲酸乙二醇酯)等各种聚合物的塑料和蓝宝石等。以下,将描述形成多个网格图案的过程。
可以通过纳米印刷来执行网格图案形成的过程。也就是说,通过在基板上涂覆诸如UV树脂的聚合物来形成网格基层。随后,在网格基层上对准具有凹槽和突起的压印模。这里,压印模的多个凹槽和突起以预定的距离互相分隔开且反复对齐。另外,压印模的凹槽与将要形成网格图案的位置相对应。
此后,压印模的凹槽和网格基板被压制成互相接触,然后在上面照射紫外线进行光固化。结果,在基板上与压印模的凹槽相对应的位置处形成多个网格图案。此时,凹槽的宽度(W)可以在20nm至200nm的范围内,然而,该宽度不限于此。因此,将要在与凹槽相对应的位置处形成的网格图案的宽度在20nm至200nm的范围内。然而,显然这仅仅是一个示例性的范围,并且可以考虑随后将要形成的纳米线的宽度来选择压印模的凹槽的宽度和网格图案的宽度。
同时,在上述实施例中,即使光固化性材料用作形成网格基层的聚合物,热固化性材料也可以使用,并且因此,根据本发明的网格图案可以通过使用压印模来压制网格基层并且进行热固化来形成。
形成纳米线的S3步骤将按照以下方式执行。
纳米线基层可以通过以下方式来形成:使用溅镀方法、CVD和蒸镀等商用的方法以及根据未来技术的发展可以使用的所有可实施的沉积方法,在S1步骤中形成的网格图案上沉积纳米线材料。这里,纳米线材料可以是金属、金属氧化物、氮化物和陶瓷中的至少一种。例如,诸如Ag、Cu、Al、Cr等金属,诸如AgO、Al2O3、ZnO、ITO等金属氧化物以及诸如Si或SiO2、SiN、SiC等陶瓷材料可以用作纳米线材料。然而,这些是示例性的材料,并且本发明的范围不限于此,因此,多种材料可以根据它们的使用目的而沉积在网格图案上作为纳米线材料。
此后,可以对通过沉积纳米线材料而形成的纳米线基层进行湿刻蚀来形成纳米线。此时,通过调节湿刻蚀过程的时间段可以控制纳米线的宽度和厚度。
随后,在步骤S5中,将在步骤S3中形成的纳米线和网格图案分离。此时,纳米线和网格图案的分离按照以下方式进行。
作为在步骤S5中的第一实施例,粘合剂附着在步骤S3中形成纳米线上,从而将纳米线与网格图案分离。此时,将要附着在纳米线上的粘合剂可以是薄膜型或液相,并且薄膜型更加优选。另外,粘合剂可以是在照射紫外线之前具有很强粘附力的材料,然而,粘附力在照射紫外线时会消失。例如,可以使用丙烯酰基或乙烯异基(vinyl iso group)的光诱导聚合粘合剂。然而,粘合剂不限于此,并且具有上述性能的所有材料都可以用作粘合剂。
作为在步骤S5中的第二实施例,通过在纳米线所形成的网格图案上施加超声波振动可以将纳米线和网格图案分离。此时,就第一和第二实施例而言,通过在S1步骤之后在网格图案上涂覆润滑剂来对网格图案进行表面处理,使得网格图案和纳米线容易分离。
同时,在S1步骤之后,可以在网格图案上进一步沉积牺牲层,并且在这种情况下,作为第三实施例,通过刻蚀不同种类的薄膜来分离步骤S5中的网格图案和纳米线。以下将参照图6至图8来描述更多细节。
根据包括上述方法的本发明的纳米线制造方法具有多个优点,使得可以通过控制湿刻蚀过程的时间段来调节纳米线的宽度和高度,这与现有技术不同,并且可以在室温下以低成本制造纳米线,这种纳米线可以批量制造,并且即使在批量生产的情况下也可以制造出具有规则性的纳米线。另外,在制造过程中已经形成的以及形成在基板上的网格图案可以在纳米线制造过程重新使用,从而节省制造成本。
图3至图5是分别示出了根据本发明的纳米线制造过程的视图,更具体地讲,图3至图5是示出了根据图2所述的第一实施例的纳米线制造过程的视图。
参见图2至图5,通过在基板110上涂覆聚合物来形成网格基层130,如图3(a)所示。
随后,压印模210在网格基层130上对准,如图3(b)所示。这里,压印模210具有以预定距离对齐的多个突起211以及在这些突起之间形成的多个凹槽。这里,凹槽的宽度(W)可以在20nm至200nm的范围内,然而,该宽度不限于此,如在图2中所描述。
此外,如图3(c)所示,网格图案131可以通过使用压印模210压制网格基层130的上部来形成,如图3(c)所示,并且将压印模210分离,如图4(d)所示。与此同时,在使用压印模310压制网格基层130之后、在分离之前,可以根据形成网格基层130的材料类型,通过热固化过程或紫外线照射来进行光固化过程。
在形成网格图案之后,如图4(e)所示,可以通过在网格图案131上沉积纳米线材料来形成纳米线基层150。与此同时,纳米线基层150可以在各个网格图案131之间形成有空间132,如图4(e)所示。然而,纳米线基层的配置不限于此。在网格图案131之间形成空间132的原因在于:在随后将要进行的湿刻蚀过程中可以平稳地刻蚀纳米线基层150。这里,纳米线材料可以是金属、金属氧化物、氮化物和陶瓷中的至少一种,并且沉积方法可以包括溅镀方法、CVD和蒸镀方法等商用的方法,以及根据未来技术的发展可以使用的所有可实施的沉积方法,如在图2中所描述。
在形成纳米线基层150之后,可以通过对各个网格图案131之间的空间进行湿刻蚀来形成纳米线170,如图4(f)所示。此时,通过调节湿刻蚀过程的时间段可以控制纳米线170的宽度和厚度。
在形成纳米线170之后,如图5(g)所示,将粘合剂310附着在纳米线170上。此时,粘合剂310可以是薄膜型或液相,并且薄膜型会是更优选的,并且粘合剂不限于此。另外,粘合剂可以是在照射紫外线之前具有很强粘附力的材料,然而,粘附力在照射紫外线时会消失。例如,可以使用丙烯酰基或乙烯异基的光诱导聚合粘合剂,然而,粘合剂不限于此,并且具有上述性能的所有材料都可以用作粘合剂。
在附着粘合剂310之后,如图5(h)所示,可以将纳米线170与网格图案分离,然后通过用紫外线照射粘合剂并且使粘合剂310失去粘附力,就获得了根据本发明的纳米线,如图5(i)所示。
图6至图8是示出了根据本发明的制造过程的视图,更具体地讲,图6至图8是示出了根据图2所述的第三实施例的纳米线制造过程的视图。
参见图2至图8,通过在基板110上涂覆聚合物来形成网格基层130,如图6(a)所示。此后,压印模210在网格基层130上对准,如图6(b)所示。
此外,如图6(c)所示,网格图案131可以通过使用压印模210压制网格基层130的上部来形成,然后分离压印模210,如图7(d)所示。更多细节与图3至图5的细节相同,因此被省略。
在形成网格图案之后,通过沉积牺牲层物质可以在网格图案131上形成牺牲层140。这里,牺牲层物质可以根据随后将要沉积的纳米线材料的变化而变化。例如,在多晶硅、SiC、SiN、TiN、Ti和Al中的一种作为纳米线材料的情况中,氧化物可以用作牺牲层物质。另外,在氧化物、SiC和SiN中的一种作为纳米线材料的情况中,多晶硅可以用作牺牲物质。此外,在Ni作为纳米线材料的情况中,Cu或Al可以用作牺牲物质,并且在Ag作为纳米线材料的情况中,Al可以用作牺牲物质。同时,在Au作为纳米线材料的情况中,Cu、Ni和Al中的任意一种可以用作牺牲物质。然而,这些都是示例性牺牲物质并且牺牲物质可以根据纳米线材料的种类变化而变化。
在形成牺牲层140之后,如图7(f)所示,通过在形成有牺牲层的网格图案131上沉积纳米线材料可以形成纳米线基层150。此时,纳米线基层150可以在各个网格图案131之间形成有空间132,如图7(f)所示。然而,纳米线基层的配置不限于此,如在图4中所描述的。
这里,将要沉积在网格图案131上的纳米线材料可以是金属、金属氧化物、氮化物和陶瓷中的至少一种,并且沉积方法可以包括溅镀方法、CVD和蒸镀方法等商用的方法,以及根据未来技术的发展可以使用的所有可实施的沉积方法,如在图2中所描述的。
在形成纳米线基层150之后,可以通过对各个网格图案131之间的空间进行湿刻蚀来形成纳米线170,如图8(g)所示。
在形成纳米线170之后,如图8(h)所示,通过使用刻蚀剂来刻蚀牺牲层140,将纳米线170与网格图案131分离,结果就获得了纳米线170。此时,刻蚀剂可以根据牺牲物质的类型变化而变化。
根据本发明,纳米线可以通过纳米压印和湿刻蚀过程来制造,因此可以在室温下制造纳米线。另外,纳米线的宽度和高度可以通过控制湿刻蚀过程的时间段来调节。结果,具有所需尺寸的纳米线可以批量制造,并且即使在批量生产的情况下也可以制造具有规则性的纳米线。

Claims (17)

1.一种纳米线制造方法,包括:
在基板上形成多个网格图案;
在所述网格图案上形成纳米线;以及
将所述网格图案与所述纳米线分离。
2.如权利要求1所述的纳米线制造方法,其中,所述形成多个网格图案的步骤包括:在所述基板上形成聚合物的网格基层;以及使用压印模压制所述网格基层。
3.如权利要求1所述的纳米线制造方法,其中,所述网格图案的宽度是20nm至200nm。
4.如权利要求1所述的纳米线制造方法,其中,所述形成纳米线的步骤包括:通过在所述网格图案上沉积纳米线材料来形成纳米线基层;以及湿刻蚀所述纳米线基层。
5.如权利要求4所述的纳米线制造方法,其中,所述沉积纳米线材料的步骤包括:在各个所述网格图案之间设置间隙。
6.如权利要求4所述的纳米线制造方法,其中,所述纳米线材料是金属、金属氧化物、氮化物和陶瓷中的至少一种。
7.如权利要求4所述的纳米线制造方法,其中,所述沉积纳米线材料是通过使用溅镀方法、CVD和蒸镀方法中的至少一种来执行的。
8.如权利要求1所述的纳米线制造方法,其中,所述分离所述纳米线的步骤包括:通过将粘合剂附着在所述纳米线的上部来将所述网格图案与所述纳米线分离,通过紫外线使所述粘合剂的粘附力失去;在所述粘合剂上照射紫外线来去除所述粘合剂的粘附力;以及将所述粘合剂和所述纳米线分离。
9.如权利要求1所述的纳米线制造方法,其中,所述分离所述纳米线的步骤包括:通过在所述网格图案上施加超声波振动来将所述网格图案和所述纳米线分离。
10.如权利要求1所述的纳米线制造方法,进一步包括:在所述形成所述网格图案的步骤与所述形成所述纳米线的步骤之间,通过在所述网格图案上沉积牺牲物质来形成牺牲层,其中,所述分离所述纳米线的步骤包括通过刻蚀所述牺牲层来将所述网格图案与所述纳米线分离。
11.如权利要求10所述的纳米线制造方法,其中,所述牺牲层物质是氧化物、多晶硅、Cu、Al和Ni之一。
12.如权利要求11所述的纳米线制造方法,其中,在氧化物作为所述牺牲层物质的情况中,所述纳米线是由多晶硅、SiC、SiN、TiN、Ti和Al中的一种制成的。
13.如权利要求11所述的纳米线制造方法,其中,在多晶硅作为所述牺牲层物质的情况中,所述纳米线是由氧化物、SiC和SiN中的一种制成的。
14.如权利要求11所述的纳米线制造方法,其中,在Al作为所述牺牲层物质的情况中,所述纳米线是由Ni、Ag和Au中的一种制成的。
15.如权利要求11所述的纳米线制造方法,其中,在Cu作为所述牺牲层物质的情况中,所述纳米线是由Ni或Au制成的。
16.如权利要求11所述的纳米线制造方法,其中,在Ni作为所述牺牲层物质的情况中,所述纳米线是由Au制成的。
17.如权利要求11所述的纳米线制造方法,其中,所述牺牲层物质和所述纳米线是由不同材料制成的。
CN201280032764.8A 2011-06-29 2012-06-28 纳米线制造方法 Pending CN103648968A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2011-0063528 2011-06-29
KR1020110063528A KR20130002527A (ko) 2011-06-29 2011-06-29 나노와이어 제조방법
PCT/KR2012/005116 WO2013002570A2 (en) 2011-06-29 2012-06-28 Nanowire manufacturing method

Publications (1)

Publication Number Publication Date
CN103648968A true CN103648968A (zh) 2014-03-19

Family

ID=47424674

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280032764.8A Pending CN103648968A (zh) 2011-06-29 2012-06-28 纳米线制造方法

Country Status (5)

Country Link
US (2) US8821740B2 (zh)
KR (1) KR20130002527A (zh)
CN (1) CN103648968A (zh)
TW (1) TWI469916B (zh)
WO (1) WO2013002570A2 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106298398A (zh) * 2016-09-29 2017-01-04 青岛科技大学 具有网状表层的原位Al掺杂SiC纳米线的制备及应用
CN106952856A (zh) * 2017-01-26 2017-07-14 中国科学院半导体研究所 氮化物纳米带的制备方法
WO2019120313A1 (zh) * 2017-12-21 2019-06-27 上海银之川金银线有限公司 一种非连续真空镀金属薄膜、金属丝及其制作方法
CN110656311A (zh) * 2019-09-20 2020-01-07 南京大学 一种自上而下制备纳米粒子的方法
CN114934272A (zh) * 2022-04-29 2022-08-23 东莞领益精密制造科技有限公司 金属条组、卷轴、卷轴屏的成型工艺及手机

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110055586A (ko) * 2008-08-05 2011-05-25 스몰텍 에이비 템플레이트 및 리소그래피용 고종횡비 템플레이트의 제조방법과 나노스케일로 기판을 천공하기 위한 템플레이트의 용도
US9457128B2 (en) 2012-09-07 2016-10-04 President And Fellows Of Harvard College Scaffolds comprising nanoelectronic components for cells, tissues, and other applications
US9786850B2 (en) * 2012-09-07 2017-10-10 President And Fellows Of Harvard College Methods and systems for scaffolds comprising nanoelectronic components
KR102247416B1 (ko) * 2014-09-24 2021-05-03 인텔 코포레이션 표면 종단을 갖는 나노와이어를 사용하여 형성되는 스케일링된 tfet 트랜지스터
JP6970348B2 (ja) * 2016-08-01 2021-11-24 株式会社ソシオネクスト 半導体チップ
KR102456146B1 (ko) * 2020-10-30 2022-10-19 한국과학기술원 비-화학량론적 비결정질 금속산화물 나노구조체 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050099888A (ko) * 2004-04-12 2005-10-17 엘지전자 주식회사 나노 와이어 제조 방법
KR20060018466A (ko) * 2004-08-24 2006-03-02 엘지전자 주식회사 비금속 나노선 제작방법
CN1935632A (zh) * 2005-09-22 2007-03-28 电子部品研究院 制造纳米线器件的方法
CN1997588A (zh) * 2004-07-09 2007-07-11 惠普开发有限公司 具有(111)垂直侧壁的纳米线装置及其制造方法
CN101298314A (zh) * 2008-05-30 2008-11-05 中国科学院上海技术物理研究所 利用牺牲层进行薄膜转移的工艺方法
US20080318003A1 (en) * 2004-08-31 2008-12-25 Agency For Science, Technology And Research Nanostructures and Method of Making the Same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6174578B1 (en) * 1997-10-24 2001-01-16 Rexam Industries Corp. Radiation deactivatable adhesive tape
US7182996B2 (en) * 2002-11-22 2007-02-27 Florida State University Research Foundation, Inc. Deposting nanowires on a substrate
US7943491B2 (en) * 2004-06-04 2011-05-17 The Board Of Trustees Of The University Of Illinois Pattern transfer printing by kinetic control of adhesion to an elastomeric stamp
KR100664760B1 (ko) * 2006-02-24 2007-01-09 허정석 업소용 식기세척기의 세척수 공급관 구조
US8404600B2 (en) * 2008-06-17 2013-03-26 Micron Technology, Inc. Method for forming fine pitch structures

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050099888A (ko) * 2004-04-12 2005-10-17 엘지전자 주식회사 나노 와이어 제조 방법
CN1997588A (zh) * 2004-07-09 2007-07-11 惠普开发有限公司 具有(111)垂直侧壁的纳米线装置及其制造方法
KR20060018466A (ko) * 2004-08-24 2006-03-02 엘지전자 주식회사 비금속 나노선 제작방법
US20080318003A1 (en) * 2004-08-31 2008-12-25 Agency For Science, Technology And Research Nanostructures and Method of Making the Same
CN1935632A (zh) * 2005-09-22 2007-03-28 电子部品研究院 制造纳米线器件的方法
CN101298314A (zh) * 2008-05-30 2008-11-05 中国科学院上海技术物理研究所 利用牺牲层进行薄膜转移的工艺方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
F. S.-S. CHIEN, C.-L. WU, Y.-C. CHOU, ET AL.: "Nanomachining of (110)-oriented silicon by scanning probe lithography and anisotropic wet etching.", 《APPLIED PHYSICS LETTERS》, vol. 75, no. 16, 18 October 1999 (1999-10-18), XP012023775, DOI: 10.1063/1.125037 *
MYUNG-GYU KANG, HUI JOON PARK, SE HYUN AHN, L. JAY GUO.: "Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells.", 《SOLAR ENERGY MATERIALS & SOLAR CELLS》, vol. 94, 24 March 2010 (2010-03-24), XP027013215 *
MYUNG-GYU KANG: "Nanoimprinted transparent metal electrodes and their applications in organic optoelectronic devices", 《UNIVERSITY OF MICHIGAN博士学位论文》, 7 January 2010 (2010-01-07) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106298398A (zh) * 2016-09-29 2017-01-04 青岛科技大学 具有网状表层的原位Al掺杂SiC纳米线的制备及应用
CN106952856A (zh) * 2017-01-26 2017-07-14 中国科学院半导体研究所 氮化物纳米带的制备方法
WO2019120313A1 (zh) * 2017-12-21 2019-06-27 上海银之川金银线有限公司 一种非连续真空镀金属薄膜、金属丝及其制作方法
US11788180B2 (en) 2017-12-21 2023-10-17 Shanghai Galaxy Metallic Yarn Co., Ltd Discontinuous vacuum-metalized thin film and wire and method for manufacturing same
CN110656311A (zh) * 2019-09-20 2020-01-07 南京大学 一种自上而下制备纳米粒子的方法
CN114934272A (zh) * 2022-04-29 2022-08-23 东莞领益精密制造科技有限公司 金属条组、卷轴、卷轴屏的成型工艺及手机
CN114934272B (zh) * 2022-04-29 2023-12-08 东莞领益精密制造科技有限公司 金属条组、卷轴、卷轴屏的成型工艺及手机

Also Published As

Publication number Publication date
TWI469916B (zh) 2015-01-21
WO2013002570A3 (en) 2013-04-11
TW201305043A (zh) 2013-02-01
US8821740B2 (en) 2014-09-02
US20140144881A1 (en) 2014-05-29
KR20130002527A (ko) 2013-01-08
WO2013002570A2 (en) 2013-01-03
US9695499B2 (en) 2017-07-04
US20140335328A1 (en) 2014-11-13

Similar Documents

Publication Publication Date Title
CN103648968A (zh) 纳米线制造方法
US9456501B2 (en) Nanowire grid structure having grid patterns and a sacrificial layer
KR101775163B1 (ko) 나노 임프린트용 몰드 제조방법 및 이를 이용하여 제조된 나노 임프린트용 몰드
Gu et al. Evaporation-induced hierarchical assembly of rigid silicon nanopillars fabricated by a scalable two-level colloidal lithography approach
US20120241409A1 (en) Pattern formation method
KR101886056B1 (ko) 진공증착에 의한 나노구조체 패턴 형성방법 및 이를 이용한 센서 소자
KR101633075B1 (ko) 3차원 플라즈모닉 나노 구조체 및 그 제조방법
KR101626955B1 (ko) 나노와이어 어레이 압전소자의 제조방법
CN108091552B (zh) 一种在透光衬底上制备微纳米结构图案的方法
CN103503114B (zh) 具有纳米图案的透明衬底及其制造方法
CN101587830A (zh) 大面积纳米线p-n结阵列及其制备方法
KR101299359B1 (ko) 광추출 효율이 향상된 2차원 광결정 구조체 및 이의 제조방법
KR20140024510A (ko) 나노와이어, 나노와이어 격자구조물 및 나노와이어 제조방법
TWI613147B (zh) 三維有序多孔微結構製造方法
KR101806563B1 (ko) 나노와이어 제조방법
KR101532841B1 (ko) 그래핀 구조체 및 이를 이용한 압전 에너지 발전소자와 이의 제조 방법
KR20130015712A (ko) 나노와이어 제조방법
KR101846353B1 (ko) 나노와이어 제조방법
CN111916338A (zh) 一种硅基纳米线、其制备方法及薄膜晶体管
KR20140078122A (ko) 나노와이어 격자구조물, 나노와이어 제조방법 및 나노와이어
KR101067381B1 (ko) 나노선 수평 성장을 위한 금속촉매의 측면 증착방법 및 이를 이용하여 수평 성장된 나노선의 제조방법
KR20060089980A (ko) 규칙적으로 노출된 패턴에 자발생성 방법을 적용한 균일하고 배열이 좋은 나노입자(nanoparticle) 제조 방법.
JP2005099177A (ja) 凹凸形状の修正方法
KR101639978B1 (ko) 폴리머 나노와이어 복합체 제조 방법
KR101795045B1 (ko) 베이스나노몰드 및 이를 이용한 나노몰드 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20140319