CN103590021B - 一种提高贵金属氧化物涂层中贵金属含量的方法 - Google Patents
一种提高贵金属氧化物涂层中贵金属含量的方法 Download PDFInfo
- Publication number
- CN103590021B CN103590021B CN201310635636.9A CN201310635636A CN103590021B CN 103590021 B CN103590021 B CN 103590021B CN 201310635636 A CN201310635636 A CN 201310635636A CN 103590021 B CN103590021 B CN 103590021B
- Authority
- CN
- China
- Prior art keywords
- precious metal
- coating
- metal oxide
- bullion content
- oxide coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011248 coating agent Substances 0.000 title claims abstract description 40
- 238000000576 coating method Methods 0.000 title claims abstract description 40
- 239000010970 precious metal Substances 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims abstract description 15
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 13
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 13
- 239000002243 precursor Substances 0.000 claims abstract description 28
- 239000002904 solvent Substances 0.000 claims abstract description 13
- 238000001149 thermolysis Methods 0.000 claims abstract description 10
- 239000007788 liquid Substances 0.000 claims abstract description 8
- 239000011159 matrix material Substances 0.000 claims abstract description 5
- 239000010953 base metal Substances 0.000 claims abstract description 3
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 3
- 239000000470 constituent Substances 0.000 claims abstract description 3
- 230000003252 repetitive effect Effects 0.000 claims abstract description 3
- 239000010936 titanium Substances 0.000 claims description 15
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 14
- 229910052719 titanium Inorganic materials 0.000 claims description 14
- 229910052741 iridium Inorganic materials 0.000 claims description 9
- 229910052707 ruthenium Inorganic materials 0.000 claims description 7
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 2
- 239000000126 substance Substances 0.000 abstract description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 15
- 238000001704 evaporation Methods 0.000 description 11
- 230000008020 evaporation Effects 0.000 description 11
- 238000002156 mixing Methods 0.000 description 11
- 229960000935 dehydrated alcohol Drugs 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 3
- 238000005979 thermal decomposition reaction Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- KHYBPSFKEHXSLX-UHFFFAOYSA-N iminotitanium Chemical compound [Ti]=N KHYBPSFKEHXSLX-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910001000 nickel titanium Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Landscapes
