CN103590021B - 一种提高贵金属氧化物涂层中贵金属含量的方法 - Google Patents

一种提高贵金属氧化物涂层中贵金属含量的方法 Download PDF

Info

Publication number
CN103590021B
CN103590021B CN201310635636.9A CN201310635636A CN103590021B CN 103590021 B CN103590021 B CN 103590021B CN 201310635636 A CN201310635636 A CN 201310635636A CN 103590021 B CN103590021 B CN 103590021B
Authority
CN
China
Prior art keywords
precious metal
coating
metal oxide
bullion content
oxide coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310635636.9A
Other languages
English (en)
Other versions
CN103590021A (zh
Inventor
林德源
陈云翔
洪毅成
林海晴
张文
邵艳群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Fujian Electric Power Co Ltd
State Grid Fujian Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Fujian Electric Power Co Ltd
State Grid Fujian Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Electric Power Research Institute of State Grid Fujian Electric Power Co Ltd, State Grid Fujian Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201310635636.9A priority Critical patent/CN103590021B/zh
Publication of CN103590021A publication Critical patent/CN103590021A/zh
Application granted granted Critical
Publication of CN103590021B publication Critical patent/CN103590021B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemically Coating (AREA)

Abstract

本发明公开了一种提高贵金属氧化物涂层中贵金属含量的方法,将贵金属和非贵金属组元分别溶解到相应的溶剂中,互相混合均匀形成前驱物溶液;将前驱物溶液涂覆在预处理过的基体上,红外灯下使溶剂挥发,重复涂覆-挥发多次直至前驱液完全用完;低于400℃温度下烧结0.5~1.5小时,重复多次;然后在400~550℃温度下热分解形成贵金属氧化物涂层。本发明可以将涂层中的贵金属含量从原液含量的60-70%增加到原液含量的85-96%,显著改善涂层的电化学性能。

Description

一种提高贵金属氧化物涂层中贵金属含量的方法
技术领域
本发明属于电化学领域,更具体涉及一种提高贵金属氧化物涂层中贵金属含量的方法。
背景技术
铱系涂层兼具良好的电催化性能和电化学稳定性被认为是最佳的析氧阳极,Ru系涂层以高活性和较好是寿命成为最佳的析氯阳极,Pt、Rh、Pd等贵金属元素也是活性涂层的重要研究对象。无论是析氯阳极还是析氧阳极,都必须含有贵金属元素Ir、Ru等活性贵金属元素。研究表明电极性能很大程度上取决于涂层中贵金属的含量(YoshioTakasu等.OxygenreductionbehaviorofRuO2/Ti,IrO2/TiandIrM(M:Ru,Mo,W,V)Ox/Tibinaryoxideelectrodesinasulfuricacidsolution.ElectrochemistryCommunications,2008,10(4):668-672)。热分解法是制备钛阳极的主要方法之一。热分解制备技术包含以下步骤:前驱物溶解在合适的溶剂中,前驱物溶液涂覆在预处理过的钛基体上,红外灯下让溶剂蒸发,继续涂覆蒸发反复几次直至涂夜完全用完,最后在400~550℃左右热分解,最终在钛基体上形成几个微米厚的氧化物层。在热分解法制备铱系和Ru系等贵金属氧化物涂层的过程中,前驱体的分解过程起了决定性的作用。有学者对MCl3·nH2O和H2MCl6·nH2O的热解过程(其中M代表贵金属元素)进行研究(GuangWJ,KrishnanR.ThermalandElectrochemicalAnalysesofSomeNobleMetalCompounds.JournalofTheElectrochemicalSociety,1987,134(4):1830.胡吉明,吴继勋,孟惠民,等.氯盐制备IrO2+Ta2O5混合氧化物阳极的热解形成过程.稀有金属材料与工程,2000,29(2):132-136),发现贵金属含量都有所损失,但都未提及原液中贵金属含量和烧结最终产品中贵金属含量,所测定的电化学性能都是建立在在热分解过程中没有活性组元流失的前提。其他铱系和钌系贵金属氧化物涂层的研究也都着重相组成、相结构和电化学性能。然而,分别测定原液中和热分解后钛阳极上贵金属的含量,发现原液中的贵金属含量与涂层中贵金属含量很不一致,一般仅能保留原液中的60~70%。
发明内容
本发明的目的在于提供一种提高贵金属氧化物涂层中贵金属含量的方法,可以将涂层中的贵金属含量从原液含量的60-70%增加到原液含量的85-96%,显著改善涂层的电化学性能。
为实现上述目的,本发明采用如下技术方案:
一种提高贵金属氧化物涂层中贵金属含量的方法包括以下步骤:
(1)配制前驱物溶液:将贵金属和非贵金属组元分别溶解到相应的溶剂中,互相混合均匀形成前驱物溶液;
(2)涂覆:将前驱物溶液涂覆在预处理过的基体上,红外灯下使溶剂挥发,重复涂覆-挥发多次直至前驱液完全用完;
(3)烧结:低于400℃温度下烧结0.5~1.5小时,重复多次;然后在400~550℃温度下热分解形成贵金属氧化物涂层。
所述的贵金属为Ir或Ru。所述的基体为钛或钽。
本发明的显著优点在于:本发明可以将涂层中的贵金属含量从原液含量的60-70%增加到原液含量的85-96%,有效改善涂层中相的组成,未发现有害相贵金属单质。
具体实施方式实施例1
RuCl3溶解到无水乙醇中,后将RuCl3无水乙醇溶液与TiCl3溶液按照0.3molRuO2和0.7molTiO2混合,成为前驱物溶液。按照贵金属含量为8g/m2计算所需混合溶液,将前驱物溶液涂覆在预处理过的钛基体上,150℃左右的红外灯下让溶剂蒸发,蒸发后继续涂覆,蒸发反复几次直至前驱液完全用完。350℃的温度下烧结0.5小时;然后在450℃热分解1小时,最终在钛基体上形成氧化物层。若未经过350℃的温度下烧结0.5小时,涂层中贵金属含量与原液比较,仅为原液的70%,而经过350℃的温度下烧结0.5小时,涂层中贵金属含量达到原液的92%。这两者的电化学性能相差较大,如析氯电位可从1.09V(vsSCE)降低到0.98V(vsSCE)。
实施例2
IrCl3溶解到无水乙醇中,后将IrCl3无水乙醇溶液与TiCl3溶液按照0.3molIrO2和0.7molTiO2混合,成为前驱物溶液。按照贵金属含量为8g/m2计算所需混合溶液,将前驱物溶液涂覆在预处理过的钛基体上,150℃左右的红外灯下让溶剂蒸发,蒸发后继续涂覆,蒸发反复几次直至前驱液完全用完。350℃的温度下烧结0.5小时;然后在450℃热分解1小时,最终在钛基体上形成氧化物层。若未经过350℃的温度下烧结0.5小时,涂层中贵金属含量与原液比较,仅为原液的60%,而经过350℃的温度下烧结0.5小时,涂层中贵金属含量达到原液的85%。这两者的电化学性能相差较大,如析氯电位可从1.11V(vsSCE)降低到1.05V(vsSCE)。
实施例3
RuCl3和IrCl3溶解到无水乙醇中,后将RuCl3无水乙醇溶液和IrCl3无水溶液与TiCl3溶液按照0.15molRuO2、0.15molIrCl3和0.7molTiO2混合,成为前驱物溶液。按照贵金属含量为8g/m2计算所需混合溶液(Ru和Ir都为贵金属),将前驱物溶液涂覆在预处理过的钛基体上,150℃左右的红外灯下让溶剂蒸发,蒸发后继续涂覆,蒸发反复几次直至前驱液完全用完。350℃的温度下烧结0.5,1和1.5小时;然后在450℃热分解1小时,最终在钛基体上形成氧化物层。若未经过350℃的温度下烧结,涂层中贵金属含量与原液比较,仅为原液的65%,而经过350℃的温度下烧结,涂层中贵金属含量达到原液的88%,92%和95%。
实施例4
RuCl3和IrCl3溶解到无水乙醇中,后将RuCl3无水乙醇溶液和IrCl3无水溶液与TiCl3溶液按照0.15molRuO2、0.15molIrCl3和0.7molTiO2混合,成为前驱物溶液。按照贵金属含量为8g/m2计算所需混合溶液(Ru和Ir都为贵金属),将前驱物溶液涂覆在预处理过的钛基体上,150℃左右的红外灯下让溶剂蒸发,蒸发后继续涂覆,蒸发反复几次直至前驱液完全用完。400℃的温度下烧结0.5,1和1.5小时;然后在450℃热分解1小时,最终在钛基体上形成氧化物层。若未经过400℃的温度下烧结,涂层中贵金属含量与原液比较,仅为原液的65%,而经过400℃的温度下烧结,涂层中贵金属含量达到原液的85%,89%和91%。
实施例5
RuCl3和IrCl3溶解到无水乙醇中,后将RuCl3无水乙醇溶液和IrCl3无水溶液与TiCl3溶液按照0.15molRuO2、0.15molIrCl3和0.7molTiO2混合,成为前驱物溶液。按照贵金属含量为8g/m2计算所需混合溶液(Ru和Ir都为贵金属),将前驱物溶液涂覆在预处理过的钛基体上,150℃左右的红外灯下让溶剂蒸发,蒸发后继续涂覆,蒸发反复几次直至前驱液完全用完。350℃的温度下烧结0.5小时;分别重复2、3、4次,然后在450℃热分解1小时,最终在钛基体上形成氧化物层。若未经过350℃的温度下烧结,涂层中贵金属含量与原液比较,仅为原液的65%,而经过350℃的温度下烧结并重复,涂层中贵金属含量也可达到原液的88%,95%和96%。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (2)

1.一种提高贵金属氧化物涂层中贵金属含量的方法,其特征在于:包括以下步骤:
(1)配制前驱物溶液:将贵金属和非贵金属组元分别溶解到相应的溶剂中,互相混合均匀形成前驱物溶液;
(2)涂覆:将前驱物溶液涂覆在预处理过的基体上,红外灯下使溶剂挥发,重复涂覆-挥发多次直至前驱液完全用完;
(3)烧结:350℃温度下烧结0.5~1.5小时,重复多次;然后在450℃温度下热分解形成贵金属氧化物涂层;
所述的贵金属为Ir或Ru。
2.根据权利要求1所述的提高贵金属氧化物涂层中贵金属含量的方法,其特征在于:所述的基体为钛或钽。
CN201310635636.9A 2013-12-03 2013-12-03 一种提高贵金属氧化物涂层中贵金属含量的方法 Active CN103590021B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310635636.9A CN103590021B (zh) 2013-12-03 2013-12-03 一种提高贵金属氧化物涂层中贵金属含量的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310635636.9A CN103590021B (zh) 2013-12-03 2013-12-03 一种提高贵金属氧化物涂层中贵金属含量的方法

Publications (2)

Publication Number Publication Date
CN103590021A CN103590021A (zh) 2014-02-19
CN103590021B true CN103590021B (zh) 2016-02-03

Family

ID=50080328

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310635636.9A Active CN103590021B (zh) 2013-12-03 2013-12-03 一种提高贵金属氧化物涂层中贵金属含量的方法

Country Status (1)

Country Link
CN (1) CN103590021B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114293179B (zh) * 2021-12-08 2024-02-06 重庆材料研究院有限公司 一种贵金属热电偶用氧化铪涂层的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103215614A (zh) * 2013-04-27 2013-07-24 中国船舶重工集团公司第七二五研究所 一种含冷喷涂钽中间层的金属氧化物阳极的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103215614A (zh) * 2013-04-27 2013-07-24 中国船舶重工集团公司第七二五研究所 一种含冷喷涂钽中间层的金属氧化物阳极的制备方法

Also Published As

Publication number Publication date
CN103590021A (zh) 2014-02-19

Similar Documents

Publication Publication Date Title
Cherevko et al. Stability of nanostructured iridium oxide electrocatalysts during oxygen evolution reaction in acidic environment
Hodnik et al. New insights into corrosion of ruthenium and ruthenium oxide nanoparticles in acidic media
Moradi et al. Addition of IrO2 to RuO2+ TiO2 coated anodes and its effect on electrochemical performance of anodes in acid media
Kuai et al. A reliable aerosol‐spray‐assisted approach to produce and optimize amorphous metal oxide catalysts for electrochemical water splitting
Medina-Ramos et al. Efficient conversion of CO2 to CO using tin and other inexpensive and easily prepared post-transition metal catalysts
Mei et al. Protection of p+-n-Si photoanodes by sputter-deposited Ir/IrO x thin films
Puthiyapura et al. Physical and electrochemical evaluation of ATO supported IrO2 catalyst for proton exchange membrane water electrolyser
Jiang et al. Atomic layer deposition (ALD) co-deposited Pt− Ru binary and Pt skin catalysts for concentrated methanol oxidation
Zhou et al. Electrodeposited MnOx films from ionic liquid for electrocatalytic water oxidation
Patil et al. Chemically synthesized hydrous RuO2 thin films for supercapacitor application
Kokoh et al. Efficient multi-metallic anode catalysts in a PEM water electrolyzer
Zhang et al. One-step preparation of optically transparent Ni-Fe oxide film electrocatalyst for oxygen evolution reaction
Schlicht et al. Highly active Ir/TiO2 electrodes for the oxygen evolution reaction using atomic layer deposition on ordered porous substrates
TW201018748A (en) Electrode for electrolysis cell
EA201490860A1 (ru) Высокоэффективный топливный электрод для твердооксидного электрохимического элемента
Bao et al. Electronic and structural engineering of NiCo2O4/Ti electrocatalysts for efficient oxygen evolution reaction
Seifitokaldani et al. Stability and catalytic activity of titanium oxy-nitride catalyst prepared by in-situ urea-based sol–gel method for the oxygen reduction reaction (ORR) in acid medium
Hendricks et al. Isolating the photovoltaic junction: atomic layer deposited TiO2–RuO2 alloy Schottky contacts for silicon photoanodes
Ullah et al. Iridium‐ruthenium‐oxide coatings for supercapacitors
Wang et al. Design of PEM water electrolysers with low iridium loading
CN103590021B (zh) 一种提高贵金属氧化物涂层中贵金属含量的方法
Suhadolnik et al. Nanotubular TiO x N y-supported Ir single atoms and clusters as thin-film electrocatalysts for oxygen evolution in acid media
US20110308939A1 (en) Electrode for electrolytic production of chlorine
Low et al. A gold-coated titanium oxide nanotube array for the oxidation of borohydride ions
Ollo et al. Influence of various metallic oxides on the kinetic of the oxygen evolution reaction on platinum electrodes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant