CN103635847A - 变焦镜头和成像装置 - Google Patents

变焦镜头和成像装置 Download PDF

Info

Publication number
CN103635847A
CN103635847A CN201280030502.8A CN201280030502A CN103635847A CN 103635847 A CN103635847 A CN 103635847A CN 201280030502 A CN201280030502 A CN 201280030502A CN 103635847 A CN103635847 A CN 103635847A
Authority
CN
China
Prior art keywords
lens
lens combination
zoom
zoom lens
combination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280030502.8A
Other languages
English (en)
Inventor
田中刚
长伦生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of CN103635847A publication Critical patent/CN103635847A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-++-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length

Abstract

提供一种具有高可变放大倍率同时能够减小尺寸并增加性能的变焦镜头。变焦镜头从物体侧顺序地包括正的第一透镜组(1G)、负的第二透镜组(2G)、正的第三透镜组(3G)、正的第四透镜组(4G)和负的第五透镜组(5G)。当放大倍率从广角端变化到长焦端时,在所有透镜组相对于成像位置移动的同时,第一透镜组(1G)与第二透镜组(2G)之间的距离(δ12)始终增加,第二透镜组(2G)与第三透镜组(3G)之间的距离(δ23)始终减小,第三透镜组(3G)与第四透镜组(4G)之间的距离(δ34)始终减小,以及第四透镜组(4G)与第五透镜组(5G)之间的距离(δ45)变化。同时满足(J):0.50<fw/f4<0.65和公式(K):-0.32<fw/f5<-0.15,其中fw表示整个镜头系统在广角端处的焦距,f4表示第四透镜组(4G)的焦距,而f5表示第五透镜组(5G)的焦距。

Description

变焦镜头和成像装置
技术领域
本发明涉及一种在诸如数字照相机、摄影机、广播用摄像机、监视照相机等中使用的具有高可变放大倍率的变焦镜头和一种包括该变焦镜头的成像设备。
背景技术
传统地,变焦镜头基本上包括从物体侧顺序布置的:具有正屈光力的第一透镜;具有负屈光力的第二透镜;具有正屈光力的第三透镜;具有正屈光力的第四透镜、和具有负屈光力的第五透镜,并被已知为具有相对较大可变放大倍率的变焦镜头。具有这种透镜结构的变焦镜头被已知为适于同时实现高可变放大倍率和尺寸减小(参见专利文献1、2和3)。
[现有技术文献]
[专利文献1]
日本未审查专利公开No.4(1992)-070707
[专利文献2]
日本未审查专利公开No.9(1997)-197271
[专利文献3]
日本未审查专利公开No.11(1999)-064728
发明内容
近年来,需要一种为紧凑的但具有高可变放大倍率的变焦镜头,例如,具有超过12倍的高可变放大倍率但是仍然紧凑并且具有高性能的变焦镜头。
然而,传统已知的紧凑且高性能变焦镜头(例如,专利文献1-3中所公开的变焦镜头)具有小于10倍的可变放大倍率,并且不能具有高可变放大倍率。
鉴于上述情况已经形成了本发明。本发明的目的是提供一种具有高可变放大倍率但仍然是紧凑的并能够具有高性能的变焦镜头和一种包括该变焦镜头的成像设备。
本发明的变焦镜头基本上包括:
具有正屈光力的第一透镜组;
具有负屈光力的第二透镜组;
具有正屈光力的第三透镜组;
具有正屈光力的第四透镜组;和
具有负屈光力的第五透镜组,所述第一透镜组、所述第二透镜组、所述第三透镜组、所述第四透镜组和所述第五透镜组从变焦镜头的物体侧顺序地布置,
其中当放大倍率从广角端变化到长焦端时,在所有透镜组相对于成像位置移动的同时,第一透镜组与第二透镜组之间的距离始终增加,第二透镜组与第三透镜组之间的距离始终减小,第三透镜组与第四透镜组之间的距离始终减小,以及第四透镜组与第五透镜组之间的距离变化,
其中同时满足以下公式(J)和(K):
0.50<fw/f4<0.65  (J)
-0.32<fw/f5<-0.15  (K),其中
fw是整个镜头系统在广角端处的焦距;f4是第四透镜组的焦距;以及f5是第五透镜组的焦距。
变焦镜头可以基本上由五个透镜组构成。在这种情况下,表述“变焦镜头基本上由n个透镜组构成”表示除了n个透镜组之外还包括下述的变焦镜头:基本上没有任何屈光力的透镜;除了透镜之外的诸如孔径和玻璃罩的光学元件;和诸如透镜法兰、透镜桶、成像元件和照相机震动校正机构的机械部件。
更理想的是变焦镜头满足(J′):0.60<fw/f4<0.65和/或公式(K′):-0.32<fw/f5<-0.20。
理想的是当焦点从无穷远侧移动到近侧并聚焦时,仅第五透镜组朝向图像侧移动。
理想的是变焦镜头满足公式(C):-0.6<1-(β5T)2<-2.5,并且更理想地满足公式(C′):-5.5<1-(β5T)2<-2.9,其中β5T是当在长焦端处聚焦在无穷远处时第五透镜组的成像放大倍率。
本发明的成像设备配备有本发明的变焦镜头。
根据本发明的变焦镜头和包括该变焦镜头的设备基本上包括:
具有正屈光力的第一透镜组;
具有负屈光力的第二透镜组;
具有正屈光力的第三透镜组;
具有正屈光力的第四透镜组;和
具有负屈光力的第五透镜组,所述第一透镜组、所述第二透镜组、所述第三透镜组、所述第四透镜组和所述第五透镜组从变焦镜头的物体侧顺序地布置,
其中当放大倍率从广角端变化到长焦端时,第一透镜组与第二透镜组之间的距离始终增加,第二透镜组与第三透镜组之间的距离始终减小,第三透镜组与第四透镜组之间的距离始终减小,以及第四透镜组与第五透镜组之间的距离变化,使得每一个透镜组都相对于成像位置移动,
其中同时满足以下公式(J):0.50<fw/f4<0.65和公式(K):-0.32<fw/f5<-0.15。这能够使得变焦镜头能够具有高可变放大倍率,但仍然是紧凑的并且能够具有高性能。
因此,例如,可以获得在超过75°的广角端处具有全视场角(即,大视场角)并进一步具有超过12倍的高可变放大倍率但仍然是紧凑的并能够具有高性能的变焦镜头。
公式(J)调节整个透镜系统在广角端处的焦距与第四透镜组的焦距的比值。如果变焦镜头被构造成使得fw/f4的值低于由公式(J)限定的下限,则第四透镜组的正屈光力将被过度减小,这将增加当放大倍率改变时第四透镜组的移动量。这将导致光学系统的总长度将在长焦端处变大的问题。如果变焦镜头被构造成使得fw/f4的值超过由公式(J)限定的上限,则第四透镜组的正屈光力将被过度增加。这将导致当放大倍率改变时难以保持光学性能的问题。
公式(K)调节整个透镜系统在广角端处的焦距与第五透镜组的焦距的比值。如果变焦镜头被构造成使得fw/f5的值低于由公式(K)限定的下限,则第五透镜组的负屈光力将被过度减小,这将增加后焦距变得更长并且光学系统的整个长度变大的问题。如果变焦镜头被构造成使得fw/f5的值超过由公式(K)限定的上限,则第五透镜组5G的负屈光力将被过度减小,这将会削弱后焦距。例如当使用装配有单个镜头反射相机的这个变焦镜头时,这将导致不能保证用于单反相机的反射镜、滤光器等的空间的问题。另外,第五透镜组5G的移动量将在聚焦时增加,并且进一步地第一透镜组的透镜的外径变大。这增加了聚焦机构的负担,使得例如变得难以实现高速聚焦。
附图说明
图1是显示根据本发明的一个实施例的变焦镜头的结构和包括该变焦镜头的成像设备的示意性剖视图;
图2A是显示示例1的变焦镜头的剖视图;
图2B是显示示例1的变焦镜头的变焦设置被设定到广角端的情况和所述变焦镜头的变焦设置被设定到长焦端的情况中的每一种的剖视图;
图3A是显示示例2的变焦镜头的剖视图;
图3B是显示示例2的变焦镜头的变焦设置被设定到广角端的情况和所述变焦镜头的变焦设置被设定到长焦端的情况中的每一种的剖视图;
图4A是显示示例3的变焦镜头的剖视图;
图4B是显示示例3的变焦镜头的变焦设置被设定到广角端的情况和所述变焦镜头的变焦设置被设定到长焦端的情况中的每一种的剖视图;
图5A是显示示例4的变焦镜头的剖视图;
图5B是显示示例4的变焦镜头的变焦设置被设定到广角端的情况和所述变焦镜头的变焦设置被设定到长焦端的情况中的每一种的剖视图;
图6A是显示示例5的变焦镜头的剖视图;
图6B是显示示例5的变焦镜头的变焦设置被设定到广角端的情况和所述变焦镜头的变焦设置被设定到长焦端的情况中的每一种的剖视图;
图7是示例1的畸变图;
图8是示例2的畸变图;
图9是示例3的畸变图;
图10是示例4的畸变图;以及
图11是示例5的畸变图。
具体实施方式
在下文中,以下将参照附图描述本发明的变焦镜头和包括该变焦镜头的成像设备。
图1是显示根据本发明的一个实施例的变焦镜头的结构和包括该变焦镜头的成像设备的示意性剖视图。
如图所示的变焦镜头100具有高可变放大倍率,但仍然是紧凑的并且能够具有高性能。配备有该变焦镜头100的成像设备200用作数字静止相机、摄像机、监视相机等。
变焦镜头100从物体侧(图的-Z侧)顺序地包括:具有正屈光力的第一透镜组1G、具有负屈光力的第二透镜组2G、具有正屈光力的第三透镜组3G、具有正屈光力的第四透镜组4G和具有负屈光力的第五透镜组5G。
当从广角端变焦到长焦端(连续改变放大倍率)时,在所有透镜组1G-5G相对于作为变焦镜头100的成像位置的成像表面Mk移动的同时,变焦镜头100始终增加第一透镜组1G与第二透镜组2G之间的距离δ12、始终减小第二透镜组2G与第三透镜组3G之间的距离δ23、始终减小第三透镜组3G与第四透镜组4G之间的距离δ34、以及改变第四透镜组4G与第五透镜组5G之间的距离δ45。变焦镜头被构造成同时满足以下公式(J):0.50<fw/f4<0.65和公式(K):-0.32<fw/f5<-0.15,其中fw是整个镜头系统在广角端处的焦距;f4是第四透镜组的焦距;以及f5是第五透镜组的焦距。
这样,变焦镜头100的基本结构如上所述。
理想的是当焦点从无穷远侧移动到近侧并聚焦时,仅第五透镜组朝向图像侧移动。这能够使聚焦组(第五透镜组5G)实现尺寸和重量减小,从而减小聚焦机构的负担并实现高速聚焦。
更理想的是变焦镜头100满足公式(J′):0.60<fw/f4<0.65和/或公式(K′):-0.32<fw/f5<-0.20。
进一步地,理想的是变焦镜头100满足公式(C):-0.6<1-(β5T)2<-2.5,并且更理想地满足公式(C′):-5.5<1-(β5T)2<-2.9,其中β5T是当在长焦端聚焦在无穷远处时第五透镜组的成像放大倍率。
公式(C)调节在第五透镜组5G中在长焦端处聚焦在无穷远处时图像移动相对于焦点移动的敏感度。如果变焦镜头100被构造成使得1-β5T 2的值低于由公式(C)限定的下限,则在长焦端处第五透镜组5G的图像移动相对于焦点移动的敏感度将被过度增加,这将导致第五透镜组5G的用于获得最好聚焦点的幅度移动的量被过度减小。因此,将会发生变得难以执行聚焦控制(例如,第五透镜组5G的焦点移动被暂停)的问题。如果变焦镜头100被构造成使得1-β5T 2的值超过由公式(C)限定的上限,则第五透镜组5G的图像移动相对于焦点移动的敏感度将在长焦端处是可接受的,但是在广角端处的敏感度被过度降低。这将导致第五透镜组5G的用于获得最好聚焦点的幅度移动的量被过度增加。因此,例如,将会发生在焦点位移时由聚焦机构产生的异常噪声的问题。
图1中所示的成像设备200包括变焦镜头100和成像元件210,所述成像元件210由对通过变焦镜头100形成的光学图像Hk(表示对象H的光学图像)进行成像的CCD、CMOS等构成。成像元件210的成像表面211是成像镜头100的成像位置(成像表面Mk)。
在这种情况下,光学构件Dg设置在最靠近图像侧透镜(如由图1的变焦镜头100中的项Se表示)与成像表面211之间。
可以采用各种光学构件作为光学构件Dg,这取决于配备有成像镜头100的成像设备200的结构。例如,可以设置对应于成像表面保护玻璃罩、红外线切除滤光器、ND滤光器等的单个或多个构件。
在下文中,将具体地参照图2A、2B-6A、6B、7-11等描述本发明的变焦镜头的示例1-5。
示例1-5的每一个变焦镜头满足变焦镜头100的结构并包括以下组件。
示例1-5的每一个变焦镜头包括由三个透镜构成的第一透镜组1G、由四个透镜构成的第二透镜组2G、由五个透镜构成的第三透镜组3G、由三个透镜构成的第四透镜组4G和由两个透镜构成的第五透镜组5G。
在第一透镜组1G中,第一组第一透镜L1、第一组第二透镜L2和第一组第三透镜L3从物体侧顺序地布置。
进一步地,在第二透镜组2G中,第二透镜组第一透镜L4、第二透镜组第二透镜L5、第二透镜组第三透镜L6和第二透镜组第四透镜L7从物体侧顺序地布置。
进一步地,在第三透镜组3G中,第三透镜组第一透镜L8、第三透镜组第二透镜L9、第三透镜组第三透镜L10、第三透镜组第四透镜L11和第三透镜组第五透镜L12从物体侧顺序地布置。
在第四透镜组4G中,第四透镜组第一透镜L13、第四透镜组第二透镜L14和第四透镜组第三透镜L15从物体侧顺序地布置。
进一步地,在第五透镜组5G中,第五组第一透镜L16和第五组第二透镜L17从物体侧顺序地布置。
由如上所述的五个透镜构成的第三透镜组3G被构造成具有最靠近物体侧布置的三个透镜(具有正屈光力的第三a透镜组3aG)和最靠近图像侧布置的两个透镜(第三b透镜组3bG)。第三b透镜组3bG被构造成可在垂直于光轴(XY平面延伸的方向)的方向上移动,这能够使相机震动校正功能工作。
在这种情况下,第三a透镜组3aG由第三组第一透镜L8、第三组第二透镜L9和第三组第三透镜L10构成,而第三b透镜组3bG由第三组第四透镜L11和第三组.第五透镜L12构成。
孔径光阑St设置在第二透镜组2G与第三透镜组3G之间,并被设计成在改变放大倍率时与第三透镜组3G一体地沿光轴方向Z1移动。
<示例1>
图2A和2B示出了示例1的变焦镜头。图2A是显示示例1的变焦镜头的结构的详细图。图2B示出了其中在上部处示例1的变焦镜头的变焦设置被设定到广角端(如由图中的“广角端”所示)的状态和其中在下部处示例1的变焦镜头的变焦设置被设定到长焦端(如由图中的“长焦端”所示)的状态。进一步地,箭头表示分别当放大倍率从广角端变化到长焦端时透镜组的移动路径。
在示例1的变焦镜头的第五透镜组5G中,两个透镜(即,负透镜和正透)从物体侧顺序地布置。
进一步地,随后所述的表1显示了与示例1的变焦镜头有关的各种数据。表1A的上部显示透镜数据,中部显示变焦镜头的示意性规格,而底部显示每一个透镜组的焦距。
在表1A的上部处的透镜数据中,表面编号i表示第i(i=1、2、3......)个个透镜表面等,并且编号从最靠近物体侧朝向图像侧序列地增加。孔径光阑St和光学构件Dg也被列在这些透镜数据中。
曲率半径Ri表示第i(i=1、2、3......)个表面的曲率半径。表面之间的距离Di(i=1、2、3......)表示第i个表面与第(i+1)个表面之间在光轴Z1上的距离。透镜数据中的项Ri和项Di对应于表示透镜表面等的项Si(i=1、2、3......)。
在表面(i=1、2、3......)之间的距离Di的列中,存在列出了表示表面之间的距离的数字值的情况和列出了Dm(m是整数)的情况。项Dm中的数字对应于表面之间的距离(空间距离)、透镜组之间的距离,并且表面之间的距离(空间距离)基于可变放大倍率(变焦放大倍率)而改变。
进一步地,项Nj表示第j(j=1、2、3......)个光学元件相对于587.6nm波长(d线)的折射率,并且所示数字从物体侧朝向图像侧序列地增加。项vj表示第j个光学元件基于d线的阿贝数。
在表1A的透镜数据中,曲率半径和表面之间的距离的单位是毫米。当凸面面向物体侧时,曲率半径为正,而当凸面面向图像侧时,曲率半径为负。
如上所述的光学系统在诸如透镜等的光学元件的尺寸成比例地增加或减小的任一情况下整体能够保持预定性能水平,因此其中整个透镜数据的数字成比例增加或减小的变焦镜头也可以是与本发明有关的示例。
表1A的中部表示广角端(WIDE)、可变放大倍率的中间(MID)和长焦端(TELE)的每一个值,即透镜组之间的距离:D5、D13、D23、D28和D32;f:整个透镜系统的焦距(每一个值的单位为毫米);Fno:F数;和2ω:整个视场角(单位为“°”)。
进一步地,表1A的底部表示每一组的焦距。在这种情况下,f1:第一透镜组1G的焦距,f2:第二透镜组2G的焦距,f3:第三透镜组3G的焦距,f4:第四透镜组4G的焦距,f5:第五透镜组5G的焦距,f3a:第三a透镜组3aG的焦距,和f3b:第三b透镜组3bG的焦距。
表1A中描述的术语“第三b组(OIS)”(OIS:光学图像稳定性)表示能够通过允许第三b透镜组3bG在垂直于光轴的方向(在XY平面延伸的方向)上移动来实现照相机震动校正功能的性能。
[表1A]
示例1
Figure BDA0000442598700000091
表1B显示了示例1的变焦镜头的非球面表面的非球面系数。在表1A的透镜数据中,附于表面编号的标记“*”表示由表面编号表示的表面是非球面表面。进一步地,表1B显示了与这些表面标号相对应的非球面表面的非球面系数。
表1B中所示的非球面系数用于通过应用在以下非球面公式中来限定非球面形状。
[非球面公式1]
Z=C·h2/{1+(1-K.C2·h2)1/2}+∑An.hn
其中
Z:非球面表面的深度(mm)
h:从光轴到透镜表面的距离(高度)(mm)
K:表示二次曲面的非球面系数
C:近轴曲率=1/R(R:近轴曲率半径)
An:N维(n是不少于三的整数)非球面系数
[表1B]
Figure BDA0000442598700000101
图7是显示在示例1的变焦镜头的广角端(WIDE)、可变放大倍率的中间(MID)和长焦端(TELE)中的每一个处的球面像差、像散、畸变和横向色象差的图。进一步地,每一个光束的d线和g线的畸变在图中被示出。像散图表示相对于径向图像表面和切向图像表面的像差。
如图7所示,由符号(Wa)、(Ma)和(Ta)表示的图表示球面像差,由符号(Wb)、(Mb)、和(Tb)表示的图表示像散、由符号(Wc)、(Mc)和(Tc)表示的图表示畸变以及由符号(Wd)、(Md)和(Td)表示的图表示横向色象差。
在示例的描述结束处显示的表6单独地表示对于示例1-5的公式(J)、(K)和(C)的值(从公式(J)、(K)和(C)的数学表达式单独地估算的值)。可以从相对于表1A-5A中的变焦镜头的各种数据等来估算每一个公式的数学表达式。
如可以从以上透镜数据等看到,示例1的变焦镜头具有高可变倍率,但仍然是紧凑的并能够具有高性能。
显示了示例1的变焦镜头的结构的图2A和2B、显示了变焦镜头的畸变的图7、表示变焦镜头的透镜数据等的表1A&1B以及表示公式(H)和(C)的每一个数学表达式的值的表6在随后所述的示例2-5中以与相同的方式读取,因此对其不再进行详细描述。
<示例2>
图3A和3B显示示例2的变焦镜头。图3A是显示示例2的变焦镜头的具体结构的图。图3B与示例2的变焦镜头有关,并且示出了其中在上部处变焦设置被设定到广角端(如由图中的“广角端”所示)的状态,和其中在底部处变焦设置被设定到长焦端(如由图中的“长焦端”所示)的状态。进一步地,箭头表示分别当放大倍率从广角端变化到长焦端时透镜组的移动路径。
在示例2的变焦镜头的第五透镜组5G中,两个透镜(即,负透镜和正透镜)从物体侧顺序地布置。
进一步地,表2A显示与示例2的焦镜头有关的各种数据。表2A的上部显示透镜数据,中部显示变焦镜头的示意性规格,而底部显示每一个透镜组的焦距。
[表2A]
示例2
Figure BDA0000442598700000121
表2B显示示例2的变焦镜头的非球面表面的非球面系数。
[表2B]
图8是显示在示例2的变焦镜头的广角端(WIDE)、可变放大倍率的中间(MID)、和长焦端(TELE)中的每一个处的球面像差、像散、畸变和横向色象差的图。
<示例3>
图4A和4B显示了示例3的变焦镜头。图4A是显示示例3的变焦镜头的具体结构的图。图4B与示例3的变焦镜头有关,并且示出了其中在上部处变焦设置被设定到广角端(如由图中的“广角端”所示)的状态,和其中在底部处变焦设置被设定到长焦端(如由图中的“长焦端”所示)的状态。进一步地,箭头分别地表示当放大倍率从广角端变化到长焦端时,透镜组的移动路径。
在示例3的变焦镜头的第五透镜组5G中,两个透镜(即,正透镜和负透镜)从物体侧顺序地布置。
进一步地,表3A显示与示例3的变焦镜头有关的各种数据。表3A的上部显示透镜数据,中部显示变焦镜头的示意性规格,而底部显示每一个透镜组的焦距。
[表3A]
示例3
Figure BDA0000442598700000141
表3B显示示例3的变焦镜头的非球面表面的非球面系数。
[表3B]
Figure BDA0000442598700000142
图9是显示在示例3的变焦镜头的广角端(WIDE)、可变放大倍率的中间(MID)、和长焦端(TELE)中的每一个处的球面像差、像散、畸变和横向色象差的图。
<示例4>
图5A和5B显示示例4的变焦镜头。图5A示出了示例4的变焦镜头的具体结构。图5B与示例4的变焦镜头有关,示出了其中在上部处变焦设置被设定到广角端(如由图中的“广角端”所示)的状态,和其中在底部处变焦设置被设定到长焦端(如由图中的“长焦端”所示)的状态。进一步地,箭头分别地表示当放大倍率从广角端变化到长焦端时透镜组的移动路径。
在示例4的变焦镜头的第五透镜组5G中,两个透镜(即,正透镜和负透镜)从物体侧顺序地布置。
进一步地,表4A显示了与示例4的变焦镜头有关的各种数据。表4A的上部显示透镜数据,中部显示变焦镜头的示意性规格,而底部显示每一个透镜组的焦距。
[表4A]
示例4
Figure BDA0000442598700000161
表4B显示示例4的变焦镜头的非球面表面的非球面系数。
[表4B]
Figure BDA0000442598700000171
图10是显示在示例4的变焦镜头的广角端(WIDE)、可变放大倍率的中间(MID)、和长焦端(TELE)中的每一个处的球面像差、像散、畸变和横向色象差的图。
<示例5>
图6A和6B显示了示例5的变焦镜头。图6A示出了示例5的变焦镜头的具体结构。图6B与示例5的变焦镜头有关,示出了其中在上部处变焦设置被设定到广角端(如由图中的“广角端”所示)的状态,和其中在底部处变焦设置被设定到长焦端(如由图中的“长焦端”所示)的状态。进一步地,箭头表示分别当放大倍率从广角端变化到长焦端时透镜组的移动路径。
在示例5的变焦镜头的第五透镜组5G中,两个透镜(即,正透镜和负透镜)从物体侧顺序地布置。
进一步地,表5A显示与示例5的变焦镜头有关的各种数据。表5A的上部显示透镜数据,中部显示变焦镜头的示意性规格,而底部显示每一个透镜组的焦距。
[表5A]
示例5
Figure BDA0000442598700000181
表5B显示了示例5的变焦镜头的非球面表面的非球面系数。
[表5B]
Figure BDA0000442598700000191
图11是显示在示例5的变焦镜头的广角端(WIDE)、可变放大倍率的中间(MID)、和长焦端(TELE)中的每一个处的球面像差、像散、畸变和横向色象差的图。
以这种方式被构造而成的示例5的变焦镜头可以具有高可变放大倍率,但仍然是紧凑的并能够具有高性能。
[表6]
示例1 示例2 示例3 示例4 示例5
公式(J) 0.645 0.623 0.631 0.632 0.621
公式(K) -0.311 -0.218 -0.276 -0.214 -0.219
公式(C) -5.00 -3.32 -3.99 -3.30 -3.30
本发明不局限于上述实施例和示例,而使可以进行各种修改。例如,者如每一透镜元件的曲率半径、表面之间的距离和折射率的值不局限于表中所示的数字示例,而是可以是其它值。

Claims (7)

1.一种变焦镜头,基本上包括:
具有正屈光力的第一透镜组;
具有负屈光力的第二透镜组;
具有正屈光力的第三透镜组;
具有正屈光力的第四透镜组;和
具有负屈光力的第五透镜组,所述第一透镜组、所述第二透镜组、所述第三透镜组、所述第四透镜组和所述第五透镜组从物体侧顺序地布置,
其中当放大倍率从广角端变化到长焦端时,在所有透镜组相对于成像位置移动的同时,第一透镜组与第二透镜组之间的距离始终增加,第二透镜组与第三透镜组之间的距离始终减小,第三透镜组与第四透镜组之间的距离始终减小,以及第四透镜组与第五透镜组之间的距离变化,
其中同时满足以下公式(J)和(K):
0.50<fw/f4<0.65  (J);和
-0.32<fw/f5<-0.15  (K),其中
fw是整个镜头系统在广角端处的焦距;
f4是第四透镜组的焦距;以及
f5是第五透镜组的焦距。
2.根据权利要求1所述的变焦镜头,其中满足以下公式(J′):
0.60<fw/f4<0.65  (J′)。
3.根据权利要求1或2所述的变焦镜头,其中满足以下公式(K′):
-0.32<fw/f5<-0.20  (K′)。
4.根据权利要求1-3中任一项所述的变焦镜头,其中当焦点从无穷远侧移动到近侧并聚焦时,仅第五透镜组朝向图像侧移动。
5.根据权利要求1-4中任一项所述的变焦镜头,其中满足以下公式(C):
-0.6<1-(β5T)2<-2.5  (C),其中
β5T:当在长焦端处聚焦在无穷远处时第五透镜组的成像放大倍率。
6.根据权利要求5所述的变焦镜头,其中满足以下公式(C′):
-5.5<1-(β5T)2<-2.9  (C′)。
7.一种成像设备,包括:
根据权利要求1-6中任一项所述的变焦镜头。
CN201280030502.8A 2011-06-21 2012-06-15 变焦镜头和成像装置 Pending CN103635847A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011-137065 2011-06-21
JP2011137065 2011-06-21
PCT/JP2012/003918 WO2012176413A1 (ja) 2011-06-21 2012-06-15 ズームレンズおよび撮像装置

Publications (1)

Publication Number Publication Date
CN103635847A true CN103635847A (zh) 2014-03-12

Family

ID=47422271

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280030502.8A Pending CN103635847A (zh) 2011-06-21 2012-06-15 变焦镜头和成像装置

Country Status (4)

Country Link
US (1) US9013801B2 (zh)
JP (1) JPWO2012176413A1 (zh)
CN (1) CN103635847A (zh)
WO (1) WO2012176413A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110736986A (zh) * 2019-10-18 2020-01-31 北京大学 基于现场可编程超材料的智能Wi-Fi成像方法与系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2870035B2 (ja) 1989-08-28 1999-03-10 ミノルタ株式会社 広角域を含む高変倍率ズームレンズ系
GB2273669B (en) 1992-12-23 1997-09-24 Pall Corp A method of separating an immiscible liquid/liquid mixture and apparatus therefor
JPH09197271A (ja) 1996-01-24 1997-07-31 Minolta Co Ltd ズームレンズ
JPH10206736A (ja) 1997-01-21 1998-08-07 Canon Inc ズームレンズ
JPH10333037A (ja) * 1997-06-05 1998-12-18 Minolta Co Ltd ズームレンズ
US6010537A (en) 1997-08-19 2000-01-04 Minolta Co., Ltd. Zoom lens system having an image blur compensation function
JPH1164728A (ja) 1997-08-19 1999-03-05 Minolta Co Ltd 手ぶれ補正機能を有するズームレンズ
JPH1164729A (ja) * 1997-08-19 1999-03-05 Minolta Co Ltd 手ぶれ補正機能を有するズームレンズ
US7649693B2 (en) 2005-03-11 2010-01-19 Sony Corporation Zoom lens and image pick-up apparatus
JP2009168934A (ja) * 2008-01-11 2009-07-30 Tamron Co Ltd ズームレンズ
US8049968B2 (en) 2008-01-11 2011-11-01 Tamron Co., Ltd. Zoom lens
JP5455551B2 (ja) * 2009-10-23 2014-03-26 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP5544827B2 (ja) * 2009-11-04 2014-07-09 株式会社ニコン 変倍光学系、光学装置
US8339713B2 (en) 2009-11-04 2012-12-25 Nikon Corporation Zoom optical system, optical apparatus and method for manufacturing zoom optical system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110736986A (zh) * 2019-10-18 2020-01-31 北京大学 基于现场可编程超材料的智能Wi-Fi成像方法与系统
CN110736986B (zh) * 2019-10-18 2021-06-04 北京大学 基于现场可编程超材料的智能Wi-Fi成像方法与系统

Also Published As

Publication number Publication date
US9013801B2 (en) 2015-04-21
US20140098426A1 (en) 2014-04-10
WO2012176413A1 (ja) 2012-12-27
JPWO2012176413A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
JP6706737B2 (ja) ズームレンズ系、撮像装置、カメラ
JP6045443B2 (ja) ズームレンズおよび撮像装置
JP7259905B2 (ja) ズームレンズおよび光学機器
US7796345B2 (en) Zoom lens system
JP5919519B2 (ja) ズームレンズ系、撮像装置及びカメラ
WO2014017025A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP2004317901A (ja) ズームレンズ
JP2011112908A (ja) 変倍光学系および撮像装置
JP6745430B2 (ja) ズームレンズ系、撮像装置
JP2013152374A (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP6467804B2 (ja) ズームレンズ、及び光学機器
JP6583420B2 (ja) ズームレンズおよび光学機器
CN103620474B (zh) 变焦镜头和成像设备
JP6769054B2 (ja) 光学系および光学機器
CN103620473B (zh) 变焦镜头和成像设备
CN103635846B (zh) 变焦镜头和成像设备
JP2015152812A (ja) 光学系、光学装置、及び光学系の製造方法
CN113056693B (zh) 变倍光学系统以及光学设备
CN110050217B (zh) 变焦透镜系统以及摄像装置
CN103635847A (zh) 变焦镜头和成像装置
CN103649810B (zh) 变焦镜头和成像设备
CN104755983A (zh) 变倍光学系统、光学装置和制造变倍光学系统的方法
JP5399039B2 (ja) ズームレンズおよび撮像装置
CN103620472A (zh) 变焦镜头和成像设备
CN103649809A (zh) 变焦镜头和成像设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140312