- Chemically Coating (AREA)
Abstract
本发明公开了一种提高贵金属氧化物涂层中贵金属含量的方法,将贵金属和非贵金属组元分别溶解到相应的溶剂中,互相混合均匀形成前驱物溶液;将前驱物溶液涂覆在预处理过的基体上,红外灯下使溶剂挥发,重复涂覆-挥发多次直至前驱液完全用完;低于400℃温度下烧结0.5~1.5小时,重复多次;然后在400~550℃温度下热分解形成贵金属氧化物涂层。本发明可以将涂层中的贵金属含量从原液含量的60-70%增加到原液含量的85-96%,显著改善涂层的电化学性能。
Description
技术领域
本发明属于电化学领域,更具体涉及一种提高贵金属氧化物涂层中贵金属含量的方法。
背景技术
铱系涂层兼具良好的电催化性能和电化学稳定性被认为是最佳的析氧阳极,Ru系涂层以高活性和较好是寿命成为最佳的析氯阳极,Pt、Rh、Pd等贵金属元素也是活性涂层的重要研究对象。无论是析氯阳极还是析氧阳极,都必须含有贵金属元素Ir、Ru等活性贵金属元素。研究表明电极性能很大程度上取决于涂层中贵金属的含量(YoshioTakasu等.OxygenreductionbehaviorofRuO2/Ti,IrO2/TiandIrM(M:Ru,Mo,W,V)Ox/Tibinaryoxideelectrodesinasulfuricacidsolution.ElectrochemistryCommunications,2008,10(4):668-672)。热分解法是制备钛阳极的主要方法之一。热分解制备技术包含以下步骤:前驱物溶解在合适的溶剂中,前驱物溶液涂覆在预处理过的钛基体上,红外灯下让溶剂蒸发,继续涂覆蒸发反复几次直至涂夜完全用完,最后在400~550℃左右热分解,最终在钛基体上形成几个微米厚的氧化物层。在热分解法制备铱系和Ru系等贵金属氧化物涂层的过程中,前驱体的分解过程起了决定性的作用。有学者对MCl3·nH2O和H2MCl6·nH2O的热解过程(其中M代表贵金属元素)进行研究(GuangWJ,KrishnanR.ThermalandElectrochemicalAnalysesofSomeNobleMetalCompounds.JournalofTheElectrochemicalSociety,1987,134(4):1830.胡吉明,吴继勋,孟惠民,等.氯盐制备IrO2+Ta2O5混合氧化物阳极的热解形成过程.稀有金属材料与工程,2000,29(2):132-136),发现贵金属含量都有所损失,但都未提及原液中贵金属含量和烧结最终产品中贵金属含量,所测定的电化学性能都是建立在在热分解过程中没有活性组元流失的前提。其他铱系和钌系贵金属氧化物涂层的研究也都着重相组成、相结构和电化学性能。然而,分别测定原液中和热分解后钛阳极上贵金属的含量,发现原液中的贵金属含量与涂层中贵金属含量很不一致,一般仅能保留原液中的60~70%。
发明内容
本发明的目的在于提供一种提高贵金属氧化物涂层中贵金属含量的方法,可以将涂层中的贵金属含量从原液含量的60-70%增加到原液含量的85-96%,显著改善涂层的电化学性能。
为实现上述目的,本发明采用如下技术方案:
一种提高贵金属氧化物涂层中贵金属含量的方法包括以下步骤:
(1)配制前驱物溶液:将贵金属和非贵金属组元分别溶解到相应的溶剂中,互相混合均匀形成前驱物溶液;
(2)涂覆:将前驱物溶液涂覆在预处理过的基体上,红外灯下使溶剂挥发,重复涂覆-挥发多次直至前驱液完全用完;
(3)烧结:低于400℃温度下烧结0.5~1.5小时,重复多次;然后在400~550℃温度下热分解形成贵金属氧化物涂层。
所述的贵金属为Ir或Ru。所述的基体为钛或钽。
本发明的显著优点在于:本发明可以将涂层中的贵金属含量从原液含量的60-70%增加到原液含量的85-96%,有效改善涂层中相的组成,未发现有害相贵金属单质。
具体实施方式实施例1
RuCl3溶解到无水乙醇中,后将RuCl3无水乙醇溶液与TiCl3溶液按照0.3molRuO2和0.7molTiO2混合,成为前驱物溶液。按照贵金属含量为8g/m2计算所需混合溶液,将前驱物溶液涂覆在预处理过的钛基体上,150℃左右的红外灯下让溶剂蒸发,蒸发后继续涂覆,蒸发反复几次直至前驱液完全用完。350℃的温度下烧结0.5小时;然后在450℃热分解1小时,最终在钛基体上形成氧化物层。若未经过350℃的温度下烧结0.5小时,涂层中贵金属含量与原液比较,仅为原液的70%,而经过350℃的温度下烧结0.5小时,涂层中贵金属含量达到原液的92%。这两者的电化学性能相差较大,如析氯电位可从1.09V(vsSCE)降低到0.98V(vsSCE)。
实施例2
IrCl3溶解到无水乙醇中,后将IrCl3无水乙醇溶液与TiCl3溶液按照0.3molIrO2和0.7molTiO2混合,成为前驱物溶液。按照贵金属含量为8g/m2计算所需混合溶液,将前驱物溶液涂覆在预处理过的钛基体上,150℃左右的红外灯下让溶剂蒸发,蒸发后继续涂覆,蒸发反复几次直至前驱液完全用完。350℃的温度下烧结0.5小时;然后在450℃热分解1小时,最终在钛基体上形成氧化物层。若未经过350℃的温度下烧结0.5小时,涂层中贵金属含量与原液比较,仅为原液的60%,而经过350℃的温度下烧结0.5小时,涂层中贵金属含量达到原液的85%。这两者的电化学性能相差较大,如析氯电位可从1.11V(vsSCE)降低到1.05V(vsSCE)。
实施例3
RuCl3和IrCl3溶解到无水乙醇中,后将RuCl3无水乙醇溶液和IrCl3无水溶液与TiCl3溶液按照0.15molRuO2、0.15molIrCl3和0.7molTiO2混合,成为前驱物溶液。按照贵金属含量为8g/m2计算所需混合溶液(Ru和Ir都为贵金属),将前驱物溶液涂覆在预处理过的钛基体上,150℃左右的红外灯下让溶剂蒸发,蒸发后继续涂覆,蒸发反复几次直至前驱液完全用完。350℃的温度下烧结0.5,1和1.5小时;然后在450℃热分解1小时,最终在钛基体上形成氧化物层。若未经过350℃的温度下烧结,涂层中贵金属含量与原液比较,仅为原液的65%,而经过350℃的温度下烧结,涂层中贵金属含量达到原液的88%,92%和95%。
实施例4
RuCl3和IrCl3溶解到无水乙醇中,后将RuCl3无水乙醇溶液和IrCl3无水溶液与TiCl3溶液按照0.15molRuO2、0.15molIrCl3和0.7molTiO2混合,成为前驱物溶液。按照贵金属含量为8g/m2计算所需混合溶液(Ru和Ir都为贵金属),将前驱物溶液涂覆在预处理过的钛基体上,150℃左右的红外灯下让溶剂蒸发,蒸发后继续涂覆,蒸发反复几次直至前驱液完全用完。400℃的温度下烧结0.5,1和1.5小时;然后在450℃热分解1小时,最终在钛基体上形成氧化物层。若未经过400℃的温度下烧结,涂层中贵金属含量与原液比较,仅为原液的65%,而经过400℃的温度下烧结,涂层中贵金属含量达到原液的85%,89%和91%。
实施例5
RuCl3和IrCl3溶解到无水乙醇中,后将RuCl3无水乙醇溶液和IrCl3无水溶液与TiCl3溶液按照0.15molRuO2、0.15molIrCl3和0.7molTiO2混合,成为前驱物溶液。按照贵金属含量为8g/m2计算所需混合溶液(Ru和Ir都为贵金属),将前驱物溶液涂覆在预处理过的钛基体上,150℃左右的红外灯下让溶剂蒸发,蒸发后继续涂覆,蒸发反复几次直至前驱液完全用完。350℃的温度下烧结0.5小时;分别重复2、3、4次,然后在450℃热分解1小时,最终在钛基体上形成氧化物层。若未经过350℃的温度下烧结,涂层中贵金属含量与原液比较,仅为原液的65%,而经过350℃的温度下烧结并重复,涂层中贵金属含量也可达到原液的88%,95%和96%。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。
Claims (2)
1.一种提高贵金属氧化物涂层中贵金属含量的方法,其特征在于:包括以下步骤:
(1)配制前驱物溶液:将贵金属和非贵金属组元分别溶解到相应的溶剂中,互相混合均匀形成前驱物溶液;
(2)涂覆:将前驱物溶液涂覆在预处理过的基体上,红外灯下使溶剂挥发,重复涂覆-挥发多次直至前驱液完全用完;
(3)烧结:350℃温度下烧结0.5~1.5小时,重复多次;然后在450℃温度下热分解形成贵金属氧化物涂层;
所述的贵金属为Ir或Ru。
2.根据权利要求1所述的提高贵金属氧化物涂层中贵金属含量的方法,其特征在于:所述的基体为钛或钽。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310635636.9A CN103590021B (zh) | 2013-12-03 | 2013-12-03 | 一种提高贵金属氧化物涂层中贵金属含量的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310635636.9A CN103590021B (zh) | 2013-12-03 | 2013-12-03 | 一种提高贵金属氧化物涂层中贵金属含量的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103590021A CN103590021A (zh) | 2014-02-19 |
CN103590021B true CN103590021B (zh) | 2016-02-03 |
Family
ID=50080328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310635636.9A Active CN103590021B (zh) | 2013-12-03 | 2013-12-03 | 一种提高贵金属氧化物涂层中贵金属含量的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103590021B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114293179B (zh) * | 2021-12-08 | 2024-02-06 | 重庆材料研究院有限公司 | 一种贵金属热电偶用氧化铪涂层的制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103215614A (zh) * | 2013-04-27 | 2013-07-24 | 中国船舶重工集团公司第七二五研究所 | 一种含冷喷涂钽中间层的金属氧化物阳极的制备方法 |
-
2013
- 2013-12-03 CN CN201310635636.9A patent/CN103590021B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103215614A (zh) * | 2013-04-27 | 2013-07-24 | 中国船舶重工集团公司第七二五研究所 | 一种含冷喷涂钽中间层的金属氧化物阳极的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103590021A (zh) | 2014-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cherevko et al. | Stability of nanostructured iridium oxide electrocatalysts during oxygen evolution reaction in acidic environment | |
Hodnik et al. | New insights into corrosion of ruthenium and ruthenium oxide nanoparticles in acidic media | |
Moradi et al. | Addition of IrO2 to RuO2+ TiO2 coated anodes and its effect on electrochemical performance of anodes in acid media | |
Kuai et al. | A reliable aerosol‐spray‐assisted approach to produce and optimize amorphous metal oxide catalysts for electrochemical water splitting | |
Medina-Ramos et al. | Efficient conversion of CO2 to CO using tin and other inexpensive and easily prepared post-transition metal catalysts | |
Mei et al. | Protection of p+-n-Si photoanodes by sputter-deposited Ir/IrO x thin films | |
Puthiyapura et al. | Physical and electrochemical evaluation of ATO supported IrO2 catalyst for proton exchange membrane water electrolyser | |
Jiang et al. | Atomic layer deposition (ALD) co-deposited Pt− Ru binary and Pt skin catalysts for concentrated methanol oxidation | |
Zhou et al. | Electrodeposited MnOx films from ionic liquid for electrocatalytic water oxidation | |
Patil et al. | Chemically synthesized hydrous RuO2 thin films for supercapacitor application | |
Kokoh et al. | Efficient multi-metallic anode catalysts in a PEM water electrolyzer | |
Zhang et al. | One-step preparation of optically transparent Ni-Fe oxide film electrocatalyst for oxygen evolution reaction | |
Schlicht et al. | Highly active Ir/TiO2 electrodes for the oxygen evolution reaction using atomic layer deposition on ordered porous substrates | |
TW201018748A (en) | Electrode for electrolysis cell | |
EA201490860A1 (ru) | Высокоэффективный топливный электрод для твердооксидного электрохимического элемента | |
Bao et al. | Electronic and structural engineering of NiCo2O4/Ti electrocatalysts for efficient oxygen evolution reaction | |
Seifitokaldani et al. | Stability and catalytic activity of titanium oxy-nitride catalyst prepared by in-situ urea-based sol–gel method for the oxygen reduction reaction (ORR) in acid medium | |
Hendricks et al. | Isolating the photovoltaic junction: atomic layer deposited TiO2–RuO2 alloy Schottky contacts for silicon photoanodes | |
Ullah et al. | Iridium‐ruthenium‐oxide coatings for supercapacitors | |
Wang et al. | Design of PEM water electrolysers with low iridium loading | |
CN103590021B (zh) | 一种提高贵金属氧化物涂层中贵金属含量的方法 | |
Suhadolnik et al. | Nanotubular TiO x N y-supported Ir single atoms and clusters as thin-film electrocatalysts for oxygen evolution in acid media | |
US20110308939A1 (en) | Electrode for electrolytic production of chlorine | |
Low et al. | A gold-coated titanium oxide nanotube array for the oxidation of borohydride ions | |
Ollo et al. | Influence of various metallic oxides on the kinetic of the oxygen evolution reaction on platinum electrodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |